1
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Novel Treatments and Preventative Strategies Against Food-Poisoning Caused by Staphylococcal Species. Pathogens 2021; 10:91. [PMID: 33498299 PMCID: PMC7909252 DOI: 10.3390/pathogens10020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Staphylococcal infections are a widespread cause of disease in humans. In particular, S. aureus is a major causative agent of infection in clinical medicine. In addition, these bacteria can produce a high number of staphylococcal enterotoxins (SE) that may cause food intoxications. Apart from S. aureus, many coagulase-negative Staphylococcus spp. could be the source of food contamination. Thus, there is an active research work focused on developing novel preventative interventions based on food supplements to reduce the impact of staphylococcal food poisoning. Interestingly, many plant-derived compounds, such as polyphenols, flavonoids, or terpenoids, show significant antimicrobial activity against staphylococci, and therefore these compounds could be crucial to reduce the incidence of food intoxication in humans. Here, we reviewed the most promising strategies developed to prevent staphylococcal food poisoning.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| |
Collapse
|
2
|
Kolonitsiou F, Papadimitriou-Olivgeris M, Spiliopoulou A, Drougka E, Jelastopulu E, Anastassiou ED, Spiliopoulou I. Methicillin-Resistant Staphylococcus aureus ST80 Induce Lower Cytokine Production by Monocytes as Compared to Other Sequence Types. Front Microbiol 2019; 9:3310. [PMID: 30687287 PMCID: PMC6333658 DOI: 10.3389/fmicb.2018.03310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains an important cause of nosocomial and community-associated infections due to its ability to produce toxins and evade host's immune responses. The aim of the present study was to investigate the association of monocytes immune response in terms of cytokines produced after inoculation with different MRSA clones. Thirty-one clinical MRSA strains were selected on the basis of clonal types, accessory gene regulator (agr) groups and toxin genes carriage. Isolates were identified as S. aureus by Gram stain, catalase, coagulase production and PCR for nuc gene. The presence of mecA, lukS/lukF-PV (Panton-Valentine Leukocidin) and tst (Toxic Shock Syndrome Toxin-1) genes, as well as, the determination of agr groups was performed by PCR. Clonality was investigated by means of multi-locus sequence typing (MLST). Peripheral blood mononuclear cells were stimulated with live bacterial cells for 45 min at a ratio of 1:10. Cells were incubated for 10 h and supernatants were collected. The levels of Tumor Necrosis Factor alpha (TNFa), IL-1b, IL-8, IL-6, IL-12p40, IL-10, interferon-gamma (IFN-γ) and IL-2, were measured by Human Cytokine Multiplex Immunoassay kit. Thirteen strains were tst and 12 lukS/lukF-PV-positive. Seven strains belonged to ST80 and ST225, five to ST30 and ST239, while the remaining seven isolates were grouped together as "other." Strains belonging to ST80 induced statistically lower levels of TNFa, IL-1b, IL-8, IL-6, IL-10, IFN-γ, and IL-2. PVL-positive strains classified into ST80 clone induced statistically lower concentrations of most cytokines as compared to PVL-positive strains belonging to other clones, tst-positive strains and toxin-negative ones. Strains of agr3 group belonging to ST80 induced statistically lower concentrations of most tested cytokines as compared to agr3 strains not-belonging to ST80, agr2 or agr1. This low induction of immune response by MRSA ST80 cannot be attributed to the presence of neither lukS/lukF-PV nor agr3.
