1
|
Unver Y, Sensoy Gun B, Acar M, Yildiz S. Heterologous expression of azurin from Pseudomonas aeruginosa in the yeast Pichia pastoris. Prep Biochem Biotechnol 2020; 51:723-730. [PMID: 33346686 DOI: 10.1080/10826068.2020.1855444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Azurin, which is a bacterial secondary metabolite has been attracted as a potential anticancer agent in recent years because induced death of cancer cells and inhibited their growth. In this study, the production of azurin under the control of the alcohol oxidase promoter which is frequently used in the Pichia pastoris expression system was performed. The azurin gene amplified from Pseudomonas aeruginosa genomic DNA and inserted into the pPICZαA was cloned in Escherichia coli cells. Then, a linearized recombinant vector was transferred to the P. pastoris X-33 cells. Antibiotic resistance test and colony PCR were performed for the selection of multicopy transformants. Protein expression capacities of selected transformants were compared at the end of 48 h incubation. Both extracellular and intracellular protein expressions were observed in all of them by Western blot analysis. The relative expression levels of both intracellular and extracellular protein that belongs to the first clone were higher than the others. On the other hand, it was seen that the 4th clone had the highest protein secretion ability. The molecular mass of the extracellular azurin protein which is produced by recombinant clones was found to be about 20 kDa. This is the first report on azurin expression in P. pastoris.
Collapse
Affiliation(s)
- Yagmur Unver
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Busra Sensoy Gun
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Melek Acar
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Seyda Yildiz
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Nóbrega CS, Pauleta SR. Interaction between Neisseria gonorrhoeae bacterial peroxidase and its electron donor, the lipid-modified azurin. FEBS Lett 2018; 592:1473-1483. [PMID: 29665008 DOI: 10.1002/1873-3468.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/05/2022]
Abstract
The Neisseria gonorrhoeae bacterial cytochrome c peroxidase plays a key role in detoxifying the cells from H2 O2 by reducing it to water using the lipid-modified azurin, LAz, a small type 1 copper protein, as electron donor. Here, the interaction between these two proteins was characterized by steady-state kinetics, two-dimensional NMR and molecular docking simulations. LAz is an efficient electron donor capable of activating this enzyme. This electron transfer complex is weak with a hydrophobic character, with LAz binding close to the electron transferring heme of the enzyme. The high catalytic rate (39 ± 0.03 s-1 ) is explained by the LAz pre-orientation, due to a positive dipole moment, and by the fast-dynamic ensemble of orientations, suggested by the small chemical shifts.
Collapse
Affiliation(s)
- Cláudia S Nóbrega
- Microbial Stress Lab, UCIBIO, REQUIMTE, Department of Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Department of Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
3
|
Connor DO, Zantow J, Hust M, Bier FF, von Nickisch-Rosenegk M. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display. PLoS One 2016; 11:e0148986. [PMID: 26859666 PMCID: PMC4747489 DOI: 10.1371/journal.pone.0148986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022] Open
Abstract
Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.
Collapse
Affiliation(s)
- Daniel O. Connor
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Jonas Zantow
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Frank F. Bier
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Biosystem Integration and Automation, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Markus von Nickisch-Rosenegk
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| |
Collapse
|
4
|
Nóbrega CS, Saraiva IH, Carreira C, Devreese B, Matzapetakis M, Pauleta SR. The solution structure of the soluble form of the lipid-modified azurin from Neisseria gonorrhoeae , the electron donor of cytochrome c peroxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:169-176. [DOI: 10.1016/j.bbabio.2015.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/25/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022]
|
5
|
Gulati S, Schoenhofen IC, Whitfield DM, Cox AD, Li J, St. Michael F, Vinogradov EV, Stupak J, Zheng B, Ohnishi M, Unemo M, Lewis LA, Taylor RE, Landig CS, Diaz S, Reed GW, Varki A, Rice PA, Ram S. Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics. PLoS Pathog 2015; 11:e1005290. [PMID: 26630657 PMCID: PMC4668040 DOI: 10.1371/journal.ppat.1005290] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/30/2015] [Indexed: 01/15/2023] Open
Abstract
Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5’-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation (“serum-resistance”). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from CMP-Leg5Ac7Ac-treated mice were sensitive to human complement ex vivo, simulating in vitro findings. These data reveal critical roles for the Sia exocyclic side-chain in gonococcal serum-resistance. Such CMP-NulO analogs may provide a novel therapeutic strategy against the global threat of multidrug-resistant gonorrhea. Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, has developed widespread resistance to almost every conventional antibiotic currently in clinical use. Novel therapeutics are urgently needed against this pathogen. Gonococci have the capacity to scavenge CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac, a CMP-activated 9-carbon sugar that is a member of the ‘sialic acid family’) from the host to ‘cap’ its lipooligosaccharide with Neu5Ac, which renders gonococci resistant to complement, a key arm of innate immune defenses. Here, we show that gonococci also utilize derivatives (or analogs) of CMP-Neu5Ac, which not only fail to render the bacteria resistant to complement, but also prevent complement inhibition mediated by the ‘physiologic’ human sialic acid donor, CMP-Neu5Ac. When administered intravaginally to mice, a representative analog significantly shortened the duration and burden of gonococcal infection. Thus, CMP-sialic acid analogs may represent promising preventive or therapeutic agents against multidrug-resistant gonorrhea that poses a global threat to public health.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ian C. Schoenhofen
