1
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Queuine Is a Nutritional Regulator of Entamoeba histolytica Response to Oxidative Stress and a Virulence Attenuator. mBio 2021; 12:mBio.03549-20. [PMID: 33688012 PMCID: PMC8092309 DOI: 10.1128/mbio.03549-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Entamoeba histolytica is a unicellular parasite that causes amebiasis. The parasite resides in the colon and feeds on the colonic microbiota. Queuosine is a naturally occurring modified ribonucleoside found in the first position of the anticodon of the transfer RNAs for Asp, Asn, His, and Tyr. Eukaryotes lack pathways to synthesize queuine, the nucleobase precursor to queuosine, and must obtain it from diet or gut microbiota. Here, we describe the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica, the causative agent of amebic dysentery. Queuine is efficiently incorporated into E. histolytica tRNAs by a tRNA-guanine transglycosylase (EhTGT) and this incorporation stimulates the methylation of C38 in
tRNAGUCAsp. Queuine protects the parasite against oxidative stress (OS) and antagonizes the negative effect that oxidation has on translation by inducing the expression of genes involved in the OS response, such as heat shock protein 70 (Hsp70), antioxidant enzymes, and enzymes involved in DNA repair. On the other hand, queuine impairs E. histolytica virulence by downregulating the expression of genes previously associated with virulence, including cysteine proteases, cytoskeletal proteins, and small GTPases. Silencing of EhTGT prevents incorporation of queuine into tRNAs and strongly impairs methylation of C38 in
tRNAGUCAsp, parasite growth, resistance to OS, and cytopathic activity. Overall, our data reveal that queuine plays a dual role in promoting OS resistance and reducing parasite virulence.
Collapse
|
3
|
Das K, Nozaki T. Non-vesicular Lipid Transport Machinery in Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:315. [PMID: 30283742 PMCID: PMC6156432 DOI: 10.3389/fcimb.2018.00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic cells are organized into separate membrane-bound compartments that have specialized biochemical signature and function. Maintenance and regulation of distinct identity of each compartment is governed by the uneven distribution and intra-cellular movement of two essential biomolecules, lipids, and proteins. Non-vesicular lipid transport mediated by lipid transfer proteins plays a pivotal role in intra-cellular lipid trafficking and homeostasis whereas vesicular transport plays a central role in protein trafficking. Comparative study of lipid transport machinery in protist helps to better understand the pathogenesis and parasitism, and provides insight into eukaryotic evolution. Amebiasis, which is caused by Entamoeba histolytica, is one of the major enteric infections in humans, resulting in 40–100 thousand deaths annually. This protist has undergone remarkable alterations in the content and function of its sub-cellular compartments as well represented by its unique diversification of mitochondrion-related organelle, mitosome. We conducted domain-based search on AmoebaDB coupled with bioinformatics analyses and identified 22 potential lipid transfer protein homologs in E. histolytica, which are grouped into several sub-classes. Such in silico analyses have demonstrated the existence of well-organized lipid transport machinery in this parasite. We summarized and discussed the conservation and unique features of the whole repertoire of lipid transport proteins in E. histolytica.
Collapse
Affiliation(s)
- Koushik Das
- Graduate School of Medicine, The University of Tokyo, Bunkyō, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Bunkyō, Japan
| |
Collapse
|
4
|
Marzano V, Mancinelli L, Bracaglia G, Del Chierico F, Vernocchi P, Di Girolamo F, Garrone S, Tchidjou Kuekou H, D’Argenio P, Dallapiccola B, Urbani A, Putignani L. "Omic" investigations of protozoa and worms for a deeper understanding of the human gut "parasitome". PLoS Negl Trop Dis 2017; 11:e0005916. [PMID: 29095820 PMCID: PMC5667730 DOI: 10.1371/journal.pntd.0005916] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic “citizens.” In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut “parasitome” through “omic” technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology–based profiles of the gut “parasitome” under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine.
Collapse
Affiliation(s)
- Valeria Marzano
- Human Microbiome Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Livia Mancinelli
- Laboratory Medicine, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giorgia Bracaglia
- Laboratory Medicine, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | - Pamela Vernocchi
- Human Microbiome Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | - Stefano Garrone
- Laboratory Medicine, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | - Patrizia D’Argenio
- Pediatric Immuno-infectivology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Urbani
- Institute of Biochemistry and Biochemical Clinic, Faculty of Medicine and Surgery–Policlinico A. Gemelli, Catholic University of Sacred Heart, Rome, Italy
- Proteomic and Metabonomic Unit, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
- Parasitology Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
5
|
Cuellar P, Hernández-Nava E, García-Rivera G, Chávez-Munguía B, Schnoor M, Betanzos A, Orozco E. Entamoeba histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium. Front Cell Infect Microbiol 2017; 7:372. [PMID: 28861400 PMCID: PMC5561765 DOI: 10.3389/fcimb.2017.00372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
During intestinal invasion, Entamoeba histolytica opens tight junctions (TJs) reflected by transepithelial electrical resistance (TEER) dropping. To explore the molecular mechanisms underlying this, we studied in vitro and in vivo the damage produced by the recombinant E. histolytica cysteine protease (rEhCP112) on TJ functions and proteins. rEhCP112 reduced TEER in Caco-2 cells in a dose- and time-dependent manner; and EhCP112-overexpressing trophozoites provoked major epithelial injury compared to control trophozoites. rEhCP112 penetrated through the intercellular space, and consequently the ion flux increased and the TJs fence function was disturbed. However, macromolecular flux was not altered. Functional in vitro assays revealed specific association of rEhCP112 with claudin-1 and claudin-2, that are both involved in regulating ion flux and fence function. Of note, rEhCP112 did not interact with occludin that is responsible for regulating macromolecular flux. Moreover, rEhCP112 degraded and delocalized claudin-1, thus affecting interepithelial adhesion. Concomitantly, expression of the leaky claudin-2 at TJ, first increased and then it was degraded. In vivo, rEhCP112 increased intestinal epithelial permeability in the mouse colon, likely due to apical erosion and claudin-1 and claudin-2 degradation. In conclusion, we provide evidence that EhCP112 causes epithelial dysfunction by specifically altering claudins at TJ. Thus, EhCP112 could be a potential target for therapeutic approaches against amoebiasis.