Collapse
Affiliation(s)
- Fevronia Kolonitsiou
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | | | | | - Eleanna Drougka
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | - Eleni Jelastopulu
- Department of Public Health, School of Medicine, University of Patras, Patras, Greece
| | | | - Iris Spiliopoulou
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
3
|
Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev 2016; 116:9162-236. [PMID: 27437994 DOI: 10.1021/acs.chemrev.6b00184] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Karine Rigon Zimmer
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Instituto Nacional do Semiárido , Campina Grande, Paraı́ba 58429-970, Brazil
| | - Danielle Silva Trentin
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| |
Collapse
|
4
|
Eisenkraft A, Falk A. Possible role for anisodamine in organophosphate poisoning. Br J Pharmacol 2016; 173:1719-27. [PMID: 27010563 DOI: 10.1111/bph.13486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022] Open
Abstract
In cases of organophosphate poisoning, patients are treated with a combination of antidotes. In addition to these poison-directed antidotes, patients may require extra oxygen and artificial ventilation; other modalities may also be needed due to the wide range of toxic effects. Anisodamine is a belladonna alkaloid, and like other drugs from this family is non subtype-selective muscarinic, and a nicotinic cholinoceptor antagonist, which has been employed in traditional Chinese medicine. As a muscarinic antagonist, it displays similar pharmacological effects to atropine and scopolamine. However, anisodamine is not only less potent than atropine and scopolamine but also less toxic. Current in vitro and animal model studies have demonstrated that anisodamine has protective effects in a variety of diseases. Organophosphate poisoning involves not only the central and peripheral nervous systems, but also the cardiac and respiratory systems, as well as activation of inflammatory processes and oxidative stress. Therefore, the anticholinergic and additional activities of anisodamine appear to be relevant and justify its consideration as an addition to the existing remedies. However, more research is needed, as at present data on the role of anisodamine in the management of organophosphate poisoning are limited. Here, we review the beneficial effects of anisodamine on processes relevant to organophosphate poisoning.
Collapse
Affiliation(s)
- Arik Eisenkraft
- Israel Ministry of Defense, HaKirya, Tel Aviv, Israel.,Israel Defense Force Medical Corps, Ramat Gan, Israel.,The Institute for Research in Military Medicine, The Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Avshalom Falk
- Israel Ministry of Defense, HaKirya, Tel Aviv, Israel
| |
Collapse
|
5
|
Friedman M, Rasooly R. Review of the inhibition of biological activities of food-related selected toxins by natural compounds. Toxins (Basel) 2013; 5:743-75. [PMID: 23612750 PMCID: PMC3705290 DOI: 10.3390/toxins5040743] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
There is a need to develop food-compatible conditions to alter the structures of fungal, bacterial, and plant toxins, thus transforming toxins to nontoxic molecules. The term 'chemical genetics' has been used to describe this approach. This overview attempts to survey and consolidate the widely scattered literature on the inhibition by natural compounds and plant extracts of the biological (toxicological) activity of the following food-related toxins: aflatoxin B1, fumonisins, and ochratoxin A produced by fungi; cholera toxin produced by Vibrio cholerae bacteria; Shiga toxins produced by E. coli bacteria; staphylococcal enterotoxins produced by Staphylococcus aureus bacteria; ricin produced by seeds of the castor plant Ricinus communis; and the glycoalkaloid α-chaconine synthesized in potato tubers and leaves. The reduction of biological activity has been achieved by one or more of the following approaches: inhibition of the release of the toxin into the environment, especially food; an alteration of the structural integrity of the toxin molecules; changes in the optimum microenvironment, especially pH, for toxin activity; and protection against adverse effects of the toxins in cells, animals, and humans (chemoprevention). The results show that food-compatible and safe compounds with anti-toxin properties can be used to reduce the toxic potential of these toxins. Practical applications and research needs are suggested that may further facilitate reducing the toxic burden of the diet. Researchers are challenged to (a) apply the available methods without adversely affecting the nutritional quality, safety, and sensory attributes of animal feed and human food and (b) educate food producers and processors and the public about available approaches to mitigating the undesirable effects of natural toxins that may present in the diet.