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
- * E-mail: (ICS); (SR)
| | - Dennis M. Whitfield
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Andrew D. Cox
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | - Frank St. Michael
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Evgeny V. Vinogradov
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Jacek Stupak
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rachel E. Taylor
- Biomedical Sciences Graduate Program, Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, United States of America
| | - Corinna S. Landig
- Biomedical Sciences Graduate Program, Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, United States of America
| | - Sandra Diaz
- Biomedical Sciences Graduate Program, Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, United States of America
| | - George W. Reed
- Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ajit Varki
- Biomedical Sciences Graduate Program, Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, United States of America
| | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ICS); (SR)
| |
Collapse
|
6
|
Hashimoto W, Ochiai A, Hong CS, Murata K, Chakrabarty AM. Structural studies on Laz, a promiscuous anticancer Neisserial protein. Bioengineered 2015; 6:141-8. [PMID: 25714335 DOI: 10.1080/21655979.2015.1022303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Azurin and Laz (lipidated azurin) are 2 bacterial proteins with anticancer, anti-viral and anti-parasitic activities. Azurin, isolated from the bacterium Pseudomonas aeruginosa, termed Paz, demonstrates anticancer activity against a range of cancers but not against brain tumors. In contrast, Laz is produced by members of Gonococci/Meningococci, including Neisseria meningitides which can cross the blood-brain barrier to infect brain meninges. It has been previously reported that Laz has an additional 39 amino acid moiety, called an H.8 epitope, in the N-terminal part of the azurin moiety that allows Laz to cross the entry barrier to brain tumors such as glioblastomas. Exactly, how the H.8 epitope helps the azurin moiety of Laz to cross the entry barriers to attack glioblastoma cells is unknown. In this paper, we describe the structural features of the H.8 moiety in Laz using X-ray crystallography and demonstrate that while the azurin moiety of Laz adopts a β-sandwich fold with 2 β-sheets arranged in the Greek key motif, the H.8 epitope was present as a disordered structure outside the Greek key motif. Structures of Paz and H.8 epitope-deficient Laz are well superimposed. The structural flexibility of the H.8 motif in Laz explains the extracellular location of Laz in Neisseria where it can bind the key components of brain tumor cells to disrupt their tight junctions and allow entry of Laz inside the tumors to exert cytotoxicity.
Collapse
Affiliation(s)
- Wataru Hashimoto
- a Laboratory of Basic and Applied Molecular Biotechnology; Graduate School of Agriculture ; Kyoto University ; Uji , Kyoto , Japan
| | | | | | | | | |
Collapse
|
7
|
Deeudom M, Huston W, Moir JWB. Lipid-modified azurin of Neisseria meningitidis is a copper protein localized on the outer membrane surface and not regulated by FNR. Antonie van Leeuwenhoek 2015; 107:1107-16. [PMID: 25666376 DOI: 10.1007/s10482-015-0400-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/29/2015] [Indexed: 11/24/2022]
Abstract
The laz gene of Neisseria meningitidis is predicted to encode a lipid-modified azurin (Laz). Laz is very similar to azurin, a periplasmic protein, which belongs to the copper-containing proteins in the cupredoxin superfamily. In other bacteria, azurin is an electron donor to nitrite reductase, an important enzyme in the denitrifying process. It is not known whether Laz could function as an electron transfer protein in this important pathogen. Laz protein was heterologously expressed in Escherichia coli and purified. Electrospray mass spectrometry indicated that the Laz protein contains one copper ion. Laz was shown to be redox-active in the presence of its redox center copper ion. When oxidized, Laz exhibits an intense blue colour and absorbs visible light around 626 nm. The absorption is lost when exposed to diethyldithiocarbamate, a copper chelating agent. Polyclonal antibodies were raised against purified Laz for detecting expression of Laz under different growth conditions and to determine the orientation of Laz on the outer membrane. The expression of Laz under microaerobic and microaerobic denitrifying conditions was slightly higher than that under aerobic conditions. However, the expression of Laz was similar between the wild type strain and an fnr mutant, suggesting that Fumarate/Nitrate reduction regulator (FNR) does not regulate the expression of Laz despite the presence of a partial FNR box upstream of the laz gene. We propose that some Laz protein is exposed on the outer membrane surface of N. meningitidis as the αLaz antibodies can increase killing by complement in a capsule deficient N. meningitidis strain, in a dose-dependent fashion.