Collapse
Affiliation(s)
- Patricia Cuellar
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Elizabeth Hernández-Nava
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico.,Consejo Nacional de Ciencia y TecnologíaMexico, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| |
Collapse
|
6
|
Ximénez C, González E, Nieves M, Magaña U, Morán P, Gudiño-Zayas M, Partida O, Hernández E, Rojas-Velázquez L, García de León MC, Maldonado H. Differential expression of pathogenic genes of Entamoeba histolytica vs E. dispar in a model of infection using human liver tissue explants. PLoS One 2017; 12:e0181962. [PMID: 28771523 PMCID: PMC5542602 DOI: 10.1371/journal.pone.0181962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
We sought to establish an ex vivo model for examining the interaction of E. histolytica with human tissue, using precision-cut liver slices (PCLS) from donated organs. E. histolytica- or E. dispar-infected PCLS were analyzed at different post-infection times (0, 1, 3, 24 and 48 h) to evaluate the relation between tissue damage and the expression of genes associated with three factors: a) parasite survival (peroxiredoxin, superoxide dismutase and 70 kDa heat shock protein), b) parasite virulence (EhGal/GalNAc lectin, amoebapore, cysteine proteases and calreticulin), and c) the host inflammatory response (various cytokines). Unlike E. dispar (non-pathogenic), E. histolytica produced some damage to the structure of hepatic parenchyma. Overall, greater expression of virulence genes existed in E. histolytica-infected versus E. dispar-infected tissue. Accordingly, there was an increased expression of EhGal/GalNAc lectin, Ehap-a and Ehcp-5, Ehcp-2, ehcp-1 genes with E. histolytica, and a decreased or lack of expression of Ehcp-2, and Ehap-a genes with E. dispar. E. histolytica-infected tissue also exhibited an elevated expression of genes linked to survival, principally peroxiredoxin, superoxide dismutase and Ehhsp-70. Moreover, E. histolytica-infected tissue showed an overexpression of some genes encoding for pro-inflammatory interleukins (ILs), such as il-8, ifn-γ and tnf-α. Contrarily, E. dispar-infected tissue displayed higher levels of il-10, the gene for the corresponding anti-inflammatory cytokine. Additionally, other genes were investigated that are important in the host-parasite relationship, including those encoding for the 20 kDa heat shock protein (HSP-20), the AIG-1 protein, and immune dominant variable surface antigen, as well as for proteins apparently involved in mechanisms for the protection of the trophozoites in different environments (e.g., thioredoxin-reductase, oxido-reductase, and 9 hypothetical proteins). Some of the hypothetical proteins evidenced interesting overexpression rates, however we should wait to their characterization. This finding suggest that the present model could be advantageous for exploring the complex interaction between trophozoites and hepatocytes during the development of ALA, particularly in the initial stages of infection.
Collapse
Affiliation(s)
- Cecilia Ximénez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
- * E-mail:
| | - Enrique González
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Miriam Nieves
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Ulises Magaña
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Patricia Morán
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Marco Gudiño-Zayas
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Oswaldo Partida
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Eric Hernández
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Liliana Rojas-Velázquez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | | | - Héctor Maldonado
- Sub direction of Pathology, National Institute of Cancerology, México City, México
| |
Collapse
|
7
|
Food-Borne Diarrheal Illness. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Rubin E, Werneburg GT, Pales Espinosa E, Thanassi DG, Allam B. Identification and characterization of peptidases secreted by quahog parasite unknown (QPX), the protistan parasite of hard clams. DISEASES OF AQUATIC ORGANISMS 2016; 122:21-33. [PMID: 27901501 DOI: 10.3354/dao03058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quahog parasite unknown (QPX) is a protistan parasite capable of causing deadly infections in the hard clam Mercenaria mercenaria, one of the most valuable shellfish species in the USA. QPX is an extracellular parasite found mostly in the connective tissue of clam mantle and, in more severe cases of infection, other clam organs. Histopathologic examinations revealed that QPX cells within clam tissues are typically surrounded by hollow areas that have been hypothesized to be, at least in part, a result of extracellular digestion of clam proteins by the parasite. We investigated peptidase activity in QPX extracellular secretions using sodium dodecyl sulfate-polyacrylamide gels containing gelatin as a co-polymerized substrate. Multiple peptidase activity bands of molecular weights ranging from 20 to 100 kDa were detected in QPX secretions derived from a variety of culture media. One major band of approximately 35 kDa was composed of subtilisin-like peptidases that were released by QPX cells in all studied media, suggesting that these are the most common peptidases used by QPX for nutrient acquisition. PCR quantification of mRNA encoding QPX subtilisins revealed that their expression changes with the protein substrate used in the culture media. A fast protein liquid chromatography (FPLC) was used to fractionate QPX extracellular secretions. An FPLC-fraction containing a subtilisin-type serine peptidase was able to digest clam plasma proteins, suggesting that this peptidase might be involved in the disease process, and making it a good candidate for further investigation as a possible virulence factor of the parasite.
Collapse
Affiliation(s)
- Ewelina Rubin
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Amebiasis is caused by Entamoeba histolytica infection and can produce a broad range of clinical signs, from asymptomatic cases to patients with obvious symptoms. The current epidemiological and clinical statuses of amebiasis make it a serious public health problem worldwide. The Entamoeba life cycle consists of the trophozoite, the causative agent for amebiasis, and the cyst, the form responsible for transmission. These two stages are connected by "encystation" and "excystation." Hence, developing novel strategies to control encystation and excystation will potentially lead to new measures to block the transmission of amebiasis by interrupting the life cycle of the causative agent. Here, we highlight studies investigating encystation using inhibitory chemicals and categorize them based on the molecules inhibited. We also present a perspective on new strategies to prevent the transmission of amebiasis.
Collapse
Affiliation(s)
- Fumika Mi-ichi
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
- * E-mail:
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
10
|
Singh RS, Walia AK, Kanwar JR, Kennedy JF. Amoebiasis vaccine development: A snapshot on E. histolytica with emphasis on perspectives of Gal/GalNAc lectin. Int J Biol Macromol 2016; 91:258-68. [DOI: 10.1016/j.ijbiomac.2016.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
|
11
|
On Blastocystis secreted cysteine proteases: a legumain-activated cathepsin B increases paracellular permeability of intestinal Caco-2 cell monolayers. Parasitology 2016; 143:1713-1722. [PMID: 27609526 DOI: 10.1017/s0031182016001396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blastocystis spp. pathogenic potential remains unclear as these anaerobic parasitic protozoa are frequently isolated from stools of both symptomatic and asymptomatic subjects. In silico analysis of the whole genome sequence of Blastocystis subtype 7 revealed the presence of numerous proteolytic enzymes including cysteine proteases predicted to be secreted. To assess the potential impact of proteases on intestinal cells and gut function, we focused our study on two cysteine proteases, a legumain and a cathepsin B, which were previously identified in Blastocystis subtype 7 culture supernatants. Both cysteine proteases were produced as active recombinant proteins. Activation of the recombinant legumain was shown to be autocatalytic and triggered by acidic pH, whereas proteolytic activity of the recombinant cathepsin B was only recorded after co-incubation with the legumain. We then measured the diffusion of 4-kDa FITC-labelled dextran across Caco-2 cell monolayers following exposition to either Blastocystis culture supernatants or each recombinant protease. Both Blastocystis culture supernatants and recombinant activated cathepsin B induced an increase of Caco-2 cell monolayer permeability, and this effect was significantly inhibited by E-64, a specific cysteine protease inhibitor. Our results suggest that cathepsin B might play a role in pathogenesis of Blastocystis by increasing intestinal cell permeability.
Collapse
|
12
|
Meyer M, Fehling H, Matthiesen J, Lorenzen S, Schuldt K, Bernin H, Zaruba M, Lender C, Ernst T, Ittrich H, Roeder T, Tannich E, Lotter H, Bruchhaus I. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation. PLoS Pathog 2016; 12:e1005853. [PMID: 27575775 PMCID: PMC5004846 DOI: 10.1371/journal.ppat.1005853] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1–A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1–B12) derived from a pathogenic isolate HM-1:IMSS-B. “Non-pathogenicity” included the induction of small and quickly resolved lesions while “pathogenicity” comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica. The pathogen Entamoeba histolytica can live asymptomatically in the human gut, or it can disrupt the intestinal barrier and induce life-threatening abscesses in different organs, most often in the liver. The molecular framework that enables this invasive, highly pathogenic phenotype is still not well understood. In order to identify factors that are positively or negatively correlated for invasion and destruction of the liver, we used a unique tool, E. histolytica clones that differ dramatically in their pathogenicity, while sharing almost identical genetic background. Based on comprehensive transcriptome studies of these clones, we identified a set of candidate genes that are potentially involved in pathogenicity. Using ectopic overexpression of the most promising candidates, either in pathogenic or in non-pathogenic Entamoeba clones, we identified genes where high expression reduced pathogenicity and only one gene that increased pathogenicity to a certain extend. Taken together, the current study identifies novel pathogenicity factors of E. histolytica and highlights the observation that various different genes contribute to pathogenicity.
