1
|
Liu W, Chen S, Yang J, Chen Y, Yang Q, Lu L, Li J, Yang T, Zhang G, Hu J. Characterization of blood and urine microbiome temporal variability in patients with acute myeloid leukemia. Microb Pathog 2025:107734. [PMID: 40449763 DOI: 10.1016/j.micpath.2025.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/09/2025] [Accepted: 05/21/2025] [Indexed: 06/03/2025]
Abstract
BACKGROUND Investigating the microbiota of blood and urine from acute myeloid leukemia (AML) patients is essential to unravel the complex role of microbiota in systemic host-microbe interactions and implications. METHODS We conducted a longitudinal observational study to characterize the temporal dynamics of blood and urine microbiota in 27 AML patients, utilizing metagenomic analysis pipeline for microbial identification to identify disease-associated microbial signatures. RESULTS The composition of blood and urine microbiota of AML was dominated by Proteobacteria phylum in blood, Firmicutes phylum in urine. The species and diversity of blood and urine microbiota did not have difference between AML patients and healthy controls. Restitution of alpha and beta diversity of blood microbiota and urine microbiota to resemble that of healthy controls occurred after cessation of treatment. Temporal variation of urine microbiome was higher than blood after treatment which was closely related to pathogenic bacteria and beneficial bacteria measured by coefficient of variation (CV) of alpha diversity. The temporal variability of urine microbiota was significantly correlated with platelet and exposure of levofloxacin. The variation of microbiome of AML patients with infection was found that the relative abundance of Burkholderia significantly enriched in blood and urine which had high accuracy and sensitivity. The correlation between blood microbiota and serum amino acid metabolites was similar to that between gut microbiota and serum metabolites. CONCLUSION This study represents the first comprehensive investigation to quantify the longitudinal variability of blood and urine microbiota in AML patients, revealing distinct patterns compared to gut microbiota and associations with adverse clinical outcomes. Our findings highlight the potential of leveraging stabilizing taxa as a target for microbiome restoration.
Collapse
Affiliation(s)
- Wanying Liu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaozhen Chen
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China; Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiajie Yang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanxin Chen
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Qinwen Yang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Fujian Medical University Union Hospital, Fuzhou, China
| | - Lihua Lu
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiazheng Li
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Fujian Medical University Union Hospital, Fuzhou, China
| | - Ting Yang
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
| | - Guanbin Zhang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, China; Mianyang People's Hospital, Mianyang, China
| | - Jianda Hu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Fujian Medical University Union Hospital, Fuzhou, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Drossos PV, Fortis SP, Anastasiadi AT, Pavlou EG, Tsantes AG, Spyratos GA, Papageorgiou EG, Nomikou EG, Stamoulis KE, Dryllis G, Tzounakas VL, Politou M, Valsami S, Kriebardis AG. Cold vs. Room Temperature: A Comparative Analysis of Platelet Functionality in Cold Storage. Biomedicines 2025; 13:310. [PMID: 40002723 PMCID: PMC11852762 DOI: 10.3390/biomedicines13020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The platelet functionality of cold-stored platelets remains a subject of debate. Our aim was to investigate the effect of temperature on the hemostatic properties of stored platelets. Methods: Ten split pooled platelets stored at cold and at room temperature were evaluated in vitro on storage days 1, 5, 10, and 15 for metabolic, physiological, and vesiculation parameters, as well as their hemostatic profile using rotational thromboelastometry (ROTEM®). Results: The integrity profile was better preserved in the cold-stored platelets, as lower lactate dehydrogenase levels were documented (e.g., day 10: 261 ± 46 vs. 572 ± 220 U/L, 4 vs. 22 °C, p = 0.004). A time-dependent decrease in hemostatic capacity was evident regardless of the temperature, but the cold-stored units were linked to shorter clot initiation times and increased elasticity, strength, and firmness parameters, especially during extended storage (e.g., maximum clot firmness, INTEM day 15: 81 ± 2 vs. 19 ± 4 mm, 4 vs. 22 °C, p = 0.0008). Additionally, the aggregation of cold-stored platelets was superior after the addition of any agonist tested. Regarding vesiculation parameters, the extracellular vesicles of the units at 4 °C were characterized by a larger size from day 10 onwards, when they also presented higher procoagulant activity (e.g., phospholipid-dependent clotting time of day 15: 21.4 ± 2.3 vs. 25.0 ± 3.0 s, 4 vs. 22 °C, p = 0.016). Conclusion: Our results indicate that cold-stored platelets perform better than those stored at room temperature, demonstrating superior clot formation and stability. This suggests that cold storage may more effectively preserve platelet function, potentially offering advantages for transfusion therapy and the extension of shelf-life. However, the clinical relevance of these findings requires further investigation.
Collapse
Affiliation(s)
- Panagiotis V. Drossos
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Efthymia G. Pavlou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
- Blood Bank and Hemophilia Unit, Hippokration Hospital, 11527 Athens, Greece;
| | - Andreas G. Tsantes
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
- Laboratory of Haematology and Blood Bank Unit, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Gerasimos A. Spyratos
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Efrosyni G. Nomikou
- Blood Bank and Hemophilia Unit, Hippokration Hospital, 11527 Athens, Greece;
| | | | - Georgios Dryllis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Marianna Politou
- Hematology Laboratory—Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Serena Valsami
- Hematology Laboratory—Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (P.V.D.); (S.P.F.); (E.G.P.); (A.G.T.); (G.A.S.); (E.G.P.); (G.D.)
| |
Collapse
|
3
|
Chakraborti S, Ghosh S. Bridging the gap: Exploring the microbial influence on forensic ABO typing discrepancies for enhanced investigative accuracy. Forensic Sci Int 2024; 365:112284. [PMID: 39514953 DOI: 10.1016/j.forsciint.2024.112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Forensic serology has long been a cornerstone in forensic investigations, utilizing multidisciplinary approaches to identify and individualize biological evidence at crime scenes. However, the field faces challenges such as the potential for blood group changes in individuals affected by diseases or medical treatments, leading to false outcomes in prolonged legal cases. Additionally, the passive adsorption of bacterial products by red blood cells can result in blood group switching, emphasizing the need for careful analysis, especially in cases of concurrent infections. Furthermore, post-mortem samples may exhibit blood group variations, necessitating meticulous examination and interpretation of forensic serology results. Despite the advent of DNA typing techniques, traditional forensic serology methods remain relevant, with skills in recognizing stain patterns and selecting informative specimens indispensable. The present review highlights the increasing recognition of bacterial contaminations and their implications for forensic serology, underscoring the need for ongoing research, innovation, and collaboration within the field. This understanding revitalizes forensic science by emphasizing the critical role of maintaining the integrity of serological analyses and enhancing overall reliability.
Collapse
Affiliation(s)
- Sreemoyee Chakraborti
- Department of Forensic Science Laboratory, Biology Division, Government of West Bengal, 37/1/2 Belgachia Road, Kolkata 700037, India.
| | - Sandip Ghosh
- Department of Forensic Science Laboratory, Biology Division, Government of West Bengal, 37/1/2 Belgachia Road, Kolkata 700037, India
| |
Collapse
|
4
|
Kumari B, Hasan M, Irfan S, Khalid A, Moiz B. Bacterial contamination of platelets concentrates in a lower middle-income country: Data from a single tertiary care hospital. Transfus Apher Sci 2024; 63:104018. [PMID: 39426024 DOI: 10.1016/j.transci.2024.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Transfusion of bacterially contaminated platelets may cause life threatening sepsis in the recipients. Cost of platelet screening is a major challenge for low middle income countries (LMICs). In this study, we evaluated the frequency of bacterial contamination in the platelet units (PUs) and the outcome of transfusing such platelets to the patients in a single institute at Pakistan. MATERIAL AND METHODS During 2018-2022, whole blood-derived (WB-PU) and apheresis platelets (AP) were screened by BacT-ALERT® automated system. Single sample from each AP and samples from ≤ 5 WB-PUs were pooled and cultured within 24 h-post collection. An initial positive signal was followed by re-culture, Gram's staining, pool resolution and bacterial identification. Results were interpreted as 'confirmed positive' or 'indeterminate' and 'confirmed negative' based on differences in initial-reactive and final results. RESULTS A total of 84246 PUs (476 AP and 83770 WB-PU) was screened, and 239 (0.28 %) culture bottles were positive on day one. Individual cultures were performed on 1378 PUs (239 bottles) for pool resolution. Seven of 1378 (0.5 %) PUs were 'confirmed positive' while 1371 (99.4 %) were 'indeterminate'. No bacterial growth was observed in 82868 (82392 WB-PU and 476 AP) of 84246 (98.3 %). Overall bacterial contamination rate was low at 1 in 12000 PUs approximately. Seven patients were transfused with contaminated PUs but no transfusion reaction was observed. CONCLUSION An insignificant risk of bacterial contamination was observed in this study but remains a concern for patient safety. LMICs need cost effective but efficient techniques to screen platelets for the presence of bacteria.
Collapse
Affiliation(s)
- Bhawna Kumari
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan.
| | - Muhammad Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan.
| | - Seema Irfan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan.
| | | | - Bushra Moiz
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
5
|
Tian Y, Li X, Chen Y, Hu X, Liu Y, Luo H, Jing G. Swimming Modes of Bacteria Escaping from a Soft Confined Space. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39565220 DOI: 10.1021/acs.langmuir.4c03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Navigating through soft and highly confined environments is crucial for bacteria moving within living organisms' tissues, yet this topic has been less explored. In our study, we experimentally harnessed the unique biconcave geometry of red blood cells (RBCs) to enable real-time visualization of swimming Escherichia coli interacting with soft RBCs. Our findings show that RBCs adhering to a rigid surface can enclose spaces comparable to the size of bacteria, effectively entrapping them. Remarkably, we found that bacteria can escape from this extremely confined space through three newly defined escape modes: Bundling, Unbundling, and Flipping, each mode relying on the specific states of bacterial flagella. A quantitative analysis uncovers significant differences among these modes in terms of scattering angle, escaping speed, and trapping duration. We used two methods to alter the rigidity and adhesion strength of RBCs, and we studied their effects on the detailed bacterial escape process. Our results contribute to the knowledge of bacterial migration in soft, confined spaces, thereby enhancing our understanding of similar processes in biological tissue environments.