Collapse
Affiliation(s)
- Manu Deeudom
- Department of Biology (Area 10), University of York, Heslington, York, YO10 5YW, UK,
| | | | | |
Collapse
|
8
|
Aas FE, Li X, Edwards J, Hongrø Solbakken M, Deeudom M, Vik Å, Moir J, Koomey M, Aspholm M. Cytochrome c-based domain modularity governs genus-level diversification of electron transfer to dissimilatory nitrite reduction. Environ Microbiol 2014; 17:2114-32. [PMID: 25330335 DOI: 10.1111/1462-2920.12661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/04/2014] [Indexed: 12/19/2022]
Abstract
The genus Neisseria contains two pathogenic species (N. meningitidis and N. gonorrhoeae) in addition to a number of commensal species that primarily colonize mucosal surfaces in man. Within the genus, there is considerable diversity and apparent redundancy in the components involved in respiration. Here, we identify a unique c-type cytochrome (cN ) that is broadly distributed among commensal Neisseria, but absent in the pathogenic species. Specifically, cN supports nitrite reduction in N. gonorrhoeae strains lacking the cytochromes c5 and CcoP established to be critical to NirK nitrite reductase activity. The c-type cytochrome domain of cN shares high sequence identity with those localized c-terminally in c5 and CcoP and all three domains were shown to donate electrons directly to NirK. Thus, we identify three distinct but paralogous proteins that donate electrons to NirK. We also demonstrate functionality for a N. weaverii NirK variant with a C-terminal c-type heme extension. Taken together, modular domain distribution and gene rearrangement events related to these respiratory electron carriers within Neisseria are concordant with major transitions in the macroevolutionary history of the genus. This work emphasizes the importance of denitrification as a selectable trait that may influence speciation and adaptive diversification within this largely host-restricted bacterial genus.
Collapse
Affiliation(s)
- Finn Erik Aas
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| | - Xi Li
- Department of Biology, University of York, York, YO10 5DD, UK
| | - James Edwards
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Monica Hongrø Solbakken
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway.,Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, N-0316, Norway
| | - Manu Deeudom
- Department of Biology, University of York, York, YO10 5DD, UK.,Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Åshild Vik
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| | - James Moir
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Michael Koomey
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway.,Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, N-0316, Norway
| | - Marina Aspholm
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| |
Collapse
|
9
|
Nóbrega CS, Matzapetakis M, Pauleta SR. ¹H, ¹³C and ¹⁵N resonance assignment of the soluble form of the lipid-modified Azurin from Neisseria gonorrhoeae. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:311-314. [PMID: 23070845 DOI: 10.1007/s12104-012-9434-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/06/2012] [Indexed: 06/01/2023]
Abstract
Lipid-modified azurin (Laz) from Neisseria gonorrhoeae is a type 1 copper protein proposed to be the electron donor to several enzymes involved in the resistance mechanism to reactive oxygen and nitrogen species. Here we report the backbone and side-chain resonance assignment of Laz in the reduced form, which has been complete at 97%. The predicted secondary structure indicates that this protein belongs to the azurin subfamily of type 1 copper proteins.