Collapse
Affiliation(s)
- Martin Meyer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jenny Matthiesen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Lorenzen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kathrin Schuldt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hannah Bernin
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mareen Zaruba
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Corinna Lender
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Ernst
- Diagnostic and Interventional Radiology Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Diagnostic and Interventional Radiology Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Roeder
- Zoological Institute, Molecular Physiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hannelore Lotter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
13
|
Nakada-Tsukui K, Nozaki T. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica. Front Immunol 2016; 7:175. [PMID: 27242782 PMCID: PMC4863898 DOI: 10.3389/fimmu.2016.00175] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/20/2016] [Indexed: 12/27/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases , Tokyo , Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
14
|
Hasanuzzaman AFM, Robledo D, Gómez-Tato A, Alvarez-Dios JA, Harrison PW, Cao A, Fernández-Boo S, Villalba A, Pardo BG, Martínez P. De novo transcriptome assembly of Perkinsus olseni trophozoite stimulated in vitro with Manila clam (Ruditapes philippinarum) plasma. J Invertebr Pathol 2016; 135:22-33. [DOI: 10.1016/j.jip.2016.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/18/2016] [Accepted: 01/24/2016] [Indexed: 12/13/2022]
|
15
|
|
16
|
Ralston KS. Taking a bite: Amoebic trogocytosis in Entamoeba histolytica and beyond. Curr Opin Microbiol 2015; 28:26-35. [PMID: 26277085 DOI: 10.1016/j.mib.2015.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 12/28/2022]
Abstract
Entamoeba histolytica is a diarrheal pathogen with the ability to cause profound host tissue damage. This organism possesses contact-dependent cell killing activity, which is likely to be a major contributor to tissue damage. E. histolytica trophozoites were recently shown to ingest fragments of living human cells. It was demonstrated that this process, termed amoebic trogocytosis, contributes to cell killing. Recent advances in ex vivo and 3-D cell culture approaches have shed light on mechanisms for tissue destruction by E. histolytica, allowing amoebic trogocytosis to be placed in the context of additional host and pathogen mediators of tissue damage. In addition to its relevance to pathogenesis of amoebiasis, an appreciation is emerging that intercellular nibbling occurs in many organisms, from protozoa to mammals.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, USA.
| |
Collapse
|
17
|
Challenges and Innovative Strategies to Interrupt Cryptosporidium Transmission in Resource-Limited Settings. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0057-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi. PLoS One 2015; 10:e0123954. [PMID: 25923525 PMCID: PMC4414500 DOI: 10.1371/journal.pone.0123954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/09/2015] [Indexed: 01/03/2023] Open
Abstract
Cathepsins are proteases involved in the ability of parasites to overcome and/or modulate host defenses so as to complete their own lifecycle. However, the mechanisms underlying this ability of cathepsins are still poorly understood. One excellent model for identifying and exploring the molecular functions of cathepsins is the marine ectoparasitic copepod Caligus rogercresseyi that currently affects the Chilean salmon industry. Using high-throughput transcriptome sequencing, 56 cathepsin-like sequences were found distributed in five cysteine protease groups (B, F, L, Z, and S) as well as in an aspartic protease group (D). Ontogenic transcriptome analysis evidenced that L cathepsins were the most abundant during the lifecycle, while cathepsins B and K were mostly expressed in the larval stages and adult females, thus suggesting participation in the molting processes and embryonic development, respectively. Interestingly, a variety of cathepsins from groups Z, L, D, B, K, and S were upregulated in the infective stage of copepodid, corroborating the complexity of the processes involved in the parasitic success of this copepod. Putative functional roles of cathepsins were conjectured based on the differential expressions found and on roles previously described in other phylogenetically related species. Moreover, 140 single nucleotide polymorphisms (SNP) were identified in transcripts annotated for cysteine and aspartic proteases located into untranslated regions, or the coding region. This study reports for the first time the presence of cathepsin-like genes and differential expressions throughout a copepod lifecycle. The identification of cathepsins together with functional validations represents a valuable strategy for pinpointing target molecules that could be used in the development of new delousing drugs or vaccines against C. rogercresseyi.
Collapse
|
19
|
Chaturvedi R, Gupte PA, Joshi AS. Fulminant amoebic colitis: a clinicopathological study of 30 cases. Postgrad Med J 2015; 91:200-5. [PMID: 25748520 DOI: 10.1136/postgradmedj-2014-132597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/16/2015] [Indexed: 01/08/2023]
Abstract
AIMS To review the clinical and pathological factors associated with fulminant amoebic colitis (FAC) requiring colonic resection and its outcome. METHODS We retrospectively identified adult patients admitted to our centre between June 2007 and December 2011 with FAC who underwent colonic resection and were diagnosed with amoebic colitis based on the presence of trophozoites on histological examination. The clinical details were extracted from the medical notes and correlated with the pathological findings. RESULTS Thirty patients (18 men and 12 women) met the inclusion criteria. Their mean age was 50.1 years (range 21-89). The most frequent symptoms were abdominal pain, vomiting and fever. More than half the patients (16/30) had underlying conditions associated with immunosuppression including diabetes mellitus and tuberculosis. Pathological investigation of colonic resections showed predominantly right-sided involvement with geographic colonic ulcers covered with a creamy-white pseudomembrane, perforations, gangrenous changes, amoeboma and lesions mimicking inflammatory bowel disease. All showed basophilic dirty necrosis with abundant nuclear debris and amoebic trophozoites on histological examination. 21/30 patients (70%) had involvement beyond the caecum. 17/30 patients (57%) died. Those with involvement beyond the caecum were more likely to die (15/21, 71.4%) than those with less extensive disease. CONCLUSIONS FAC presents as acute abdomen and can mimic appendicitis, ischaemic bowel disease, tuberculosis and malignancy. Comorbidities causing immunosuppression frequently associated. Mortality remains high despite surgery, so FAC should be suspected in every case of acute abdomen with colonic perforation if associated with typical gross and microscopic findings and a history of stay in an endemic area.