Collapse
Affiliation(s)
- Mendel Friedman
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, USDA, Albany, CA 94710, USA
| | - Reuven Rasooly
- Foodborne Contaminants Research Unit, Agricultural Research Service, USDA, Albany, CA 94710, USA; E-Mail:
| |
Collapse
|
6
|
Nishiyama A, Isobe H, Iwao Y, Takano T, Hung WC, Taneike I, Nakagawa S, Dohmae S, Iwakura N, Yamamoto T. Accumulation of staphylococcal Panton-Valentine leukocidin in the detergent-resistant membrane microdomains on the target cells is essential for its cytotoxicity. ACTA ACUST UNITED AC 2012; 66:343-52. [PMID: 22924956 DOI: 10.1111/j.1574-695x.2012.01027.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 12/23/2022]
Abstract
The mechanisms for the cytotoxicity of staphylococcal Panton-Valentine leukocidin (PVL), a pore-forming toxin consisting of LukS-PV and LukF-PV, in human immune cells are still unclear. Because LukS-PV binds to ganglioside GM1, a constituent of detergent-resistant membrane microdomains (DRMs) of the plasma membrane, the role of DRMs in PVL cytotoxicity was examined in human polymorphonuclear neutrophils (PMNs), monocytes, HL-60 cells, and THP-1 cells. PVL binding capacities in HL-60 and THP-1 cells were higher than those in PMNs and monocytes; however, the PVL concentration to obtain more than 80% cell lysis in HL-60 cells was 10 times higher than that in PMNs and PVL even at such concentration induced < 10% cell lysis in THP-1 cells. After incubation of PMNs with LukS-PV, more than 90% of LukS-PV bound to the detergent-soluble membranes. Subsequent incubation with LukF-PV at 4 °C induced the accumulation of more than 70% of PVL components and 170- to 220-kDa complex formation in DRMs in an actin-independent manner. However, only 30% of PVL was found, and complex formation was under detectable level in DRMs in HL-60 cells. PVL did not accumulate in DRMs in THP-1 cells. Our observations strongly indicate that PVL accumulation in DRMs is essential for PVL cytotoxicity.
Collapse
Affiliation(s)
- Akihito Nishiyama
- Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sasakawa Y, Kominami A, Yamamoto K, Nakaoka F, Nakamura M, Nakao M, Abe M, Fukuhama C, Kagawa K. Effects of globin digest and its active ingredient Trp-Thr-Gln-Arg on galactosamine/lipopolysaccharide-induced liver injury in ICR mice. Life Sci 2011; 90:190-9. [PMID: 22154906 DOI: 10.1016/j.lfs.2011.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/20/2011] [Accepted: 11/08/2011] [Indexed: 12/13/2022]
Abstract
AIMS We investigated the effects of globin digest (GD) and its active ingredient Trp-Thr-Gln-Arg (WTQR) on galactosamine/lipopolysaccharide (GalN/LPS)-induced liver injury in imprinting control region (ICR) mice. MAIN METHODS The effects of WTQR and GD on the liver injury were examined by measuring the survival rate, serum aminotransferase activities, hepatic components, antioxidant enzyme activities, histopathological analysis, serum levels and hepatic gene expression of tumor necrosis factor-alpha (TNF-α), macrophage inflammatory protein-2 (MIP-2), and nitric oxide (NO) or inducible nitric oxide synthase (iNOS), and nuclear factor-kappa B (NF-κB) p65 content in GalN/LPS-treated ICR mice. RAW264 mouse macrophages were used to confirm the anti-inflammatory effects of WTQR and GD on the macrophages. KEY FINDINGS WTQR and GD increased the survival rate, suppressed the serum aminotransferase activities, serum levels and hepatic gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in GalN/LPS-treated mice; decreased the oxidized glutathione content, increased the superoxide dismutase activity, and decreased the histopathological grade values of the hepatocyte necrosis and lobular inflammation in GalN/LPS-injured liver; and suppressed the release levels and gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in LPS-stimulated RAW264 macrophages. WTQR and GD may improve the antioxidant defense system and inflammatory status in GalN/LPS-injured liver. SIGNIFICANCE These findings indicate that WTQR and GD have hepatoprotective effects on GalN/LPS-induced liver injury in ICR mice.