Collapse
Affiliation(s)
- Yangguang Tian
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Xinlei Li
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Yaozhen Chen
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Xingbin Hu
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Yanan Liu
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Hao Luo
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Guangyin Jing
- School of Physics, Northwest University, 710127 Xi'An, China
| |
Collapse
|
6
|
O'Connor GD, Mannion S, Purcell J. Factors associated with increased risk of postoperative blood transfusion in patients undergoing total hip arthroplasty at an Irish University Hospital. Ir J Med Sci 2024; 193:1971-1976. [PMID: 38472701 PMCID: PMC11294405 DOI: 10.1007/s11845-024-03653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Approximately 7000 total hip arthroplasty (THA) surgeries occur in Ireland each year. A number of preoperative factors have been identified that increase the risk of postoperative blood transfusion after THA, including anaemia. The ability to identify patients at risk may allow preoperative management strategies to reduce blood transfusions. Data from Irish orthopaedic patients is currently lacking. AIM To investigate if preoperative anaemia and other factors are associated with postoperative blood transfusions in patients who undergo THA. METHODS A retrospective cohort study of all patients who underwent THA in 2019 in SIVUH, Cork, using medical chart review. RESULTS In total, 350 charts met the inclusion criteria, with 291 charts reviewed. 8.9% of the patients who underwent THA had preoperative anaemia. Among these, 19.2% had a postoperative blood transfusion, compared to 1.5% of patients who were not anaemic preoperatively. The odds of receiving a blood transfusion was 15.5 times greater in the preoperative anaemia group compared to the non-anaemic group. Increasing age and higher ASA scores were associated with preoperative anaemia and postoperative blood transfusions. Length of stay was increased by 2.2 days (p < 0.00016) if blood transfusion was required. CONCLUSION Preoperative anaemia was common in an Irish orthopaedic population undergoing THA. Preoperative anaemia predisposes patients to the greatest increased risk of postoperative blood transfusions. The other factors associated with the need for postoperative transfusion were ASA grade 3 or more and age greater than 65 years. Patients who received postoperative blood transfusions had a significantly increased length of hospital stay.
Collapse
Affiliation(s)
| | - Stephen Mannion
- Department of Anaesthesiology, South Infirmary-Victoria University Hospital, Cork, Ireland
| | - James Purcell
- Department of Anaesthesiology, South Infirmary-Victoria University Hospital, Cork, Ireland
| |
Collapse
|
7
|
Marty D, Sorum K, Smith K, Nicoski P, Sayyed BA, Amin S. Nosocomial Infections in the Neonatal Intensive Care Unit. Neoreviews 2024; 25:e254-e264. [PMID: 38688885 DOI: 10.1542/neo.25-5-e254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Nosocomial infections are relatively common in the NICU. These infections increase morbidity and mortality, particularly in the smallest and most fragile infants. The impact of these infections on long-term outcomes and health-care costs is devastating. Worldwide efforts to decrease the incidence of nosocomial infections have focused on implementing specific prevention protocols such as handwashing, central line teams, care bundles, and antimicrobial stewardship. This review summarizes common nosocomial infections in patients in the NICU.
Collapse
Affiliation(s)
| | | | | | | | - Ban Al Sayyed
- Division of Pediatric Infectious Disease, Loyola University Medical Center, Maywood, IL
| | | |
Collapse
|
8
|
Rezvany MR, Moradi Hasan-Abad A, Sobhani-Nasab A, Esmaili MA. Evaluation of bacterial safety approaches of platelet blood concentrates: bacterial screening and pathogen reduction. Front Med (Lausanne) 2024; 11:1325602. [PMID: 38651065 PMCID: PMC11034438 DOI: 10.3389/fmed.2024.1325602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
This mini-review analyzed two approaches to screening bacterial contamination and utilizing pathogen reduction technology (PRT) for Platelet concentrates (PCs). While the culture-based method is still considered the gold standard for detecting bacterial contamination in PCs, efforts in the past two decades to minimize transfusion-transmitted bacterial infections (TTBIs) have been insufficient to eliminate this infectious threat. PRTs have emerged as a crucial tool to enhance safety and mitigate these risks. The evidence suggests that the screening strategy for bacterial contamination is more successful in ensuring PC quality, decreasing the necessity for frequent transfusions, and improving resistance to platelet transfusion. Alternatively, the PRT approach is superior regarding PC safety. However, both methods are equally effective in managing bleeding. In conclusion, PRT can become a more prevalent means of safety for PCs compared to culture-based approaches and will soon comprehensively surpass culture-based bacterial contamination detection methods.
Collapse
Affiliation(s)
- Mohammad Reza Rezvany
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- BioClinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Pediatrics Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Esmaili
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
9
|
Zhang T, Di Carlo D, Lim CT, Zhou T, Tian G, Tang T, Shen AQ, Li W, Li M, Yang Y, Goda K, Yan R, Lei C, Hosokawa Y, Yalikun Y. Passive microfluidic devices for cell separation. Biotechnol Adv 2024; 71:108317. [PMID: 38220118 DOI: 10.1016/j.biotechadv.2024.108317] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The separation of specific cell populations is instrumental in gaining insights into cellular processes, elucidating disease mechanisms, and advancing applications in tissue engineering, regenerative medicine, diagnostics, and cell therapies. Microfluidic methods for cell separation have propelled the field forward, benefitting from miniaturization, advanced fabrication technologies, a profound understanding of fluid dynamics governing particle separation mechanisms, and a surge in interdisciplinary investigations focused on diverse applications. Cell separation methodologies can be categorized according to their underlying separation mechanisms. Passive microfluidic separation systems rely on channel structures and fluidic rheology, obviating the necessity for external force fields to facilitate label-free cell separation. These passive approaches offer a compelling combination of cost-effectiveness and scalability when compared to active methods that depend on external fields to manipulate cells. This review delves into the extensive utilization of passive microfluidic techniques for cell separation, encompassing various strategies such as filtration, sedimentation, adhesion-based techniques, pinched flow fractionation (PFF), deterministic lateral displacement (DLD), inertial microfluidics, hydrophoresis, viscoelastic microfluidics, and hybrid microfluidics. Besides, the review provides an in-depth discussion concerning cell types, separation markers, and the commercialization of these technologies. Subsequently, it outlines the current challenges faced in the field and presents a forward-looking perspective on potential future developments. This work hopes to aid in facilitating the dissemination of knowledge in cell separation, guiding future research, and informing practical applications across diverse scientific disciplines.
Collapse
Affiliation(s)
- Tianlong Zhang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Tianyuan Zhou
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Tao Tang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Li
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
| | - Keisuke Goda
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Ruopeng Yan
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| |
Collapse
|
10
|
Na B, Lee J, Chang HE, Park E, Park S, Lee J, Oh S, Shin DW, Hong YJ, Park KU. Verification of a method using magnetic bead enrichment and nucleic acid extraction to improve the molecular detection of bacterial contamination in blood components. Microbiol Spectr 2024; 12:e0276023. [PMID: 38319091 PMCID: PMC10913752 DOI: 10.1128/spectrum.02760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
Bacterial contamination of blood products poses a significant risk in transfusion medicine. Platelets are particularly vulnerable to bacterial growth because they must be stored at room temperature with constant agitation for >5 days. The limitations of bacterial detection using conventional methods, such as blood cultures and lateral flow assays, include the long detection times, low sensitivity, and the requirement for substantial volumes of blood components. To address these limitations, we assessed the performance of a bacterial enrichment technique using antibiotic-conjugated magnetic nanobeads (AcMNBs) and real-time PCR for the detection of bacterial contamination in plasma. AcMNBs successfully captured >80% of four bacterial strains, including Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Klebsiella pneumoniae, in both plasma and phosphate-buffered saline. After 24-h incubation with bacterial enrichment, S. aureus and B. cereus were each detected at 101 CFU/mL in all trials (5/5), E. coli at 101 CFU/mL in 1/5 trials, and K. pneumoniae at 10² CFU/mL in 4/5 trials. Additionally, without incubation, the improvement was also achieved in samples with bacterial enrichment, S. aureus at 10² CFU/mL and B. cereus at 101 CFU/mL in 1/5 trials each, E. coli at 10³ CFU/mL in 3/5 trials, and K. pneumoniae at 10¹ CFU/mL in 2/5 trials. Overall, the findings from this study strongly support the superiority of bacterial enrichment in detecting low-level bacterial contamination in plasma when employing AcMNBs and PCR.IMPORTANCEThe study presents a breakthrough approach to detect bacterial contamination in plasma, a critical concern in transfusion medicine. Traditional methods, such as blood cultures and lateral flow assays, are hampered by slow detection times, low sensitivity, and the need for large blood sample volumes. Our research introduces a novel technique using antibiotic-conjugated magnetic nanobeads combined with real-time PCR, enhancing the detection of bacteria in blood products, especially platelets. This method has shown exceptional efficiency in identifying even low levels of four different species of bacteria in plasma. The ability to detect bacterial contamination rapidly and accurately is vital for ensuring the safety of blood transfusions and can significantly reduce the risk of infections transmitted through blood products. This advancement is a pivotal step in improving patient outcomes and elevating the standards of care in transfusion medicine.
Collapse
Affiliation(s)
- Byungjoon Na
- KingoBio Inc. Research Center, Seoul, South Korea
| | - Jinyeop Lee
- KingoBio Inc. Research Center, Seoul, South Korea
| | | | - Eunseon Park
- KingoBio Inc. Research Center, Seoul, South Korea
| | - Sojin Park
- KingoBio Inc. Research Center, Seoul, South Korea
| | | | - Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Woo Shin
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yun Ji Hong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
11
|
Jacobs MR, Zhou B, Tayal A, Maitta RW. Bacterial Contamination of Platelet Products. Microorganisms 2024; 12:258. [PMID: 38399662 PMCID: PMC10891786 DOI: 10.3390/microorganisms12020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Transfusion of bacterially contaminated platelets, although rare, is still a major cause of mortality and morbidity despite the introduction of many methods to limit this over the past 20 years. The methods used include improved donor skin disinfection, diversion of the first part of donations, use of apheresis platelet units rather than whole-blood derived pools, primary and secondary testing by culture or rapid test, and use of pathogen reduction. Primary culture has been in use the US since 2004, using culture 24 h after collection of volumes of 4-8 mL from apheresis collections and whole-blood derived pools inoculated into aerobic culture bottles, with limited use of secondary testing by culture or rapid test to extend shelf-life from 5 to 7 days. Primary culture was introduced in the UK in 2011 using a "large-volume, delayed sampling" (LVDS) protocol requiring culture 36-48 h after collection of volumes of 16 mL from split apheresis units and whole-blood derived pools, inoculated into aerobic and anaerobic culture bottles (8 mL each), with a shelf-life of 7 days. Pathogen reduction using amotosalen has been in use in Europe since 2002, and was approved for use in the US in 2014. In the US, recent FDA guidance, effective October 2021, recommended several strategies to limit bacterial contamination of platelet products, including pathogen reduction, variants of the UK LVDS method and several two-step strategies, with shelf-life ranging from 3 to 7 days. The issues associated with bacterial contamination and these strategies are discussed in this review.