Collapse
Affiliation(s)
- Rachana Chaturvedi
- Department of Pathology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Prajakta A Gupte
- Department of Pathology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Amita S Joshi
- Department of Pathology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
20
|
Lee YA, Saito-Nakano Y, Kim KA, Min A, Nozaki T, Shin MH. Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins. Exp Parasitol 2014; 149:7-15. [PMID: 25500214 DOI: 10.1016/j.exppara.2014.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Arim Min
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
21
|
Ligand heterogeneity of the cysteine protease binding protein family in the parasitic protist Entamoeba histolytica. Int J Parasitol 2014; 44:625-35. [DOI: 10.1016/j.ijpara.2014.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 01/08/2023]
|
22
|
Zysset-Burri DC, Müller N, Beuret C, Heller M, Schürch N, Gottstein B, Wittwer M. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics 2014; 15:496. [PMID: 24950717 PMCID: PMC4082629 DOI: 10.1186/1471-2164-15-496] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/11/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The free-living amoeba Naegleria fowleri is the causative agent of the rapidly progressing and typically fatal primary amoebic meningoencephalitis (PAM) in humans. Despite the devastating nature of this disease, which results in > 97% mortality, knowledge of the pathogenic mechanisms of the amoeba is incomplete. This work presents a comparative proteomic approach based on an experimental model in which the pathogenic potential of N. fowleri trophozoites is influenced by the compositions of different media. RESULTS As a scaffold for proteomic analysis, we sequenced the genome and transcriptome of N. fowleri. Since the sequence similarity of the recently published genome of Naegleria gruberi was far lower than the close taxonomic relationship of these species would suggest, a de novo sequencing approach was chosen. After excluding cell regulatory mechanisms originating from different media compositions, we identified 22 proteins with a potential role in the pathogenesis of PAM. Functional annotation of these proteins revealed, that the membrane is the major location where the amoeba exerts its pathogenic potential, possibly involving actin-dependent processes such as intracellular trafficking via vesicles. CONCLUSION This study describes for the first time the 30 Mb-genome and the transcriptome sequence of N. fowleri and provides the basis for the further definition of effective intervention strategies against the rare but highly fatal form of amoebic meningoencephalitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthias Wittwer
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Austrasse, CH-3700 Spiez, Switzerland.
| |
Collapse
|
23
|
Lee J, Kim JH, Sohn HJ, Yang HJ, Na BK, Chwae YJ, Park S, Kim K, Shin HJ. Novel cathepsin B and cathepsin B-like cysteine protease of Naegleria fowleri excretory-secretory proteins and their biochemical properties. Parasitol Res 2014; 113:2765-76. [PMID: 24832815 DOI: 10.1007/s00436-014-3936-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022]
Abstract
Naegleria fowleri causes a lethal primary amoebic meningoencephalitis (PAM) in humans and experimental animals, which leads to death within 7-14 days. Cysteine proteases of parasites play key roles in nutrient uptake, excystment/encystment, host tissue invasion, and immune evasion. In this study, we cloned N. fowleri cathepsin B (nfcpb) and cathepsin B-like (nfcpb-L) genes from our cDNA library of N. fowleri. The full-length sequences of genes were 1,038 and 939 bp (encoded 345 and 313 amino acids), and molecular weights were 38.4 and 34 kDa, respectively. Also, nfcpb and nfcpb-L showed a 56 and 46 % identity to Naegleria gruberi cathepsin B and cathepsin B-like enzyme, respectively. Recombinant NfCPB (rNfCPB) and NfCPB-L (rNfCPB-L) proteins were expressed by the pEX5-NT/TOPO vector that was transformed into Escherichia coli BL21, and they showed 38.4 and 34 kDa bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis using their respective antibodies. Proteolytic activity of refolded rNfCPB and rNfCPB-L was maximum at a pH of 4.5, and the most effective substrate was Z-LR-MCA. rNfCPB and rNfCPB-L showed proteolytic activity for several proteins such as IgA, IgG, IgM, collagen, fibronectin, hemoglobin, and albumin. These results suggested that NfCPB and NfCPB-L cysteine protease are important components of the N. fowleri ESP, and they may play important roles in host tissue invasion and immune evasion as pathogens that cause N. fowleri PAM.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Peroxynitrite and peroxiredoxin in the pathogenesis of experimental amebic liver abscess. BIOMED RESEARCH INTERNATIONAL 2014; 2014:324230. [PMID: 24822193 PMCID: PMC4009108 DOI: 10.1155/2014/324230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms by which Entamoeba histolytica causes amebic liver abscess (ALA) are still not fully understood. Amebic mechanisms of adherence and cytotoxic activity are pivotal for amebic survival but apparently do not directly cause liver abscess. Abundant evidence indicates that chronic inflammation (resulting from an inadequate immune response) is probably the main cause of ALA. Reports referring to inflammatory mechanisms of liver damage mention a repertoire of toxic molecules by the immune response (especially nitric oxide and reactive oxygen intermediates) and cytotoxic substances released by neutrophils and macrophages after being lysed by amoebas (e.g., defensins, complement, and proteases). Nevertheless, recent evidence downplays these mechanisms in abscess formation and emphasizes the importance of peroxynitrite (ONOO−). It seems that the defense mechanism of amoebas against ONOO−, namely, the amebic thioredoxin system (including peroxiredoxin), is superior to that of mammals. The aim of the present text is to define the importance of ONOO− as the main agent of liver abscess formation during amebic invasion, and to explain the superior capacity of amoebas to defend themselves against this toxic agent through the peroxiredoxin and thioredoxin system.
Collapse
|
25
|
Hertz R, Ben Lulu S, Shahi P, Trebicz-Geffen M, Benhar M, Ankri S. Proteomic identification of S-nitrosylated proteins in the parasite Entamoeba histolytica by resin-assisted capture: insights into the regulation of the Gal/GalNAc lectin by nitric oxide. PLoS One 2014; 9:e91518. [PMID: 24626316 PMCID: PMC3953491 DOI: 10.1371/journal.pone.0091518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/12/2014] [Indexed: 11/19/2022] Open
Abstract
Entamoeba histolytica is a gastrointestinal protozoan parasite that causes amebiasis, a disease which has a worldwide distribution with substantial morbidity and mortality. Nitrosative stress, which is generated by innate immune cells, is one of the various environmental challenges that E. histolytica encounters during its life cycle. Although the effects of nitric oxide (NO) on the regulation of gene expression in this parasite have been previously investigated, our knowledge on S-nitrosylated proteins in E.histolytica is lacking. In order to fill this knowledge gap, we performed a large-scale detection of S-nitrosylated (SNO) proteins in E.histolytica trophozoites that were treated with the NO donor, S-nitrosocysteine by resin-assisted capture (RAC). We found that proteins involved in glycolysis, gluconeogenesis, translation, protein transport, and adherence to target cells such as the heavy subunit of Gal/GalNac lectin are among the S-nitrosylated proteins that were enriched by SNO-RAC. We also found that the S-nitrosylated cysteine residues in the carbohydrate recognition domain (CRD) of Gal/GalNAc lectin impairs its function and contributes to the inhibition of E.histolytica adherence to host cells. Collectively, these results advance our understanding of the mechanism of reduced E.histolytica adherence to mammalian cells by NO and emphasize the importance of NO as a regulator of key physiological functions in E.histolytica.
Collapse
Affiliation(s)
- Rivka Hertz
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shani Ben Lulu
- Department of Biochemistry, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Preeti Shahi
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Moran Benhar
- Department of Biochemistry, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
- * E-mail:
| |
Collapse
|
26
|
Sateriale A, Roy NH, Huston CD. SNAP-tag technology optimized for use in Entamoeba histolytica. PLoS One 2013; 8:e83997. [PMID: 24391864 PMCID: PMC3877135 DOI: 10.1371/journal.pone.0083997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/08/2013] [Indexed: 01/11/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite responsible for invasive intestinal and extraintestinal amebiasis. The pathology of amebiasis is still poorly understood, which can be largely attributed to lack of molecular tools. Here we present the optimization of SNAP-tag technology via codon optimization specific for E. histolytica. The resultant SNAP protein is highly expressed in amebic trophozoites, and shows proper localization when tagged with an endoplasmic reticulum retention signal. We further demonstrate the capabilities of this system using super resolution microscopy, done for the first time in E. histolytica.