Collapse
Affiliation(s)
- Yuka Sasakawa
- MG Pharma Inc., 7-7-25, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li Q, Lei H, Liu A, Yang Y, Su D, Liu X. The antishock effect of anisodamine requires the upregulation of α7 nicotine acetylcholine receptors by IL-10. Life Sci 2011; 89:395-401. [DOI: 10.1016/j.lfs.2011.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/16/2011] [Accepted: 07/07/2011] [Indexed: 02/08/2023]
|
9
|
Wang Y, Fu X, Wang X, Jia X, Gu X, Zhang J, Su J, Hao G, Jiang Y, Fan W, Wu W, Li S. Protective Effects of Anisodamine on Renal Function in Patients with ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. TOHOKU J EXP MED 2011; 224:91-7. [DOI: 10.1620/tjem.224.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yanbo Wang
- Department of Cardiology, the Second Hospital of Hebei Medical University
| | - Xianghua Fu
- Department of Cardiology, the Second Hospital of Hebei Medical University
| | - Xuechao Wang
- Department of Cardiology, the Second Hospital of Hebei Medical University
| | - Xinwei Jia
- Department of Cardiology, the Second Hospital of Hebei Medical University
| | - Xinshun Gu
- Department of Cardiology, the Second Hospital of Hebei Medical University
| | - Jing Zhang
- Department of Cardiology, the Second Hospital of Hebei Medical University
| | - Jianling Su
- Department of Cardiology, the Second Hospital of Hebei Medical University
| | - Guozhen Hao
- Department of Cardiology, the Second Hospital of Hebei Medical University
| | - Yunfa Jiang
- Department of Cardiology, the Second Hospital of Hebei Medical University
| | - Weize Fan
- Department of Cardiology, the Second Hospital of Hebei Medical University
| | - Weili Wu
- Department of Cardiology, the Second Hospital of Hebei Medical University
| | - Shiqiang Li
- Department of Cardiology, the Second Hospital of Hebei Medical University
| |
Collapse
|
10
|
Xu ZP, Wang H, Hou LN, Xia Z, Zhu L, Chen HZ, Cui YY. Modulatory effect of anisodamine on airway hyper-reactivity and eosinophilic inflammation in a murine model of allergic asthma. Int Immunopharmacol 2010; 11:260-5. [PMID: 21168543 DOI: 10.1016/j.intimp.2010.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 12/29/2022]
Abstract
Anisodamine, a peripheral muscarinic receptor antagonist, is a naturally occurring atropine derivative that has been isolated, synthesized and characterized by scientists in China. In the present investigation, we evaluated the modulatory effects of anisodamine on airway hyper-reactivity and inflammation in a murine model of allergic asthma. Asthma model was induced successfully by ovalbumin. The activation of cells, airway eosinopilia, cytokine production, and airway function were examined. Our results collectively show that anisomanine could significantly suppress the accumulation of eosinophils into the airways and dramatically inhibited the histological changes in OVA-induced mice. Additionally, anisodamine could restore the Th1/Th2 balance in BALF by downregulating the level of Th2 cell-associated cytokine IL-4 (p<0.01) and upregulating the level of Th1 cell-associated cytokine IFN-γ (p<0.01). In addition, pretreatment with anisodamine also showed strong suppression of allergen-induced bronchial hyper-reactivity with maximum contraction decreasing from 0.45 ± 0.02 g to 0.28 ± 0.03 g (p<0.01). These results suggested the modulatory effects of anisodamine on Th1/Th2 balance by enhancing Th1-related and suppressing Th2-related parameters, as well as its potential application in airway hyper-reactivity and eosinophilic inflammation.
Collapse
Affiliation(s)
- Zu-Peng Xu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|