Collapse
Affiliation(s)
- Michael R. Jacobs
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (B.Z.); (A.T.); (R.W.M.)
| | | | | | | |
Collapse
|
12
|
De Korte D, Delabie W, Feys HB, Klei T, Larsen R, Sigurjónsson Ó, Sousa AP. Towards standardized human platelet lysate production in Europe: An initiative of the European Blood Alliance. Vox Sang 2024; 119:79-87. [PMID: 38049931 DOI: 10.1111/vox.13562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
Human platelet lysate (hPL) is a supplement for cell culture media that can be derived from platelet concentrates. As not-for-profit blood establishments, we endorse the evolution of maximally exploiting the potential of donated blood and its derived components, including platelets. The decision to use platelet concentrates to supply hPL as a cell culture supplement should align with the principles and values that blood establishments hold towards the use of donated blood components in transfusion. As a consequence, questions on ethics, practical standardization of hPL production and logistics as well as on assuring hPL quality and safety need careful consideration. We therefore propose an opinion on some of these matters based on available literature and on discussions within the proceedings of the Working Group on Innovation and New Products of the European Blood Alliance. In addition, we propose collaboration among European blood establishments to streamline efforts of hPL supply to maximize the potential of hPL and its application in the wider field of medicine.
Collapse
Affiliation(s)
- Dirk De Korte
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Willem Delabie
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Thomas Klei
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Rune Larsen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Ólafur Sigurjónsson
- The Blood Bank, Landspitali University Hospital, Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Ana Paula Sousa
- Blood and Transplantation Centre of Lisboa, Portuguese Institute for Blood and Transplantation (IPST), Lisbon, Portugal
| |
Collapse
|
13
|
Srinivasan AJ, Secunda ZA, Mota-Alvidrez RI, Luc NF, Disharoon D, Traylor B, Pawlowski CL, Brown JB, Bruckman MA, Sen Gupta A, Neal MD. Platelet-inspired synthetic nanoparticles improve hemostasis and hemodynamics in a rabbit model of abdominal hemorrhage. J Trauma Acute Care Surg 2024; 96:101-108. [PMID: 38057963 PMCID: PMC10746291 DOI: 10.1097/ta.0000000000003938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
BACKGROUND Early platelet transfusion is associated with reduced mortality in traumatic hemorrhage. However, platelet usage is severely limited because of the challenges of donor availability, platelet portability, and storage. Here, we report on a bioinspired synthetic platelet (SP) nanoconstruct that utilizes liposome surface-decoration with peptides that mimic injury site-specific platelet adhesion to von Willebrand Factor and collagen, and fibrinogen-mediated platelet aggregation. Synthetic platelet has previously shown promising hemostatic outcomes in vitro and in vivo. Here, we evaluated hemostasis and hemodynamic effects of SP in a rabbit model of abdominal hemorrhage. METHODS Twenty-three adult male New Zealand white rabbits (2.5-3.5 kg) were treated with either buffer, control particles (CPs), or SP. Under general anesthesia with invasive monitoring, rabbits underwent laparotomy with combined splenic and hepatic injury. Hemodynamics were monitored for 30 minutes and blood loss was quantified. Blood counts, aggregometry, catecholamine and platelet factor 4 (PF4) assays were performed at multiple timepoints. Analysis used analysis of variance and post hoc Tukey testing with α = 0.05. RESULTS Rabbits in the SP (n = 7) group had significantly lower weight-normalized blood loss compared with both buffer (n = 8) and CP (n = 8) animals (21.1 vs. 33.2 vs. 40.4 g/kg, p < 0.001). Synthetic platelet-treated animals had higher systolic blood pressure area under curve compared with buffer- and CP-treated animals (1567 vs. 1281 vs. 1109 mm Hg*min, p = 0.006), although post hoc differences were only significant for the SP/CP comparison ( p = 0.005). Platelet counts, catecholamine levels, PF4, and aggregometry were similar between groups. CONCLUSION Synthetic platelet treatment significantly reduced blood loss and improved hemodynamics in a rabbit abdominal hemorrhage model. Synthetic platelet has potential as an intravenous hemostatic platelet surrogate with donor-independent availability and scalable manufacture.
Collapse
Affiliation(s)
- Amudan J. Srinivasan
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Zachary A. Secunda
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Roberto I. Mota-Alvidrez
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Norman F. Luc
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Dante Disharoon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | | | | | - Joshua B. Brown
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | | | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Matthew D. Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| |
Collapse
|
14
|
Gori M, Bolzoni L, Scaltriti E, Andriani L, Marano V, Morabito F, Fappani C, Cereda D, Giompapa E, Chianese R, Lanzini P, Martinelli LA, Bianchi S, Amendola A, Pongolini S, Tanzi E. Listeria monocytogenes Transmission from Donated Blood to Platelet Transfusion Recipient, Italy. Emerg Infect Dis 2023; 29:2108-21011. [PMID: 37478295 PMCID: PMC10521620 DOI: 10.3201/eid2910.230746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] Open
Abstract
We report Listeria monocytogenes infection in a patient in Italy who was transfused with pooled platelet concentrate. Genomic analysis revealed that L. monocytogenes isolates from the donor blood unit, the transfused platelets, and the patient's blood culture were genetically closely related, confirming transfusion transmission. Additional surveillance and secondary bacterial screening could improve transfusion safety.
Collapse
|
15
|
Kracalik I, Kent AG, Villa CH, Gable P, Annambhotla P, McAllister G, Yokoe D, Langelier CR, Oakeson K, Noble-Wang J, Illoh O, Halpin AL, Eder AF, Basavaraju SV. Posttransfusion Sepsis Attributable to Bacterial Contamination in Platelet Collection Set Manufacturing Facility, United States. Emerg Infect Dis 2023; 29:1979-1989. [PMID: 37561399 PMCID: PMC10521617 DOI: 10.3201/eid2910.230869] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
During May 2018‒December 2022, we reviewed transfusion-transmitted sepsis cases in the United States attributable to polymicrobial contaminated apheresis platelet components, including Acinetobacter calcoaceticus‒baumannii complex or Staphylococcus saprophyticus isolated from patients and components. Transfused platelet components underwent bacterial risk control strategies (primary culture, pathogen reduction or primary culture, and secondary rapid test) before transfusion. Environmental samples were collected from a platelet collection set manufacturing facility. Seven sepsis cases from 6 platelet donations from 6 different donors were identified in patients from 6 states; 3 patients died. Cultures identified Acinetobacter calcoaceticus‒baumannii complex in 6 patients and 6 transfused platelets, S. saprophyticus in 4 patients and 4 transfused platelets. Whole-genome sequencing showed environmental isolates from the manufacturer were closely related genetically to patient and platelet isolates, indicating the manufacturer was the most probable source of recurrent polymicrobial contamination. Clinicians should maintain awareness of possible transfusion-transmitted sepsis even when using bacterial risk control strategies.
Collapse
|
16
|
Vollmer T, Knabbe C, Dreier J. Dual-Temperature Microbiological Control of Cellular Products: A Potential Impact for Bacterial Screening of Platelet Concentrates? Microorganisms 2023; 11:2350. [PMID: 37764194 PMCID: PMC10534585 DOI: 10.3390/microorganisms11092350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
An experimental study by the Paul-Ehrlich Institute (PEI) demonstrated that temperatures between 35 and 37 °C are too high for the growth of some bacterial strains (e.g., Pseudomonas fluorescens), leading to false negative results. Thus, the question of whether it is necessary to adapt incubation temperatures for the microbiological control of blood products, especially platelet concentrates (PCs), to enhance safety and regulatory compliance has arisen. In order to further elucidate this issue, the growth capability of different bacterial strains of interest in PCs and the detection efficacy of cultivation of these at different incubation temperatures must be taken into account. Therefore, we inoculated PCs with 46 different strains (3-6 PCs from different donors per strain) from different origins (PC isolates, reference strains) and stored PCs at 20-22 °C under constant agitation. On day three of storage, the inoculated PCs were sampled; aerobic and anaerobic culture bottles (BacT/Alert AST/NST) were each inoculated with 5 mL of sample, and culture bottles were incubated at 25 and 35 °C using the automated BacT/Alert Dual-temperature system. Bacterial proliferation was enumerated using a colony-forming assay. All strains of Enterobacteriacae (n = 5), Staphy-lococcus spp. (n = 11), Streptococcus spp. (n = 5), and Bacillus spp. (n = 4) and most Pseudomonas aeruginosa strains (4 of 5) tested showed the capability to grow in most inoculated PCs, revealing a faster time to detection (TTD) at an incubation temperature of 35 °C. The tested Pseudomonas putida (n = 3) strains showed a noticeably reduced capability to grow in PCs. Nonetheless, those with a notable growth capability revealed a faster TTD at an incubation temperature of 35 °C. Only one of the four Pseudomonas fluorescens strains tested (strain ATCC 13525) was able to grow in PCs, showing a faster TTD at an incubation temperature of 25 °C but also detection at 35 °C. The commonly detected bacteria involved in the bacterial contamination of PCs showed a superior TTD at 35 °C incubation. Only one P. fluorescens strain showed superior growth at 25 °C; however, the microbiological control at 35 °C did not fail to identify this contamination. In conclusion, the use of PC screening using a dual-temperature setting for microbiological control is presently not justified according to the observed kinetics.
Collapse
Affiliation(s)
- Tanja Vollmer
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | | | | |
Collapse
|
17
|
Tan CCS, Ko KKK, Chen H, Liu J, Loh M, Chia M, Nagarajan N. No evidence for a common blood microbiome based on a population study of 9,770 healthy humans. Nat Microbiol 2023; 8:973-985. [PMID: 36997797 PMCID: PMC10159858 DOI: 10.1038/s41564-023-01350-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/02/2023] [Indexed: 04/01/2023]
Abstract
Human blood is conventionally considered sterile but recent studies suggest the presence of a blood microbiome in healthy individuals. Here we characterized the DNA signatures of microbes in the blood of 9,770 healthy individuals using sequencing data from multiple cohorts. After filtering for contaminants, we identified 117 microbial species in blood, some of which had DNA signatures of microbial replication. They were primarily commensals associated with the gut (n = 40), mouth (n = 32) and genitourinary tract (n = 18), and were distinct from pathogens detected in hospital blood cultures. No species were detected in 84% of individuals, while the remainder only had a median of one species. Less than 5% of individuals shared the same species, no co-occurrence patterns between different species were observed and no associations between host phenotypes and microbes were found. Overall, these results do not support the hypothesis of a consistent core microbiome endogenous to human blood. Rather, our findings support the transient and sporadic translocation of commensal microbes from other body sites into the bloodstream.