Collapse
Affiliation(s)
- Adam Sateriale
- University of Vermont Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont, United States of America
- University of Vermont Department of Medicine, Burlington, Vermont, United States of America
| | - Nathan H. Roy
- University of Vermont Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont, United States of America
- University of Vermont Microbiology and Molecular Genetics, Burlington, Vermont, United States of America
| | - Christopher D. Huston
- University of Vermont Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont, United States of America
- University of Vermont Microbiology and Molecular Genetics, Burlington, Vermont, United States of America
- University of Vermont Department of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
27
|
Rajamanikam A, Govind SK. Amoebic forms of Blastocystis spp. - evidence for a pathogenic role. Parasit Vectors 2013; 6:295. [PMID: 24499467 PMCID: PMC3853151 DOI: 10.1186/1756-3305-6-295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 01/08/2023] Open
Abstract
Background Blastocystis spp. are one of the most prevalent parasites isolated from patients suffering from diarrhea, flatulence, constipation and vomiting. It’s pathogenicity and pathophysiology remains controversial to date. Protease activity and amoebic forms have been reported previously in symptomatic isolates but there has been no conclusive evidence provided to correlate the protease activity and any specific life cycle stage of the parasite thus far. Methods Symptomatic isolates with amoebic form were tested for protease activity and compared with symptomatic and asymptomatic isolates without amoebic form for 10 days culture period. Results The present study demonstrates an elevated protease activity in cultures having a higher percentage of amoebic forms seen in symptomatic isolates. The growth curve demonstrated a significantly (p < 0.05) higher average number of parasite counts in asymptomatic compared to symptomatic isolates. Symptomatic isolates showed amoebic forms with percentages ranging from 5% to 17%. Elevated protease activity was demonstrated in isolates that had higher percentages of amoebic forms with intense bands at higher molecular weight proteases (60 – 100 kDa). As days of culture proceeded, the protease quantification also showed a steady increase. Conclusion This study elucidates a correlation between protease activity and percentage of amoebic forms. The finding implies that these forms could play a role in exacerbation of intestinal symptoms during Blastocystis spp. infection.
Collapse
Affiliation(s)
| | - Suresh Kumar Govind
- Department of Parasitology, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
28
|
De Cádiz AE, Jeelani G, Nakada-Tsukui K, Caler E, Nozaki T. Transcriptome analysis of encystation in Entamoeba invadens. PLoS One 2013; 8:e74840. [PMID: 24040350 PMCID: PMC3770568 DOI: 10.1371/journal.pone.0074840] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 08/08/2013] [Indexed: 11/23/2022] Open
Abstract
Encystation is an essential differentiation process for the completion of the life cycle of a group of intestinal protozoa including Entamoeba histolytica, the causative agent of intestinal and extraintestinal amebiasis. However, regulation of gene expression during encystation is poorly understood. To comprehensively understand the process at the molecular level, the transcriptomic profiles of E. invadens, which is a related reptilian species that causes an invasive disease similar to that of E. histolytica, was investigated during encystation. Using a custom-generated Affymetrix platform microarray, we performed time course (0.5, 2, 8, 24, 48, and 120 h) gene expression analysis of encysting E. invadens. ANOVA analysis revealed that a total of 1,528 genes showed ≥3 fold up-regulation at one or more time points, relative to the trophozoite stage. Of these modulated genes, 8% (116 genes) were up-regulated at the early time points (0.5, 2 and 8h), while 63% (962 genes) were up-regulated at the later time points (24, 48, and 120 h). Twenty nine percent (450 genes) are either up-regulated at 2 to 5 time points or constitutively up-regulated in both early and late stages. Among the up-regulated genes are the genes encoding transporters, cytoskeletal proteins, proteins involved in vesicular trafficking (small GTPases), Myb transcription factors, cysteine proteases, components of the proteasome, and enzymes for chitin biosynthesis. This study represents the first kinetic analysis of gene expression during differentiation from the invasive trophozoite to the dormant, infective cyst stage in Entamoeba. Functional analysis on individual genes and their encoded products that are modulated during encystation may lead to the discovery of targets for the development of new chemotherapeutics that interfere with stage conversion of the parasite.
Collapse
Affiliation(s)
- Aleyla Escueta De Cádiz
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Biological Science and Environmental Studies, College of Science and Mathematics, University of the Philippines Mindanao, Davao, Philippines
| | - Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Elisabet Caler
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
29
|
Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors. J Trop Med 2013; 2013:890603. [PMID: 23476670 PMCID: PMC3582061 DOI: 10.1155/2013/890603] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 02/01/2023] Open
Abstract
The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms.
Collapse
|
30
|
Juárez-Hernández LJ, García-Pérez RM, Salas-Casas A, García-Rivera G, Orozco E, Rodríguez MA. Entamoeba histolytica: the over expression of a mutated EhRabB protein produces a decrease of in vitro and in vivo virulence. Exp Parasitol 2012; 133:339-45. [PMID: 23268174 DOI: 10.1016/j.exppara.2012.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/25/2022]
Abstract
Vesicular trafficking, which is implicated in secretion of cytolytic molecules as well as in phagocytosis, plays an important role in the pathogenic mechanism of Entamoeba histolytica, the protozoan parasite causative of human amoebiasis. Thus, Rab GTPases, that are key regulators of vesicle trafficking, should be considered as molecules involved in the parasite virulence. EhRabB is a Rab protein located in cytoplasmic vesicles that are translocated to phagocytic mouths during ingestion of target cells, suggesting that this Rab protein is involved in phagocytosis. To prove this hypothesis, we over expressed the wild type EhrabB gene and a mutant gene encoding for a protein (RabBN118I) unable to bind guanine nucleotides and therefore constitutively inactive. The over expression of the mutated protein in E. histolytica trophozoites provoked a dominant negative effect, reflected in a significant decrease of both phagocytosis and cytopathic effect as well as in a failure to produce hepatic abscesses in hamsters. These results confirm that EhRabB is involved in phagocytosis and virulence of E. histolytica.
Collapse
Affiliation(s)
- L J Juárez-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, México D.F. 07000, Mexico
| | | | | | | | | | | |
Collapse
|
31
|
Carranza-Rosales P, Santiago-Mauricio MG, Guzmán-Delgado NE, Vargas-Villarreal J, Lozano-Garza G, Viveros-Valdez E, Ortiz-López R, Morán-Martínez J, Gandolfi AJ. Induction of virulence factors, apoptosis, and cytokines in precision-cut hamster liver slices infected with Entamoeba histolytica. Exp Parasitol 2012; 132:424-33. [DOI: 10.1016/j.exppara.2012.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/20/2012] [Indexed: 11/28/2022]
|
32
|
Faust DM, Guillen N. Virulence and virulence factors in Entamoeba histolytica, the agent of human amoebiasis. Microbes Infect 2012; 14:1428-41. [DOI: 10.1016/j.micinf.2012.05.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/09/2012] [Accepted: 05/28/2012] [Indexed: 11/26/2022]
|
33
|
Verkerke HP, Petri WA, Marie CS. The dynamic interdependence of amebiasis, innate immunity, and undernutrition. Semin Immunopathol 2012; 34:771-85. [PMID: 23114864 PMCID: PMC3510265 DOI: 10.1007/s00281-012-0349-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/21/2012] [Indexed: 01/27/2023]
Abstract
Entamoeba histolytica, the protozoan parasite that causes amebic dysentery, greatly contributes to disease burden in the developing world. Efforts to exhaustively characterize the pathogenesis of amebiasis have increased our understanding of the dynamic host-parasite interaction and the process by which E. histolytica trophozoites transition from gut commensals to invaders of the intestinal epithelium. Mouse models of disease continue to be instrumental in this area. At the same time, large-scale studies in human populations have identified genetic and environmental factors that influence susceptibility to amebiasis. Nutritional status has long been known to globally influence immune function. So it is not surprising that undernutrition has emerged as a critical risk factor. A better understanding of how nutritional status affects immunity to E. histolytica will have dramatic implications in the development of novel treatments. Future work should continue to characterize the fascinating host-parasite arms race that occurs at each stage of infection.
Collapse
Affiliation(s)
- Hans P. Verkerke
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Chelsea S. Marie
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| |
Collapse
|
34
|
Abstract
Protein kinases (PKs) of parasitic protozoa are being evaluated as drug targets. A large number of protein kinases within the protein kinome of Entamoeba histolytica strongly suggest that protein phosphorylation is a key component of pathogenesis regulation by this parasite. PI3 K and Src are kinases previously described in this parasite, but their role is poorly understood. Here, the effect of Src-1-inhibitor and PI3 K inhibitor (Wortmannin) on the virulence factors of E. histolytica was evaluated. Results show that both inhibitors affect the actin cytoskeleton and the amoebic movement. Also, the proteolytic activity is diminished by Wortmannin, but not by Src-inhibitor-1; however, the phagocytic capacity is diminished by Wortmannin and Src-1-inhibitor. Finally, we found that the virulence in vivo of E. histolytica is affected by Wortmannin but not by Src-1-inhibitor. This study opens the way for the design of anti-amoebic drugs based on kinase inhibition.
Collapse
|
35
|
Choudhuri G, Rangan M. Amebic infection in humans. Indian J Gastroenterol 2012; 31:153-62. [PMID: 22903366 DOI: 10.1007/s12664-012-0192-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/21/2012] [Indexed: 02/04/2023]
Abstract
Clinical human infections with the protozoa Entamoeba histolytica is still estimated to occur in 50 million people worldwide, of which approximately 100,000 die annually. Although most clinical symptoms are due to involvement of the large intestine, 1 % present with involvement of the liver in the form of a liver abscess, a potentially fatal condition. Distinguishing an invasive form (E. histolytica) from a morphologically identical non-invasive one (E. dispar) requires molecular or enzymatic characterization. Further, the pattern of infection, interpretation of presence of antibodies in the host, manifestations of disease, approach to investigations and strategies for management remain complex. This article also provides a comprehensive review of the parasite and host factors that govern the complex relationship of the prozoa and humans, and tries to explain why some develop a particular form of the disease in endemic zones. Application of modern imaging and image guided therapy seems to be playing a major role in diagnosis and management of the potentially most serious form of the disease, amebic liver abscess. Despite lack of controlled studies there is a tendency to lower the threshold of their use in clinical practice, and indeed in-hospital mortality rate seems to be falling for amebic liver abscess. In a world getting increasingly swamped by non-infectious metabolic diseases, awareness of amebic infections, its bed-side diagnosis, the use of appropriate laboratory tests, and decision making in management are shrinking. This review tries to update the scientific developments in amebiasis.
Collapse
Affiliation(s)
- Gourdas Choudhuri
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226 014, India.
| | | |
Collapse
|
36
|
Blastocystis: past pitfalls and future perspectives. Trends Parasitol 2012; 28:327-34. [PMID: 22738855 DOI: 10.1016/j.pt.2012.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 02/08/2023]
Abstract
Blastocystis is a genetically heterogeneous protist found in the intestinal tract (IT) of many vertebrates, and although it is implicated in a variety of human intestinal disorders, data regarding the clinical relevance of Blastocystis is at best speculative. Several research issues, including a lack of standardization across studies, the potential for intrasubtype variation in pathogenicity, and difficulties associated with diagnostics for many idiopathic disorders of the human IT have led to conflicting reports in support of a role for Blastocystis pathogenicity. Here, several research areas and methodologies are reviewed that if integrated appropriately into a prospective study may prove useful and facilitate a better understanding of the role of Blastocystis in human health and disease.
Collapse
|
37
|
Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012; 36:1122-80. [PMID: 22537156 DOI: 10.1111/j.1574-6976.2012.00340.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/11/2023] Open
Abstract
Laminin (Ln) and collagen are multifunctional glycoproteins that play an important role in cellular morphogenesis, cell signalling, tissue repair and cell migration. These proteins are ubiquitously present in tissues as a part of the basement membrane (BM), constitute a protective layer around blood capillaries and are included in the extracellular matrix (ECM). As a component of BMs, both Lns and collagen(s), thus function as major mechanical containment molecules that protect tissues from pathogens. Invasive pathogens breach the basal lamina and degrade ECM proteins of interstitial spaces and connective tissues using various ECM-degrading proteases or surface-bound plasminogen and matrix metalloproteinases recruited from the host. Most pathogens associated with the respiratory, gastrointestinal, or urogenital tracts, as well as with the central nervous system or the skin, have the capacity to bind and degrade Lns and collagen(s) in order to adhere to and invade host tissues. In this review, we focus on the adaptability of various pathogens to utilize these ECM proteins as enhancers for adhesion to host tissues or as a targets for degradation in order to breach the cellular barriers. The major pathogens discussed are Streptococcus, Staphylococcus, Pseudomonas, Salmonella, Yersinia, Treponema, Mycobacterium, Clostridium, Listeria, Porphyromonas and Haemophilus; Candida, Aspergillus, Pneumocystis, Cryptococcus and Coccidioides; Acanthamoeba, Trypanosoma and Trichomonas; retrovirus and papilloma virus.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
38
|
Nakada-Tsukui K, Tsuboi K, Furukawa A, Yamada Y, Nozaki T. A novel class of cysteine protease receptors that mediate lysosomal transport. Cell Microbiol 2012; 14:1299-317. [PMID: 22486861 PMCID: PMC3465781 DOI: 10.1111/j.1462-5822.2012.01800.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transport of lysosomal proteins is, in general, mediated by mannose 6-phosphate receptors via carbohydrate modifications. Here, we describe a novel class of receptors that regulate the transport of lysosomal hydrolases in the enteric protozoan Entamoeba histolytica, which is a good model organism to investigate membrane traffic. A novel 110 kDa cysteine protease (CP) receptor (CP-binding protein family 1, CPBF1) was initially discovered by affinity co-precipitation of the major CP (EhCP-A5), which plays a pivotal role in the pathogenesis of E. histolytica. We demonstrated that CPBF1 regulates EhCP-A5 transport from the endoplasmic reticulum to lysosomes and its binding to EhCP-A5 is independent of carbohydrate modifications. Repression of CPBF1 by gene silencing led to the accumulation of the unprocessed form of EhCP-A5 in the non-acidic compartment and the mis-secretion of EhCP-A5, suggesting that CPBF1 is involved in the trafficking and processing of EhCP-A5. The CPBF represents a new class of transporters that bind to lysosomal hydrolases in a carbohydrate-independent fashion and regulate their trafficking, processing and activation and, thus, regulate the physiology and pathogenesis of E. histolytica.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | |
Collapse
|
39
|
Nicoll-Griffith DA. Use of cysteine-reactive small molecules in drug discovery for trypanosomal disease. Expert Opin Drug Discov 2012; 7:353-66. [PMID: 22458506 DOI: 10.1517/17460441.2012.668520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The roles of cysteine protease (CP) enzymes in the biochemistry and infectivity of the three trypanosomal parasitic infections, Chagas' disease, leishmaniasis and human African trypanosomiasis, which have been elucidated over the last three decades are summarized. Inhibitors of these enzymes, which act through trapping the active site cysteine with an electrophilic warhead, hold huge potential as therapeutic agents but the promise of these has yet to be realized in clinical studies. The article addresses aspects that ought to be considered in order to develop orally active CP inhibitors that are safe and effective therapies for trypanosomiasis. AREAS COVERED This article reviews learnings from CP research in the trypanosomal field and recent advances in developing cysteine protease inhibitors (CPIs) of human cathepsin K, a related enzyme. Considerations such as intra- and extracellular localization of the CPs, off-target activities against human cathepsin enzymes, basic versus neutral and potential pro-drug inhibitors are reviewed. A description of odanacatib, a cathepsin K inhibitor currently in late stage development, is made to illustrate the attributes of a clinically viable CPI. EXPERT OPINION The emerging role of CPs in a wide array of parasitic diseases is highlighted with the vision that CP inhibitors could become the 'β-lactams' of anti-parasitic treatments in the coming decades. New CPI research will see the optimization of intra- and extracellular enzyme targeting, reduction of off-target activities and better understanding of pharmacokinetic-pharmacodynamic interactions which will all lead to compounds with much improved efficacy and viability as clinical therapies.