Collapse
Affiliation(s)
- Cedric C S Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- UCL Genetics Institute, University College London, London, UK.
| | - Karrie K K Ko
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology, Singapore General Hospital, Singapore, Republic of Singapore
- Department of Molecular Pathology, Singapore General Hospital, Singapore, Republic of Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Hui Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jianjun Liu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Marie Loh
- Population and Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, South Kensington, London, UK
- National Skin Centre, Singapore, Republic of Singapore
| | - Minghao Chia
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
18
|
Edgar RH, Samson AP, Kocsis T, Viator JA. Photoacoustic Flow Cytometry Using Functionalized Microspheres for Selective Detection of Bacteria. MICROMACHINES 2023; 14:573. [PMID: 36984980 PMCID: PMC10057399 DOI: 10.3390/mi14030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Photoacoustic flow cytometry is a method to detect rare analytes in fluids. We developed photoacoustic flow cytometry to detect pathological cells in body fluids, such as circulating tumor cells or bacteria in blood. In order to induce specific optical absorption in bacteria, we use modified bacteriophage that precisely target bacterial species or subspecies for rapid identification. In order to reduce detection variability and to halt the lytic lifescycle that results in lysis of the bacteria, we attached dyed latex microspheres to the tail fibers of bacteriophage that retained the bacterial recognition binding sites. We tested these microsphere complexes using Salmonella enterica (Salmonella) and Escherichia coli (E. coli) bacteria and found robust and specific detection of targeted bacteria. In our work we used LT2, a strain of Salmonella, against K12, a strain of E. coli. Using Det7, a bacteriophage that binds to LT2 and not to K12, we detected an average of 109.3±9.0 of LT2 versus 2.0±1.7 of K12 using red microspheres and 86.7±13.2 of LT2 versus 0.3±0.6 of K12 using blue microspheres. These results confirmed our ability to selectively detect bacterial species using photoacoustic flow cytometry.
Collapse
Affiliation(s)
- Robert H. Edgar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anie-Pier Samson
- Department of Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| | - Tori Kocsis
- Department of Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| | - John A. Viator
- Department of Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
19
|
RND Pump-Mediated Efflux of Amotosalen, a Compound Used in Pathogen Inactivation Technology to Enhance Safety of Blood Transfusion Products, May Compromise Its Gram-Negative Anti-Bacterial Activity. mSphere 2023; 8:e0067322. [PMID: 36853056 PMCID: PMC10117049 DOI: 10.1128/msphere.00673-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Pathogen inactivation is a strategy to improve the safety of transfusion products. The only pathogen reduction technology for blood products currently approved in the US utilizes a psoralen compound, called amotosalen, in combination with UVA light to inactivate bacteria, viruses, and protozoa. Psoralens have structural similarity to bacterial multidrug efflux pump substrates. As these efflux pumps are often overexpressed in multidrug-resistant pathogens, we tested whether contemporary drug-resistant pathogens might show resistance to amotosalen and other psoralens based on multidrug efflux mechanisms through genetic, biophysical, and molecular modeling analysis. The main efflux systems in Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa are tripartite resistance-nodulation-cell division (RND) systems, which span the inner and outer membranes of Gram-negative pathogens, and expel antibiotics from the bacterial cytoplasm into the extracellular space. We provide evidence that amotosalen is an efflux substrate for the E. coli AcrAB, Acinetobacter baumannii AdeABC, and P. aeruginosa MexXY RND efflux pumps. Furthermore, we show that the MICs for contemporary Gram-negative bacterial isolates for these species and others in vitro approached and exceeded the concentration of amotosalen used in the approved platelet and plasma inactivation procedures. These findings suggest that otherwise safe and effective inactivation methods should be further studied to identify possible gaps in their ability to inactivate contemporary, multidrug-resistant bacterial pathogens. IMPORTANCE Pathogen inactivation is a strategy to enhance the safety of transfused blood products. We identify the compound, amotosalen, widely used for pathogen inactivation, as a bacterial multidrug efflux substrate. Specifically, experiments suggest that amotosalen is pumped out of bacteria by major efflux pumps in E. coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. Such efflux pumps are often overexpressed in multidrug-resistant pathogens. Importantly, the MICs for contemporary multidrug-resistant Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Burkholderia spp., and Stenotrophomonas maltophilia isolates approached or exceeded the amotosalen concentration used in approved platelet and plasma inactivation procedures, potentially as a result of efflux pump activity. Although there are important differences in methodology between our experiments and blood product pathogen inactivation, these findings suggest that otherwise safe and effective inactivation methods should be further studied to identify possible gaps in their ability to inactivate contemporary, multidrug-resistant bacterial pathogens.
Collapse
|
20
|
Saint-Pierre LM, Farrell KS, Hopper K, Reagan KL. Retrospective evaluation of fresh platelet concentrate administration in dogs: Patient characteristics, outcomes, and transfusion practices in 189 transfusion episodes (2008-2019). J Vet Emerg Crit Care (San Antonio) 2023; 33:360-370. [PMID: 36799875 DOI: 10.1111/vec.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/18/2023]
Abstract
OBJECTIVE To describe patient characteristics, underlying disease processes, clinical outcomes, transfusion dose and type (therapeutic or prophylactic), platelet count changes, and adverse events associated with platelet concentrate (PC) administration in dogs. DESIGN Retrospective study. SETTING University teaching hospital. ANIMALS A total of 149 dogs, representing 189 PC transfusion episodes. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS In this population, 39 of 149 dogs (26.2%) were diagnosed with primary immune-mediated thrombocytopenia, 22 of 149 (14.8%) had decreased bone marrow production, 12 of 149 (8.0%) received PC during a massive transfusion, 3 of 149 (2.0%) had congenital thrombocytopathia, 59 of 149 (39.6%) had severe thrombocytopenia of other causes, and 14 of 149 (9.4%) underwent transfusion for miscellaneous causes without a documented severe thrombocytopenia. In 117 of 149 dogs (78.5%), >1 site of hemorrhage was noted. The most common sites of hemorrhage were the gastrointestinal (GI) tract in 89 of 149 (59.7%) and the skin in 78 of 149 (52.3%). Overall survival to discharge was 59.1% (88/149). The median PC dose was 0.8 units per 10 kg of body weight per transfusion episode (range: 0.2-6.7). Of 189 episodes, 29 of 189 (15.7%) were prophylactic, and 158 of 189 (83.6%) were therapeutic. For 99 of 189 transfusion episodes, paired pre- and postplatelet counts were available within 24 hours. The median platelet count change was 5.0 × 109 /L (5000/μL; range: -115 × 109 /L to 158 × 109 /L [-115,000 to 158,000/μL]); the posttransfusion platelet count was significantly higher than pretransfusion (P < 0.0001). The increase in platelet count after transfusion was greater in the prophylactic group than the therapeutic group (P = 0.0167). Transfusion reactions were suspected during 2 of 168 episodes (1.2%). CONCLUSIONS Immune-mediated thrombocytopenia was the most common disease process that resulted in PC transfusion. PC was more frequently administered to animals with active hemorrhage rather than prophylactically, and most dogs had evidence of hemorrhage in multiple organ systems, particularly the GI tract and skin. PC transfusions typically appeared safe, and the median platelet count increased after transfusion.
Collapse
Affiliation(s)
- Laurence M Saint-Pierre
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, California, USA
| | - Kate S Farrell
- Department of Veterinary Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Kate Hopper
- Department of Veterinary Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Krystle L Reagan
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
21
|
Asgari S, Dhital R, Mustapha A, Lin M. Duplex detection of foodborne pathogens using a SERS optofluidic sensor coupled with immunoassay. Int J Food Microbiol 2022; 383:109947. [PMID: 36191492 DOI: 10.1016/j.ijfoodmicro.2022.109947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Herein, we developed a surface-enhanced Raman spectroscopy (SERS) optofluidic sensor coupled with immunoprobes to simultaneously separate and detect the foodborne pathogens, Escherichia coli O157:H7, and Salmonella in lettuce and packed salad. The method consists of three steps of (i) enrichment to enhance detection sensitivity, (ii) selective separation and labelling of target bacteria by their specific antibody-bearing SERS-nanotags and (iii) detection of tagged bacterial cells using SERS within a hydrodynamic flow-focusing SERS optofluidic device, where even low counts of bacterial cells were detectable in the very thin-film-like sample stream. SERS-nanotags consisted of different Raman reporter molecules, representing each species, i.e., the detection of Raman reporter confirms the presence of the target pathogen. The anti-E. coli antibody used in this study functions against all strains of E. coli O157:H7 and the anti-Salmonella antibody used in this work acts on a wide range of Salmonella enterica strains. Bacterial counts of 1000, 100, and 10 CFU/ 200 g sample were successfully detected after only 15 min enrichment. Our method showed a very low detection limit value of 10 CFU/ 200 g sample for the bacterial mixture in both lettuce and packed salad, proving the efficiency and high sensitivity of our method to detect multiple pathogens in the food samples. The total analysis time, including sample preparation for simultaneous detection of multiple bacteria, was estimated to be 2 h, which is much less than the time required in conventional methods. Hence, our proposed protocol is considered a promising rapid and efficient approach for pathogen screening of food samples.
Collapse
Affiliation(s)
- Sara Asgari
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rajiv Dhital
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Azlin Mustapha
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
22
|
Kerantzas CA, Merwede J, Snyder EL, Hendrickson JE, Tormey CA, Kazmierczak BI, Peaper DR. Assessment of polymicrobial interactions in bacterial isolates from transfused platelet units associated with sepsis. Transfusion 2022; 62:2458-2463. [PMID: 36178430 PMCID: PMC11472026 DOI: 10.1111/trf.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND In 2019 the Centers for Disease Control and Prevention (CDC) reported a series of 4 transfusion reactions that resulted from contamination of apheresis platelet products. Products involved in all 4 cases were contaminated with Acinetobacter calcoaceticus-baumannii complex (ACBC) and in 3 products Staphylococcus saprophyticus was found as well. CDC investigation found that bacterial isolates from the cases were genetically related and suggested a common source of contamination. The contamination of blood products with ACBC is rare and polymicrobial contamination of blood products even less common. ACBC and S. saprophyticus have been observed to adhere to one another and sediment out of suspension in vitro, a process referred to as coaggregation, and we hypothesized that there was an interaction between the strains from these cases that contributed to their co-contamination of blood products. STUDY DESIGN AND METHODS To test the hypothesis of bacterial interaction, we performed coaggregation experiments and observed the growth characteristics of ACBC and S. saprophyticus strains recovered from contaminated blood products involved in a subset of the CDC cases. RESULTS An increase in S. saprophyticus CFU concentration was observed after several days of co-culture with ACBC in LB and plasma; however, no other findings suggested coaggregation or augmentative growth interaction between the bacterial strains. CONCLUSION Ultimately, an interaction between ACBC and S. saprophyticus that could help explain their co-occurrence and growth in contaminated platelet units was not found; however future studies of potential interactions may be warranted.