Collapse
Affiliation(s)
- Deborah A Nicoll-Griffith
- Infectious Diseases Franchise, Discovery and Pre-clinical Sciences, Merck and Co., Office K11-2047B, 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| |
Collapse
|
40
|
Characterization of two cysteine proteases secreted by Blastocystis ST7, a human intestinal parasite. Parasitol Int 2012; 61:437-42. [PMID: 22402106 DOI: 10.1016/j.parint.2012.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 11/23/2022]
Abstract
Blastocystis spp. are unicellular anaerobic intestinal parasites of both humans and animals and the most prevalent ones found in human stool samples. Their association with various gastrointestinal disorders raises the questions of its pathogenicity and of the molecular mechanisms involved. Since secreted proteases are well-known to be implicated in intestinal parasite virulence, we intended to determine whether Blastocystis spp. possess such pathogenic factors. In silico analysis of the Blastocystis subtype 7 (ST7) genome sequence highlighted 22 genes coding proteases which were predicted to be secreted. We characterized the proteolytic activities in the secretory products of Blastocystis ST7 using specific protease inhibitors. Two cysteine proteases, a cathepsin B and a legumain, were identified in the parasite culture supernatant by gelatin zymographic SDS-PAGE gel and MS/MS analysis. These proteases might act on intestinal cells and disturb gut function. This work provides serious molecular candidates to link Blastocystis spp. and intestinal disorders.
Collapse
|
41
|
Thibeaux R, Dufour A, Roux P, Bernier M, Baglin AC, Frileux P, Olivo-Marin JC, Guillén N, Labruyère E. Newly visualized fibrillar collagen scaffolds dictate Entamoeba histolytica invasion route in the human colon. Cell Microbiol 2012; 14:609-21. [DOI: 10.1111/j.1462-5822.2012.01752.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Kumar S, Banerjee R, Nandi N, Sardar AH, Das P. Anoikis potential of Entameba histolytica secretory cysteine proteases: Evidence of contact independent host cell death. Microb Pathog 2012; 52:69-76. [DOI: 10.1016/j.micpath.2011.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
|
43
|
Javier-Reyna R, Hernández-Ramírez V, González-Robles A, Galván-Mendoza I, Osorio-Trujillo C, Talamás-Rohana P. Rab7 and actin cytoskeleton participate during mobilization of β1EHFNR in fibronectin-stimulated Entamoeba histolyticatrophozoites. Microsc Res Tech 2011; 75:285-93. [DOI: 10.1002/jemt.21056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/12/2011] [Indexed: 01/12/2023]
|
44
|
Tovy A, Hertz R, Siman-Tov R, Syan S, Faust D, Guillen N, Ankri S. Glucose starvation boosts Entamoeba histolytica virulence. PLoS Negl Trop Dis 2011; 5:e1247. [PMID: 21829737 PMCID: PMC3149018 DOI: 10.1371/journal.pntd.0001247] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 06/04/2011] [Indexed: 01/16/2023] Open
Abstract
The unicellular parasite, Entamoeba histolytica, is exposed to numerous adverse conditions, such as nutrient deprivation, during its life cycle stages in the human host. In the present study, we examined whether the parasite virulence could be influenced by glucose starvation (GS). The migratory behaviour of the parasite and its capability to kill mammalian cells and to lyse erythrocytes is strongly enhanced following GS. In order to gain insights into the mechanism underlying the GS boosting effects on virulence, we analyzed differences in protein expression levels in control and glucose-starved trophozoites, by quantitative proteomic analysis. We observed that upstream regulatory element 3-binding protein (URE3-BP), a transcription factor that modulates E.histolytica virulence, and the lysine-rich protein 1 (KRiP1) which is induced during liver abscess development, are upregulated by GS. We also analyzed E. histolytica membrane fractions and noticed that the Gal/GalNAc lectin light subunit LgL1 is up-regulated by GS. Surprisingly, amoebapore A (Ap-A) and cysteine proteinase A5 (CP-A5), two important E. histolytica virulence factors, were strongly down-regulated by GS. While the boosting effect of GS on E. histolytica virulence was conserved in strains silenced for Ap-A and CP-A5, it was lost in LgL1 and in KRiP1 down-regulated strains. These data emphasize the unexpected role of GS in the modulation of E.histolytica virulence and the involvement of KRiP1 and Lgl1 in this phenomenon. During infection, pathogens are exposed to different environmental stresses that are mostly the consequence of the host immune defense. The most studied of these environmental stresses are the response of pathogens to nitric oxide and to hydrogen peroxide, both produced by phagocytes. In contrast, the overall knowledge about the response of pathogens to metabolic stresses is scanty. Amebiasis is caused by the unicellular protozoan parasite Entamoeba histolytica, and has a worldwide distribution with substantial morbidity and mortality. During its journey in the host, the parasite is exposed to the host immune system and to variations in nutrient availability due to the host nutrition status and the competition with the bacterial flora of the large intestine. How E. histolytica responds to glucose starvation (GS) has never been investigated. Here, the authors report that the parasite virulence is boosted by GS. Paradoxically, two well accepted virulence factors, the amoebapore A and the cysteine protease A5 are less abundant in the glucose-starved parasites. This Accordingly, these proteins are not required for the boosting of the E. histolytica virulence, in contrast to KRiP1 and LgL1 that seem to be involved in this phenomenon.
Collapse
Affiliation(s)
- Ayala Tovy
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Israel
| | - Rivka Hertz
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Israel
| | - Rama Siman-Tov
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Israel
| | - Sylvie Syan
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- Inserm, U786, Paris, France
| | - Daniela Faust
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- Inserm, U786, Paris, France
| | - Nancy Guillen
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- Inserm, U786, Paris, France
| | - Serge Ankri
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Israel
- * E-mail:
| |
Collapse
|
45
|
ChÁvez-munguÍa B, CastaÑÓN G, HernÁNdez-RamÍRez V, GonzÁLez-LÁZARO MÓN, TalamÁS-Rohana P, MartÍNez-Palomo A. Entamoeba histolyticaelectrondense granules secretion in vitro and in vivo: Ultrastructural study. Microsc Res Tech 2011; 75:189-96. [DOI: 10.1002/jemt.21042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/07/2011] [Indexed: 11/07/2022]
|
46
|
How pathogen-derived cysteine proteases modulate host immune responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:192-207. [PMID: 21660666 PMCID: PMC7123607 DOI: 10.1007/978-1-4419-8414-2_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammals, cysteine proteases are essential for the induction and development of both innate and adaptive immune responses. These proteases play a role in antigen-and pathogen-recognition and elimination, signal processing and cell homeostasis. Many pathogens also secrete cysteine proteases that often act on the same target proteins as the mammalian proteases and thereby can modulate host immunity from initial recognition to effector mechanisms. Pathogen-derived proteases range from nonspecific proteases that degrade multiple proteins involved in the immune response to enzymes that are very specific in their mode of action. Here, we overview current knowledge of pathogen-derived cysteine proteases that modulate immune responses by altering the normal function of key receptors or pathways in the mammalian immune system.
Collapse
|
47
|
Šarić M, Irmer H, Eckert D, Bär AK, Bruchhaus I, Scholze H. The cysteine protease inhibitors EhICP1 and EhICP2 perform different tasks in the regulation of endogenous protease activity in trophozoites of Entamoeba histolytica. Protist 2011; 163:116-28. [PMID: 21440496 DOI: 10.1016/j.protis.2011.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/24/2011] [Indexed: 11/26/2022]
Abstract
Trophozoites of E. histolytica are equipped with two chagasin-like cysteine protease inhibitors, EhICP1 and EhICP2, also known as amoebiasin 1 and 2. Expression studies using E. invadens as model organism showed that corresponding mRNAs were detectable in both life stages of the parasite, cyst and trophozoite state. Unlike EhICP1 known to act in the cytosol, EhICP2 co-localized with cysteine protease EhCP-A1 in lysosome-like vesicles, as demonstrated by immunofluorescence microscopy. Silencing or overexpressing of the two inhibitors did not show any effect on morphology and viability of the trophozoites. Overexpression of the EhICPs, however, although dramatically dampening the proteolytic activity of cell extracts from the corresponding cell lines, did not influence expression rate or localization of the major amoebic cysteine proteases as well as phagocytosis and digestion of erythrocytes. Activity gels of cell extracts from strains overexpressing ehicp1 showed a drastically reduced activity of EhCP-A1 suggesting a high affinity of EhICP1 towards this protease. From these data, we propose that EhCP-A1 accidentally released into the cytosol is the main target of EhICP1, whereas EhICP2, beside its role in house-keeping processes, may control the proteolytic processing of other hydrolases or fulfils other tasks different from protease inhibition.
Collapse
Affiliation(s)
- Mirela Šarić
- Faculty of Biology, Department of Biochemistry, University of Osnabrueck, Barbarastr. 13, D-49069 Osnabrueck, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Villalba-Magdaleno JD, Pérez-Ishiwara G, Serrano-Luna J, Tsutsumi V, Shibayama M. In vivo programmed cell death of Entamoeba histolytica trophozoites in a hamster model of amoebic liver abscess. MICROBIOLOGY-SGM 2011; 157:1489-1499. [PMID: 21349978 DOI: 10.1099/mic.0.047183-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Entamoeba histolytica trophozoites can induce host cell apoptosis, which correlates with the virulence of the parasite. This phenomenon has been seen during the resolution of an inflammatory response and the survival of the parasites. Other studies have shown that E. histolytica trophozoites undergo programmed cell death (PCD) in vitro, but how this process occurs within the mammalian host cell remains unclear. Here, we studied the PCD of E. histolytica trophozoites as part of an in vivo event related to the inflammatory reaction and the host-parasite interaction. Morphological study of amoebic liver abscesses showed only a few E. histolytica trophozoites with peroxidase-positive nuclei identified by terminal deoxynucleotidyltransferase enzyme-mediated dUTP nick end labelling (TUNEL). To better understand PCD following the interaction between amoebae and inflammatory cells, we designed a novel in vivo model using a dialysis bag containing E. histolytica trophozoites, which was surgically placed inside the peritoneal cavity of a hamster and left to interact with the host's exudate components. Amoebae collected from bags were then examined by TUNEL assay, fluorescence-activated cell sorting (FACS) and transmission electron microscopy. Nuclear condensation and DNA fragmentation of E. histolytica trophozoites were observed after exposure to peritoneal exudates, which were mainly composed of neutrophils and macrophages. Our results suggest that production of nitric oxide by inflammatory cells could be involved in PCD of trophozoites. In this modified in vivo system, PCD appears to play a prominent role in the host-parasite interaction and parasite cell death.
Collapse
Affiliation(s)
- José D'Artagnan Villalba-Magdaleno
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Chapultepec, CP 11850, Mexico.,Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, CP 07300, Mexico
| | | | | | - Víctor Tsutsumi
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, CP 07300, Mexico
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, CP 07300, Mexico
| |
Collapse
|
49
|
Han YP, Li ZY, Li BC, Sun X, Zhu CC, Ling XT, Zheng HQ, Wu ZD, Lv ZY. Molecular cloning and characterization of a cathepsin B from Angiostrongylus cantonensis. Parasitol Res 2011; 109:369-78. [PMID: 21344211 DOI: 10.1007/s00436-011-2264-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 01/18/2011] [Indexed: 02/04/2023]
Abstract
Cysteine proteases, a superfamily of hydrolytic enzymes, have numerous functions in parasites. Here, we reported the cloning and characterization of a cDNA encoding a cathepsin B (AcCPB) from Angiostrongylus cantonensis fourth-stage larvae cDNA library. The deduced amino acid sequence analysis indicated AcCPB is related to other cathepsin B family members with an overall conserved architecture. AcCPB is evolutionarily more close to other parasitic nematode cathepsin B than the ones from hosts, sharing 43-53% similarities to the homologues from other organisms. Real-time quantitative PCR analysis revealed that AcCPB was expressed significantly higher in the fourth-stage larvae (L4) and the fifth-stage larvae (L5) than that in the third-stage larvae (L3) and adult worms (Aw). Unexpectedly, AcCPB was expressed at a higher level in L4 and L5 derived from mice than the larvae at the same stages derived from rats. The protease activity of recombinant AcCPB (rAcCPB) expressed in Escherichia coli showed high thermostability and acidic pH optima. The role in ovalbumin digestion and enzyme activity of rAcCPB could be evidently inhibited by cystatin from A.cantonensis. Furthermore, we found rAcCPB increased the expression levels of CD40, MHC II, and CD80 on LPS-stimulated dendritic cells (DCs). In this study, we provided the first experimental evidence for the expression of cathepsin B in A.cantonensis. Besides its highly specific expression in the stages of L4 and L5 when the worms cause dysfunction of the blood-brain barrier of hosts, AcCPB displayed different expression profiles in non-permissive host- and permissive host-derived larval stages and was involved in the maturation of DCs, suggesting a potential role in the central nervous system invasion and the immunoregulation during parasite-host interactions.
Collapse
Affiliation(s)
- Yan-ping Han
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wong WK, Tan ZN, Lim BH, Mohamed Z, Olivos-Garcia A, Noordin R. Comparison of protein-free defined media, and effect of l-cysteine and ascorbic acid supplementation on viability of axenic Entamoeba histolytica. Parasitol Res 2010; 108:425-30. [DOI: 10.1007/s00436-010-2083-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|