Collapse
Affiliation(s)
| | - Jacob Merwede
- Department of Laboratory Medicine, Yale-New Haven Hospital, New Haven, Connecticut, USA
| | - Edward L. Snyder
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, USA
| | | | | | - Barbara I. Kazmierczak
- Department of Internal Medicine, Section of Infectious Disease, Yale University, New Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - David R. Peaper
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Baker SA, Wong LK, Wieland R, Bulterys P, Allard L, Nguyen L, Quach T, Nguyen A, Chaesuh E, Cheng P, Bowen R, Virk M. Validated transport conditions maintain the quality of washed red blood cells. Transfusion 2022; 62:1860-1870. [DOI: 10.1111/trf.17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Steven Andrew Baker
- Division of Transfusion Medicine, Department of Pathology Stanford University Stanford California USA
- Transfusion Medicine Section, Department of Pathology University of Utah Salt Lake City Utah USA
| | - Lisa Kanata Wong
- Division of Transfusion Medicine, Department of Pathology Stanford University Stanford California USA
| | - Rebekah Wieland
- Department of Pathology Stanford University Stanford California USA
| | - Philip Bulterys
- Department of Pathology Stanford University Stanford California USA
| | - Libby Allard
- Department of Pathology Stanford University Stanford California USA
| | - Lang Nguyen
- Division of Transfusion Medicine, Department of Pathology Stanford University Stanford California USA
| | - Thinh Quach
- Division of Transfusion Medicine, Department of Pathology Stanford University Stanford California USA
| | - AnhThu Nguyen
- Division of Transfusion Medicine, Department of Pathology Stanford University Stanford California USA
| | - Eunkyong Chaesuh
- Division of Clinical Chemistry, Department of Pathology Stanford University Stanford California USA
| | - Phil Cheng
- Division of Clinical Chemistry, Department of Pathology Stanford University Stanford California USA
| | - Raffick Bowen
- Division of Clinical Chemistry, Department of Pathology Stanford University Stanford California USA
| | - Mrigender Virk
- Division of Transfusion Medicine, Department of Pathology Stanford University Stanford California USA
| |
Collapse
|
24
|
Chen F, Chen D, Deng T, Li J. Combination of alkaline phosphatase/graphene oxide nanoconjugates and D-glucose-6-phosphate–functionalized gold nanoparticles for the rapid colorimetric assay of pathogenic bacteria. Biosens Bioelectron 2022; 216:114611. [DOI: 10.1016/j.bios.2022.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/15/2022]
|
25
|
Wang Y, Rao Q, Li X. Adverse transfusion reactions and what we can do. Expert Rev Hematol 2022; 15:711-726. [PMID: 35950450 DOI: 10.1080/17474086.2022.2112564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Transfusions of blood and blood components have inherent risks and the ensuing adverse reactions. It is very important to understand the adverse reactions of blood transfusion comprehensively for ensuring the safety of any future transfusions. AREAS COVERED According to the time of onset, adverse reactions of blood transfusion are divided into immediate and delayed transfusion reactions. In acute transfusion reactions, timely identification and immediate cessation of transfusion is critical. Vigilance is required to distinguish delayed responses or reactions that present nonspecific signs and symptoms. In this review, we present the progress of mechanism, clinical characteristics and management of commonly encountered transfusion reactions. EXPERT OPINION The incidence of many transfusion-related adverse events is decreasing, but threats to transfusion safety are always emerging. It is particularly important for clinicians and blood transfusion staff to recognize the causes, symptoms, and treatment methods of adverse blood transfusion reactions to improve the safety. In the future, at-risk patients will be better identified and can benefit from more closely matched blood components.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Quan Rao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Li
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Shea SM, Spinella PC, Thomas KA. Cold-stored platelet function is not significantly altered by agitation or manual mixing. Transfusion 2022; 62:1850-1859. [PMID: 35898113 DOI: 10.1111/trf.17005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cold storage of platelets (CS-PLT), results in better maintained hemostatic function compared to room-temperature stored platelets (RT-PLT), leading to increased interest and use of CS-PLT for actively bleeding patients. However, questions remain on best storage practices for CS-PLT, as agitation of CS-PLT is optional per the United States Food and Drug Administration. CS-PLT storage and handling protocols needed to be determined prior to upcoming clinical trials, and blood banking standard operating procedures need to be updated accordingly for the release of units due to potentially modified aggregate morphology without agitation. STUDY DESIGN AND METHODS We visually assessed aggregate formation, then measured surface receptor expression (GPVI, CD42b (GPIbα), CD49 (GPIa/ITGA2), CD41/61 (ITGA2B/ITGB3; GPIIB/GPIIIA; PACI), CD62P, CD63, HLAI), thrombin generation, aggregation (collagen, adenosine diphosphate [ADP], and epinephrine activation), and viscoelastic function (ExTEM, FibTEM) in CS-PLT (Trima collection, 100% plasma) stored for 21 days either with or without agitation (Phase 1, n = 10 donor-paired units) and then without agitation with or without daily manual mixing to minimize aggregate formation and reduce potential effects of sedimentation (Phase 2, n = 10 donor-paired units). RESULTS Agitation resulted in macroaggregate formation, whereas no agitation caused film-like sediment. We found no substantial differences in CS-PLT function between storage conditions, as surface receptor expression, thrombin generation, aggregation, and clot formation were relatively similar between intra-Phase storage conditions. DISCUSSION Storage duration and not condition impacted phenotype and function. CS-PLT can be stored with or without agitation, and with or without daily mixing and standard metrics of hemostatic function will not be significantly altered.
Collapse
Affiliation(s)
- Susan M Shea
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Philip C Spinella
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kimberly A Thomas
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri, USA.,Vitalant Research Institute, Denver, CO, USA
| |
Collapse
|
27
|
Comparison of Bacterial Risk in Cryo AHF and Pathogen Reduced Cryoprecipitated Fibrinogen Complex. Pathogens 2022; 11:pathogens11070744. [PMID: 35889990 PMCID: PMC9317717 DOI: 10.3390/pathogens11070744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Until November 2020, cryoprecipitated antihaemophilic factor (cryo AHF) was the only United States Food and Drug Administration (FDA)-approved fibrinogen source to treat acquired bleeding. The post-thaw shelf life of cryo AHF is limited, in part, by infectious disease risk. Concerns over product wastage demand that cryo AHF is thawed as needed, with thawing times delaying the treatment of coagulopathic patients. In November 2020, the FDA approved Pathogen Reduced Cryoprecipitated Fibrinogen Complex for the treatment and control of bleeding, including massive hemorrhage, associated with fibrinogen deficiency. Pathogen Reduced Cryoprecipitated Fibrinogen Complex (also known as INTERCEPT® Fibrinogen Complex, IFC) has a five-day post-thaw room-temperature shelf life. Unlike cryo AHF, manufacturing of IFC includes broad spectrum pathogen reduction (Amotosalen + UVA), enabling this extended post-thaw shelf life. In this study, we investigated the risk of bacterial contamination persisting through the cryoprecipitation manufacturing process of cryo AHF and IFC. Experiments were performed which included spiking plasma with bacteria prior to cryoprecipitation, and bacterial survival was analyzed at each step of the manufacturing process. The results show that while bacteria survive cryo AHF manufacturing, IFC remains sterile through to the end of shelf life and beyond. IFC, with a five-day post-thaw shelf life, allows the product to be sustainably thawed in advance, facilitating immediate access to concentrated fibrinogen and other key clotting factors for the treatment of bleeding patients.
Collapse
|
28
|
Pati I, Masiello F, Pupella S, Cruciani M, De Angelis V. Efficacy and Safety of Pathogen-Reduced Platelets Compared with Standard Apheresis Platelets: A Systematic Review of RCTs. Pathogens 2022; 11:pathogens11060639. [PMID: 35745493 PMCID: PMC9231062 DOI: 10.3390/pathogens11060639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
In this systematic review, we evaluate the efficacy and safety of blood components treated with pathogen reduction technologies (PRTs). We searched the Medline, Embase, Scopus, Ovid, and Cochrane Library to identify RCTs evaluating PRTs. Risk of bias assessment and the Mantel–Haenszel method for data synthesis were used. We included in this review 19 RCTs evaluating 4332 patients (mostly oncohematological patients) receiving blood components treated with three different PRTs. Compared with standard platelets (St-PLTs), the treatment with pathogen-reduced platelets (PR-PLTs) does not increase the occurrence of bleeding events, although a slight increase in the occurrence of severe bleeding events was observed in the overall comparison. No between-groups difference in the occurrence of serious adverse events was observed. PR-PLT recipients had a lower 1 and 24 h CI and CCI. The number of patients with platelet refractoriness and alloimmunization was significantly higher in PR-PLT recipients compared with St-PLT recipients. PR-PLT recipients had a higher number of platelet and RBC transfusions compared with St-PLT recipients, with a shorter transfusion time interval. The quality of evidence for these outcomes was from moderate to high. Blood components treated with PRTs are not implicated in serious adverse events, and PR-PLTs do not have a major effect on the increase in bleeding events. However, treatment with PRTs may require a greater number of transfusions in shorter time intervals and may be implicated in an increase in platelet refractoriness and alloimmunization.
Collapse
|
29
|
Lee J, Abafogi AT, Oh S, Chang HE, Tepeng W, Lee D, Park S, Park KU, Hong YJ. Molecular detection of bacterial contamination in plasma using magnetic-based enrichment. Sci Rep 2022; 12:9151. [PMID: 35650226 PMCID: PMC9160056 DOI: 10.1038/s41598-022-12960-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial contamination of blood products is a major problem in transfusion medicine, in terms of both morbidity and mortality. Platelets (PLTs) are stored at room temperature (under constant agitation) for more than 5 days, and bacteria can thus grow significantly from a low level to high titers. However, conventional methods like blood culture and lateral flow assay have disadvantages such as long detection time, low sensitivity, and the need for a large volume of blood components. We used real-time polymerase chain reaction (PCR) assays with antibiotic-conjugated magnetic nanobeads (MNBs) to detect enriched Gram-positive and -negative bacteria. The MNBs were coated with polyethylene glycol (PEG) to prevent aggregation by blood components. Over 80% of all bacteria were captured by the MNBs, and the levels of detection were 101 colony forming unit [CFU]/mL and 102 CFU/mL for Gram-positive and -negative bacteria, respectively. The detection time is < 3 h using only small volumes of blood components. Thus, compared to conventional methods, real-time PCR using MNBs allows for rapid detection with high sensitivity using only a small volume of blood components.
Collapse
Affiliation(s)
- Jinyeop Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea.,KingoBio Inc. Research Center, Suwon, South Korea
| | | | - Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Wu Tepeng
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea.,KingoBio Inc. Research Center, Suwon, South Korea
| | - Daekyu Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea. .,Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, South Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yun Ji Hong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| |
Collapse
|
30
|
Malleeswaran S, Sivajothi S, Reddy MS. Viscoelastic Monitoring in Liver Transplantation. Liver Transpl 2022; 28:1090-1102. [PMID: 34724319 DOI: 10.1002/lt.26352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Cirrhosis and liver transplantation (LT) surgery are associated with substantial alterations to the patient's coagulation status. Accurate monitoring of these changes during LT can help manage bleeding proactively and potentially reduce transfusion requirements. Unlike conventional coagulation tests (CCTs), viscoelastic monitoring (VEM) can provide an accurate, real-time, point-of-care assessment of coagulation status during LT and hence has become an invaluable tool for anesthetists and intensive care physicians. However, it remains an enigmatic subject for transplantation surgeons who are more conversant with CCTs. This review discusses the principles of VEM, provides a primer to understanding and interpreting its output, and explains how it can be used to make real-world clinical decisions during LT.
Collapse
Affiliation(s)
- Selvakumar Malleeswaran
- Department of Liver Anesthesia and Critical Care, Institute of Liver Diseases and Transplantation, Gleneagles Global Health City, Chennai, India
| | - Sivanesan Sivajothi
- Department of Liver Anesthesia and Critical Care, Institute of Liver Diseases and Transplantation, Gleneagles Global Health City, Chennai, India
| | - Mettu Srinivas Reddy
- Department of Hepatobiliary Surgery and Liver Transplantation, Institute of Liver Diseases and Transplantation, Gleneagles Global Health City, Chennai, India
| |
Collapse
|
31
|
Blood Transfusion Reactions-A Comprehensive Review of the Literature including a Swiss Perspective. J Clin Med 2022; 11:jcm11102859. [PMID: 35628985 PMCID: PMC9144124 DOI: 10.3390/jcm11102859] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/28/2023] Open
Abstract
Blood transfusions have been the cornerstone of life support since the introduction of the ABO classification in the 20th century. The physiologic goal is to restore adequate tissue oxygenation when the demand exceeds the offer. Although it can be a life-saving therapy, blood transfusions can lead to serious adverse effects, and it is essential that physicians remain up to date with the current literature and are aware of the pathophysiology, initial management and risks of each type of transfusion reaction. We aim to provide a structured overview of the pathophysiology, clinical presentation, diagnostic approach and management of acute transfusion reactions based on the literature available in 2022. The numbers of blood transfusions, transfusion reactions and the reporting rate of transfusion reactions differ between countries in Europe. The most frequent transfusion reactions in 2020 were alloimmunizations, febrile non-hemolytic transfusion reactions and allergic transfusion reactions. Transfusion-related acute lung injury, transfusion-associated circulatory overload and septic transfusion reactions were less frequent. Furthermore, the COVID-19 pandemic has challenged the healthcare system with decreasing blood donations and blood supplies, as well as rising concerns within the medical community but also in patients about blood safety and transfusion reactions in COVID-19 patients. The best way to prevent transfusion reactions is to avoid unnecessary blood transfusions and maintain a transfusion-restrictive strategy. Any symptom occurring within 24 h of a blood transfusion should be considered a transfusion reaction and referred to the hemovigilance reporting system. The initial management of blood transfusion reactions requires early identification, immediate interruption of the transfusion, early consultation of the hematologic and ICU departments and fluid resuscitation.
Collapse
|
32
|
Abstract
Background: The presence of microbiome in the blood samples of healthy individuals has been addressed. However, no information can be found on the healthy human blood microbiome of Iranian subjects. The current study is thus aimed to investigate the existence of bacteria or bacterial DNA in healthy individuals. Methods: Blood samples of healthy subjects were incubated in BHI broth at 37 °C for 72 h. The 16S rRNA PCR and sequencing were performed to analyze bacterial isolates. The 16S rRNA PCR was directly carried out on DNA samples extracted from the blood of healthy individuals. NGS was conducted on blood samples with culture-positive results. Results: Fifty blood samples were tested, and six samples were positive by culture as confirmed by Gram staining and microscopy. The obtained 16S rRNA sequences of cultured bacterial isolates revealed the presence of Bacilli and Staphylococcus species by clustering in the GeneBank database (≥97% identity). The 16S rRNA gene sequencing results of one non-cultured blood specimen showed the presence of Burkholderia. NGS results illustrated the presence of Romboutsia, Lactobacillus, Streptococcus, Bacteroides, and Staphylococcus in the blood samples of positive cultures. Conclusion: The dormant blood microbiome of healthy individuals may give the idea that the steady transfer of bacteria into the blood does not necessarily lead to sepsis. However, the origins and identities of blood-associated bacterial rDNA sequences need more evaluation in the healthy population.
Collapse
|
33
|
Perioperative Platelet Transfusion: Not All Platelet Products Are Created Equal. CURRENT ANESTHESIOLOGY REPORTS 2022. [DOI: 10.1007/s40140-022-00522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Kamel H, Ramirez-Arcos S, McDonald C. The international experience of bacterial screen testing of platelet components with automated microbial detection systems: An update. Vox Sang 2022; 117:647-655. [PMID: 35178718 DOI: 10.1111/vox.13247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022]
Abstract
In 2014, the bacterial subgroup of the Transfusion-Transmitted Infectious Diseases working party of ISBT published a review on the International Experience of Bacterial Screen Testing of Platelet Components (PCs) with an Automated Microbial Detection System. The purpose of this review, which is focused on publications on or after 2014, is to summarize recent experiences related to bacterial contamination of PCs and the use of an automated culture method to safeguard the blood supply. We first reviewed septic transfusion reactions after PC transfusion as reported in national haemovigilance systems along with a few reports from various countries on bacterial contamination of blood products. Next, we reviewed PC automated culture protocols employed by national blood services in the United Kingdom, Australia, Canada and large blood collection organization and hospital transfusion services in the United States. Then, we acknowledged the limitations of currently available culture methodologies in abating the risks of transfusion-transmitted bacterial infection, through a review of case reports. This review was neither meant to be critical of the literature reviewed nor meant to identify or recommend a best practice. We concluded that significant risk reduction can be achieved by one or a combination of more than one strategy. No one approach is feasible for all institutions worldwide. In selecting strategies, institutions should consider the possible impact on platelet components availability and entertain a risk-based decision-making approach that accounts for operational, logistical and financial factors.
Collapse
Affiliation(s)
- Hany Kamel
- Medical Affairs, Vitalant, Scottsdale, Arizona, USA
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada.,University of Ottawa, Ottawa, Canada
| | | | | |
Collapse
|
35
|
Hsien S, Dayton JD, Chen D, Stock A, Bacha E, Cushing MM, Nellis ME. Hemostatic efficacy of pathogen-reduced platelets in children undergoing cardiopulmonary bypass. Transfusion 2022; 62:298-305. [PMID: 34904250 PMCID: PMC8837684 DOI: 10.1111/trf.16768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pediatric patients undergoing cardiopulmonary bypass (CPB) often require blood component transfusions. Pathogen-reduction (PR) of platelets reduces the risk of microbial contamination; however, its effect on hemostatic efficacy in this population is unclear. This study sought to characterize the hemostatic efficacy of PR platelets in children undergoing CPB. STUDY DESIGN AND METHODS We performed a retrospective chart review of patients admitted to a pediatric intensive care unit following CPB surgery from 2015 to 2019. Demographic data, validated scoring of repair complexity, products received, and outcomes were compared. The primary outcome was postoperative chest tube bleeding. RESULTS A total of 140 patients were enrolled. The majority of surgeries (124/140) were Risk Adjustment for Congenital Heart Surgery (RACHS) 1-3 repairs. Seventy-four percent of patients (104/140) received only standard platelets whereas 26% (36/140) received PR platelets. There were no differences between the groups in the age (p = .90), sex (p = .20) or RACHS score (p = .06). Postoperatively, there was no difference in the median chest tube output for 1 h (p = .27), 2 h (p = .26), 4 h (p = .09), 8 h (p = .16), or for the first 24 h following surgery (p = .23) in patients who received standard versus PR platelets. There was also no difference in receipt of platelets (p = .18), cell saver (p = .79), or cryoprecipitate (p = .28). CONCLUSION Patients receiving PR platelets did not have more blood loss or require more transfusions than those who received standard platelets. This suggests that PR platelets may provide acceptable hemostasis with the additional benefits of reduced risk of microbial contamination in pediatric patients undergoing CPB.
Collapse
Affiliation(s)
- Sophia Hsien
- Department of Pediatrics, New York Presbyterian Hospital/Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey D Dayton
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Dennis Chen
- New York-Presbyterian Hospital, Weill Cornell Medical Center, Transfusion Medicine and Cellular Therapy Laboratory, New York, New York, USA
| | - Arabella Stock
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Emile Bacha
- Division of Cardiac, Thoracic and Vascular Surgery, Columbia University, New York, New York, USA
| | - Melissa M Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Marianne E Nellis
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
36
|
Brown BL, Wagner SJ, Hapip CA, Fischer E, Getz TM, Thompson-Montgomery D, Turgeon A. Time from apheresis platelet donation to cold storage: Evaluation of platelet quality and bacterial growth. Transfusion 2022; 62:439-447. [PMID: 34994468 DOI: 10.1111/trf.16785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cold storage reduces posttransfusion survival of platelets; however, it can improve platelet activation, lower risk of bacterial contamination, and extend shelf-life compared to room temperature (RT) storage. To facilitate large-scale availability, manufacturing process optimization is needed, including understanding the impact of variables on platelet potency and safety. Short time requirements from collection to storage is challenging for large blood centers to complete resuspension and qualify platelets for production. This study evaluated the impact of time from platelet component collection to cold storage on in vitro properties and bacterial growth. STUDY DESIGN AND METHODS Double-apheresis platelet components were collected from healthy donors, suspended in 65% PAS-III/35% plasma, and split into 2 equal units. One unit was placed into cold storage within 2 h and the other unit after 8 h. Eight matched pairs were evaluated for 12 in vitro parameters. Twenty-four matched pairs were evaluated with 8 bacterial strains tested in triplicate. Samples were tested throughout 21 days of storage. RESULTS In vitro properties were not different between 2 and 8 h units, and trends throughout storage were similar between arms. Time to cold storage did not significantly impact bacterial growth, with <1 log10 difference at all timepoints between units. DISCUSSION Our studies showed that extending time to cold storage from 2 to 8 h from collection did not significantly increase the bacterial growth, and the platelet component quality and function is maintained. The ability to extend the time required from collection to storage will improve blood center logistics to feasibly produce CSPs.
Collapse
Affiliation(s)
- Bethany L Brown
- American Red Cross, Holland Lab for the Biomedical Sciences, Rockville, Maryland, USA
| | - Stephen J Wagner
- American Red Cross, Holland Lab for the Biomedical Sciences, Rockville, Maryland, USA
| | - C Anne Hapip
- American Red Cross, Holland Lab for the Biomedical Sciences, Rockville, Maryland, USA
| | - Erin Fischer
- American Red Cross, Holland Lab for the Biomedical Sciences, Rockville, Maryland, USA
| | - Todd M Getz
- U.S Army Medical Research and Development Command Battlefield Resuscitation for Immediate Stabilization of Combat Casualties Portfolio Combat Casualty Care Research Program Office, USA
| | | | - Annette Turgeon
- American Red Cross, Holland Lab for the Biomedical Sciences, Rockville, Maryland, USA
| |
Collapse
|
37
|
Raturi M, Nambiyar R, Dhiman Y, Sahrawat A. Root cause analysis of a moderately large fibrinous coagulum in a thawed fresh frozen plasma bag: Discussing the lessons learnt. JOURNAL OF APPLIED HEMATOLOGY 2022. [DOI: 10.4103/joah.joah_164_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Stewart CF, Tomb RM, Ralston HJ, Armstrong J, Anderson JG, MacGregor SJ, Atreya CD, Maclean M. Violet-blue 405-nm Light-based Photoinactivation for Pathogen Reduction of Human Plasma Provides Broad Antibacterial Efficacy Without Visible Degradation of Plasma Proteins. Photochem Photobiol 2021; 98:504-512. [PMID: 34935147 DOI: 10.1111/php.13584] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Abstract
In transfusion medicine, bacterial contamination can occur in ex vivo stored blood plasma, and there are continued efforts to improve blood safety and reduce the risk of transfusion-transmitted infections. Visible 405-nm violet-blue light has demonstrated potential for in situ pathogen reduction in ex vivo stored plasma and platelet concentrates. This study investigates the broad-spectrum antibacterial efficacy and compatibility potential of 405-nm light for treatment of blood plasma. Human plasma seeded with bacteria at a range of densities (101 -103 , 104 -106 , 107 -108 CFU mL-1 ) was exposed to 360 J cm-2 405-nm light (1 h at 0.1 W cm-2 ), with this fixed dose selected based on the initial analysis of inactivation kinetics. One-dimensional protein mobility analysis and measurement of advanced oxidation protein products (AOPP) was conducted to evaluate compatibility of the antimicrobial dose with plasma proteins and, identify upper levels at which protein degradation can be detected. Broad-spectrum antibacterial efficacy was observed with a fixed treatment of 360 J cm-2 , with 98.9-100% inactivation achieved across all seeding densities for all organisms, except E. coli, which achieved 95.1-100% inactivation. At this dose (360 J cm-2 ), no signs of protein degradation occurred. Overall, 405-nm light shows promise for broad-spectrum bacterial inactivation in blood plasma, while preserving plasma protein integrity.
Collapse
Affiliation(s)
- Caitlin F Stewart
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Rachael M Tomb
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Heather J Ralston
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Jack Armstrong
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK.,Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
39
|
Bong JH, Park JH, Sung JS, Lee CK, Lee GY, Kang MJ, Kim HO, Pyun JC. Rapid Analysis of Bacterial Contamination in Platelets without Pre-Enrichment Using Pig Serum-Derived Antibodies. ACS APPLIED BIO MATERIALS 2021; 4:7779-7789. [DOI: 10.1021/acsabm.1c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Chang Kyu Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Ga-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| |
Collapse
|
40
|
Wilson-Nieuwenhuis J, El-Mohtadi M, Edwards K, Whitehead K, Dempsey-Hibbert N. Factors Involved in the onset of infection following bacterially contaminated platelet transfusions. Platelets 2021; 32:909-918. [PMID: 32762589 DOI: 10.1080/09537104.2020.1803253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transfusion of platelet concentrates (PCs) is associated with several adverse patient reactions, the most common of which are febrile non-hemolytic transfusion reactions (FNHTRs) and transfusion-associated bacterial-infection/transfusion-associated sepsis (T-ABI/TA-S). Diagnosis of T-ABI/T-AS requires a positive blood culture (BC) result from the transfusion recipient and also a positive identification of bacterial contamination within a test aliquot of the transfused PC. In a significant number of cases, clinical symptoms post-transfusion are reported by the clinician, yet the BCs from the patient and/or PC are negative. The topic of 'missed bacterial detection' has therefore been the focus of several primary research studies and review articles, suggesting that biofilm formation in the blood bag and the presence of viable but non-culturable (VBNC) pathogens are the major causes of this missed detection. However, platelets are emerging as key players in early host responses to infection and as such, the aforementioned biofilm formation could elicit 'platelet priming', which could lead to significant immunological reactions in the host, in the absence of planktonic bacteria in the host bloodstream. This review reflects on what is known about missed detection and relates this to the emerging understanding of the effect of bacterial contamination on the platelets themselves and the significant role played by platelets in exacerbation of an immune response to infection within the transfusion setting.
Collapse
Affiliation(s)
| | - Mohamed El-Mohtadi
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kurtis Edwards
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kathryn Whitehead
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | | |
Collapse
|
41
|
Ramirez-Arcos S, Howell A, Bearne J, Bhakta V, Bower L, Cardigan R, Girard M, Kou Y, McDonald C, Nolin MÈ, Sawicka D, Sheffield W. Challenging the 30-min rule for thawed plasma. Vox Sang 2021; 117:328-336. [PMID: 34346087 DOI: 10.1111/vox.13189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Frozen plasma (FP) is thawed prior to transfusion and stored for ≤5 days at 1-6°C. The effect of temperature excursions on the quality and safety of thawed plasma during 5-day storage was determined. MATERIALS AND METHODS Four plasma units were pooled, split and stored at ≤-18°C for ≤90 days. Test units T30 and T60 were exposed to 20-24°C (room temperature [RT]) for 30 or 60 min, respectively, on days 0 and 2 of storage. Negative and positive control units remained refrigerated or at RT for 5 days, respectively. On Day 5, test units were exposed once to RT for 5 h. Quality assays included stability of coagulation factors FV, FVII, FVIII, fibrinogen and prothrombin time. Bacterial growth was performed in units inoculated with ~1 CFU/ml or ~100 CFU/ml of Serratia liquefaciens, Pseudomonas putida, Pseudomonas aeruginosa or Staphylococcus epidermidis on Day 0. RESULTS Testing results of all quality parameters were comparable between T30 and T60 units (p < 0.05). Serratia liquefaciens proliferated in cold-stored plasma, while P. putida showed variable viability. Serratia epidermidis and P. aeruginosa survived but did not grow in cold-stored plasma. Positive and negative controls showed expected results. Overall, no statistical differences in bacterial concentration between T30 and T60 units were observed (p < 0.05). CONCLUSION Multiple RT exposures for 30 or 60 min do not affect the stability of coagulation factors or promote bacterial growth in thawed plasma stored for 5 days. It is therefore safe to expose thawed plasma to uncontrolled temperatures for limited periods of 60 min.
Collapse
Affiliation(s)
- Sandra Ramirez-Arcos
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Anita Howell
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Jennifer Bearne
- National Bacteriology Laboratory, National Health Service Blood and Transplant, London, UK
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Lucy Bower
- Component Development, National Health Service Blood and Transplant, Cambridge, UK
| | - Rebecca Cardigan
- Component Development, National Health Service Blood and Transplant, Cambridge, UK
| | - Mélissa Girard
- Medicals Affairs and Innovation, Héma-Québec, Québec, Quebec, Canada
| | - Yuntong Kou
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Carl McDonald
- National Bacteriology Laboratory, National Health Service Blood and Transplant, London, UK
| | - Marie-Ève Nolin
- Medicals Affairs and Innovation, Héma-Québec, Québec, Quebec, Canada
| | - Danuta Sawicka
- National Bacteriology Laboratory, National Health Service Blood and Transplant, London, UK
| | - William Sheffield
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
42
|
Current Therapies in Clinical Trials of Parkinson's Disease: A 2021 Update. Pharmaceuticals (Basel) 2021; 14:ph14080717. [PMID: 34451813 PMCID: PMC8398928 DOI: 10.3390/ph14080717] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that currently has no cure, but treatments are available to improve PD symptoms and maintain quality of life. In 2020, about 10 million people worldwide were living with PD. In 1970, the United States Food and Drug Administration approved the drug levodopa as a dopamine replacement to manage PD motor symptoms; levodopa-carbidopa combination became commercialized in 1975. After over 50 years of use, levodopa is still the gold standard for PD treatment. Unfortunately, levodopa therapy-induced dyskinesia and OFF symptoms remain unresolved. Therefore, we urgently need to analyze each current clinical trial's status and therapeutic strategy to discover new therapeutic approaches for PD treatment. We surveyed 293 registered clinical trials on ClinicalTrials.gov from 2008 to 16 June 2021. After excluded levodopa/carbidopa derivative add-on therapies, we identified 47 trials as PD treatment drugs or therapies. Among them, 19 trials are in phase I (41%), 25 trials are in phase II (53%), and 3 trials are in phase III (6%). The three phase-III trials use embryonic dopamine cell implant, 5-HT1A receptor agonist (sarizotan), and adenosine A2A receptor antagonist (caffeine). The therapeutic strategy of each trial shows 29, 5, 1, 5, 5, and 2 trials use small molecules, monoclonal antibodies, plasma therapy, cell therapy, gene therapy, and herbal extract, respectively. Additionally, we discuss the most potent drug or therapy among these trials. By systematically updating the current trial status and analyzing the therapeutic strategies, we hope this review can provide new ideas and insights for PD therapy development.
Collapse
|
43
|
Mastrocco A, Cazzolli D, Prittie J. The effect of storage at 4°C on canine-specific albumin on product sterility and albumin concentration. J Vet Emerg Crit Care (San Antonio) 2021; 31:574-577. [PMID: 34297893 DOI: 10.1111/vec.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/27/2019] [Accepted: 01/10/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To determine if lyophilized canine-specific albumin (CSA) can be stored beyond the manufacturer recommended 6 hours post-reconstitution without significant concern for bacterial growth. DESIGN Laboratory research. SETTING Large private teaching hospital. INTERVENTIONS Six bottles of lyophilized CSA were retrieved from a medical grade (4°C) refrigerator and were reconstituted with 0.9% NaCl to a 5% solution. Time to complete dissolution of all bottles at room temperature without agitation was recorded in minutes. A 1.5-mL sample was collected from each bottle at the following time points: time 0 (at the time of complete dissolution), and then 6, 12, and 24 hours after removal from 4°C. Each aliquot was inoculated into a blood culture tube and was immediately submitted for aerobic and anaerobic bacterial culture. A positive and negative control were cultured at the 24-hour time point. At each time point, an additional 0.5-mL aliquot from each albumin bottle was collected, and these were combined to determine the average albumin concentration (g/L, g/dL) as measured by an in-house analyzer. The albumin was stored at 4°C between sample collection. MEASUREMENTS AND MAIN RESULTS The reconstitution of CSA and storage at 4°C for up to 24 hours did not result in anaerobic or aerobic bacterial growth in any of the 24 cultured samples. Storage did not have a clinically significant effect on the albumin concentration of the solution. The average albumin concentration of all samples was 42 g/L (4.2 g/dL). No growth was noted in the negative control, and the positive control grew 4 strains of bacteria. CONCLUSIONS It appears safe to use lyophilized CSA up to 24 hours post-reconstitution without significant risk of bacterial growth or change in albumin concentration.
Collapse
Affiliation(s)
- Alicia Mastrocco
- Section of Emergency and Critical Care, The Animal Medical Center, New York, New York, USA
| | - Dava Cazzolli
- Section of Emergency and Critical Care, The Animal Medical Center, New York, New York, USA
| | - Jennifer Prittie
- Section of Emergency and Critical Care, The Animal Medical Center, New York, New York, USA
| |
Collapse
|
44
|
Lu N, Chen Z, Zhang W, Yang G, Liu Q, Böttger R, Zhou S, Liu Y. Effect of silver ion implantation on antibacterial ability of polyethylene food packing films. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
Loza-Correa M, Yousuf B, Ramirez-Arcos S. Staphylococcus epidermidis undergoes global changes in gene expression during biofilm maturation in platelet concentrates. Transfusion 2021; 61:2146-2158. [PMID: 33904608 DOI: 10.1111/trf.16418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Staphylococcus epidermidis forms surface-attached aggregates (biofilms) when grown in platelet concentrates (PCs). Comparative transcriptome analyses were undertaken to investigate differential gene expression of S. epidermidis biofilms grown in PCs. STUDY DESIGN AND METHODS Two S. epidermidis strains isolated from human skin (AZ22 and AZ39) and one strain isolated from contaminated PCs (ST02) were grown in glucose-supplemented Trypticase Soy Broth (TSBg) and PCs. RNA was extracted and sequenced using Illumina HiSeq. Differential expression analysis was done using DESeq, and significantly differentially expressed genes (DEGs) were selected. DEGs were subjected to Kyoto encyclopedia of genes and genomes and Gene Ontology analyses. Differential gene expression was validated with quantitative reverse transcription-PCR. RESULTS A total of 436, 442, and 384 genes were expressed in AZ22, AZ39, and ST02, respectively. DEG analysis showed that 170, 172, and 117 genes were upregulated in PCs in comparison to TSBg, whereas 120, 135, and 89 genes were downregulated (p < .05) in mature biofilms of AZ22, AZ39, and ST02, respectively. Twenty-seven DEGs were shared by all three strains. While 76 DEGs were shared by AZ22 and AZ39, only 34 and 21 DEGs were common between ST02, and AZ22 and AZ39, respectively. Significant transcriptional expression changes were observed in genes involved in platelet-bacteria interaction, biofilm formation, production of virulence factors, and resistance to antimicrobial peptides and antibiotics. CONCLUSION Differential gene expression in S. epidermidis is triggered by the stressful PC storage environment. Upregulation of virulence and antimicrobial resistance genes could have clinical implications for transfusion patients.
Collapse
Affiliation(s)
- Maria Loza-Correa
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Basit Yousuf
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sandra Ramirez-Arcos
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Sakai H, Kobayashi N, Kure T, Okuda C. Translational research of hemoglobin vesicles as a transfusion alternative. Curr Med Chem 2021; 29:591-606. [PMID: 33845721 DOI: 10.2174/0929867328666210412130035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Abstract
Clinical situations arise in which blood for transfusion becomes scarce or unavailable. Considerable demand for a transfusion alternative persists because of various difficulties posed by blood donation and transfusion systems. Hemoglobin-vesicles (HbV) are artificial oxygen carriers being developed for use as a transfusion alternative. Just as biomembranes of red blood cells (RBCs) do, phospholipid vesicles (liposomes) for Hb encapsulation can protect the human body from toxic effects of molecular Hb. The main HbV component, Hb, is obtained from discarded human donated blood. Therefore, HbV can be categorized as a biologic agent targeting oxygen for peripheral tissues. The purification procedure strictly eliminates the possibility of viral contamination. It also removes all concomitant unstable enzymes present in RBC for utmost safety from infection. The deoxygenated HbVs, which are storable for over years at ambient temperature, can function as an alternative to blood transfusion for resuscitation from hemorrhagic shock and O2 therapeutics. Moreover, a recent study clarified beneficial effects for anti-oxidation and anti-inflammation by carbon monoxide (CO)-bound HbVs. Autoxidation of HbV (HbO2 → metHb + O2-.) is unavoidable after intravenous administration. Co-injection of methylene blue can extract the intraerythrocytic glycolytic electron energy effectively and reduce metHb. Other phenothiazine dyes can also function as electron mediators to improve the functional life span of HbV. This review paper summarizes recent progress of the research and development of HbV, aimed at clinical applications.
Collapse
Affiliation(s)
- Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Naoko Kobayashi
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Tomoko Kure
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Chie Okuda
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| |
Collapse
|
47
|
Buren N. Laboratory Testing of Donated Blood. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Ahmad Y, Heroes AS, Hume HA, Farouk M, Owusu-Ofori A, Gehrie EA, Goel R, Ness PM, Tobian AAR, Bloch EM. Bacterial contamination of blood products in Africa. Transfusion 2021; 61:767-780. [PMID: 33469916 DOI: 10.1111/trf.16262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bacterial contamination of blood components (notably platelets) remains a leading infectious risk to the blood supply. There has been extensive research in high-income countries to characterize the risk of bacterial contamination along with adoption of strategies to mitigate that risk. By contrast, related data in Africa are lacking. STUDY DESIGN AND METHODS An electronic survey was distributed to members of African Society of Blood Transfusion to assess existing or planned measures at African blood centers and hospitals to mitigate bacterial contamination of blood products. A literature review of studies pertaining to related transfusion-associated risk in Africa was conducted to complement the findings. RESULTS Forty-five responses were received, representing 16 African countries. All respondents were urban, either in blood centers (n = 36) or hospital-based transfusion services (n = 9). Reported measures included skin disinfection (n = 41 [91.1%]); diversion pouches (n = 14 [31.1%]); bacterial culture (n = 9 [20%]); pathogen reduction (PR) (n = 3 [6.7%]); and point-of-release testing (PoRT) (n = 2 [4.4%]). Measures being considered for implementation included: skin disinfection (n = 2 [4.4%]); diversion pouches (n = 2 [4.4%]); bacterial culture n = 14 (31.1%); PR (n = 11 [24.4%]); and PoRT (n = 4 [8.9%]). Of the 38 respondents who reported collection of platelets, 14 (36.8%) and 8 (21.1%) reported using diversion pouches and bacterial culture, respectively. The literature review identified 36 studies on the epidemiology of bacterial contamination and septic transfusion reactions in Africa; rates of contamination ranged from 0% to 17.9%. CONCLUSIONS The findings suggest that prevention of bacterial contamination of blood components and transfusion-associated sepsis in Africa remains neglected. Regional preventive measures have not been widely adopted.
Collapse
Affiliation(s)
- Yembur Ahmad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anne-Sophie Heroes
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
- Department of Microbiology, Immunology and Transplantation Leuven, KU Leuven, Leuven, Belgium
| | - Heather A Hume
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | | | - Alex Owusu-Ofori
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Eric A Gehrie
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruchika Goel
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul M Ness
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Wasiluk T, Rogowska A, Boczkowska-Radziwon B, Zebrowska A, Bolkun L, Piszcz J, Radziwon P. Maintaining plasma quality and safety in the state of ongoing epidemic - The role of pathogen reduction. Transfus Apher Sci 2021; 60:102953. [PMID: 33023853 PMCID: PMC7832281 DOI: 10.1016/j.transci.2020.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/22/2023]
Abstract
In the field of transfusion medicine, many pathogen reduction techniques (PRTs) are currently available, including those based on photochemical (PI) and photodynamic inactivation (PDI). This is particularly important in the face of emerging viral pathogens that may pose a threat to blood recipients, as in the case of the COVID-19 pandemic. However, PRTs have some limitations, primarily related to their adverse effects on coagulation factors, which should be considered before their intended use. A comprehensive search of PubMed, Wiley Online Library and Science Direct databases was conducted to identify original papers. As a result, ten studies evaluating fresh plasma and frozen-thawed plasma treated with different PI/ PDI methods and evaluating concentrations of coagulation factors and natural anticoagulants both before and after photochemical treatment were included in the review. The use of PI and PDI is associated with a significant decrease in the activity of all analysed coagulation factors, while the recovery of natural anticoagulants remains at a satisfactory level, variable for individual inactivation methods. In addition, the published evidence reviewed above does not unequivocally favour the implementation of PI/PDI either before freezing or after thawing as plasma products obtained with these two approaches seem to satisfy the existing quality criteria. Based on current evidence, if implemented responsibly and in accordance with the current guidelines, both PI and PDI can ensure satisfactory plasma quality and improve its safety.
Collapse
Affiliation(s)
- Tomasz Wasiluk
- Regional Centre for Transfusion Medicine, Bialystok, Poland.
| | - Anna Rogowska
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | | | | | - Lukasz Bolkun
- Department of Haematology, Medical University of Bialystok, Bialystok, Poland
| | - Jaroslaw Piszcz
- Department of Haematology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland; Department of Haematology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
50
|
Vanni R, Bussuan RM, Rombaldi RL, Arbex AK. Endocrine Disruptors and the Induction of Insulin Resistance. Curr Diabetes Rev 2021; 17:e102220187107. [PMID: 33092513 DOI: 10.2174/1573399816666201022121254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The incidence of insulin resistance syndrome and type 2 diabetes mellitus has increased at an alarming rate worldwide and constitutes a serious challenge to public health care in the 21st century. Endocrine disrupting chemicals are defined as "substances or mixtures of substances that alter the endocrine system functions and, hence, adversely affect organisms, their progeny, or sub populations" and may be associated with this increase in prevalence. OBJECTIVE This study aimed to assess the role of endocrine disrupting chemicals in insulin resistance and the importance of approaching the subject during anamnesis. METHODS A full review of the literature regarding insulin resistance, type-2 diabetes and endocrine disruptors were conducted. CONCLUSION Large-scale production and distribution of endocrine disrupting chemicals coincide with the increase in the prevalence of insulin resistance globally. In recent years, studies have shown that endocrine disrupting chemicals are positively associated with insulin resistance syndrome, evidenced by worse prognoses among individuals with higher levels of exposure. Health professionals should recognize the forms of exposure, most susceptible people, and lifestyle habits that can worsen patients' prognoses.
Collapse
Affiliation(s)
- Rafael Vanni
- IPEMED Medical School/ AFYA Educational, Rio de Janeiro, Brazil
| | | | | | - Alberto K Arbex
- Medical Clinic in Schleswig-Flensburg, State of Schleswig-Holstein, Germany
| |
Collapse
|