Collapse
Affiliation(s)
- Cláudia S Nóbrega
- REQUIMTE-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
10
|
Hopper AC, Li Y, Cole JA. A critical role for the cccA gene product, cytochrome c2, in diverting electrons from aerobic respiration to denitrification in Neisseria gonorrhoeae. J Bacteriol 2013; 195:2518-29. [PMID: 23543713 PMCID: PMC3676072 DOI: 10.1128/jb.02300-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/14/2013] [Indexed: 01/22/2023] Open
Abstract
Neisseria gonorrhoeae is a microaerophile that, when oxygen availability is limited, supplements aerobic respiration with a truncated denitrification pathway, nitrite reduction to nitrous oxide. We demonstrate that the cccA gene of Neisseria gonorrhoeae strain F62 (accession number NG0292) is expressed, but the product, cytochrome c2, accumulates to only low levels. Nevertheless, a cccA mutant reduced nitrite at about half the rate of the parent strain. We previously reported that cytochromes c4 and c5 transfer electrons to cytochrome oxidase cbb3 by two independent pathways and that the CcoP subunit of cytochrome oxidase cbb3 transfers electrons to nitrite. We show that mutants defective in either cytochrome c4 or c5 also reduce nitrite more slowly than the parent. By combining mutations in cccA (Δc2), cycA (Δc4), cycB (Δc5), and ccoP (ccoP-C368A), we demonstrate that cytochrome c2 is required for electron transfer from cytochrome c4 via the third heme group of CcoP to the nitrite reductase, AniA, and that cytochrome c5 transfers electrons to nitrite reductase by an independent pathway. We propose that cytochrome c2 forms a complex with cytochrome oxidase. If so, the redox state of cytochrome c2 might regulate electron transfer to nitrite or oxygen. However, our data are more consistent with a mechanism in which cytochrome c2 and the CcoQ subunit of cytochrome oxidase form alternative complexes that preferentially catalyze nitrite and oxygen reduction, respectively. Comparison with the much simpler electron transfer pathway for nitrite reduction in the meningococcus provides fascinating insights into niche adaptation within the pathogenic neisseriae.
Collapse
Affiliation(s)
- Amanda C Hopper
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | |
Collapse
|
11
|
Gulati S, Agarwal S, Vasudhev S, Rice PA, Ram S. Properdin is critical for antibody-dependent bactericidal activity against Neisseria gonorrhoeae that recruit C4b-binding protein. THE JOURNAL OF IMMUNOLOGY 2012; 188:3416-25. [PMID: 22368277 DOI: 10.4049/jimmunol.1102746] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gonorrhea, a sexually transmitted disease caused by Neisseria gonorrhoeae, is an important cause of morbidity worldwide. A safe and effective vaccine against gonorrhea is needed because of emerging resistance of gonococci to almost every class of antibiotic. A gonococcal lipooligosaccharide epitope defined by the mAb 2C7 is being evaluated as a candidate for development of an Ab-based vaccine. Immune Abs against N. gonorrhoeae need to overcome several subversive mechanisms whereby gonococcus evades complement, including binding to C4b-binding protein (C4BP; classical pathway inhibitor) and factor H (alternative pathway [AP] inhibitor). The role of AP recruitment and, in particular, properdin in assisting killing of gonococci by specific Abs is the subject of this study. We show that only those gonococcal strains that bind C4BP require properdin for killing by 2C7, whereas strains that do not bind C4BP are efficiently killed by 2C7 even when AP function is blocked. C3 deposition on bacteria mirrored killing. Recruitment of the AP by mAb 2C7, as measured by factor B binding, occurred in a properdin-dependent manner. These findings were confirmed using isogenic mutant strains that differed in their ability to bind to C4BP. Immune human serum that contained bactericidal Abs directed against the 2C7 lipooligosaccharide epitope as well as murine antigonococcal antiserum required functional properdin to kill C4BP-binding strains, but not C4BP-nonbinding strains. Collectively, these data point to an important role for properdin in facilitating immune Ab-mediated complement-dependent killing of gonococcal strains that inhibit the classical pathway by recruiting C4BP.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
12
|
Ray TD, Lewis LA, Gulati S, Rice PA, Ram S. Novel blocking human IgG directed against the pentapeptide repeat motifs of Neisseria meningitidis Lip/H.8 and Laz lipoproteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4881-94. [PMID: 21402895 PMCID: PMC3125605 DOI: 10.4049/jimmunol.1003623] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ab-initiated, complement-dependent killing contributes to host defenses against invasive meningococcal disease. Sera from nonimmunized individuals vary widely in their bactericidal activity against group B meningococci. We show that IgG isolated from select individuals can block killing of group B meningococci by human sera that are otherwise bactericidal. This IgG also reduced the bactericidal efficacy of Abs directed against the group B meningococcal protein vaccine candidates factor H-binding protein currently undergoing clinical trials and Neisserial surface protein A. Immunoblots revealed that the blocking IgG was directed against a meningococcal Ag called H.8. Killing of meningococci in reactions containing bactericidal mAbs and human blocking Abs was restored when binding of blocking Ab to meningococci was inhibited using either synthetic peptides corresponding to H.8 or a nonblocking mAb against H.8. Furthermore, genetic deletion of H.8 from target organisms abrogated blocking. The Fc region of the blocking IgG was required for blocking because F(ab')(2) fragments were ineffective. Blocking required IgG glycosylation because deglycosylation with peptide:N-glycanase eliminated blocking. C4b deposition mediated by an anti-factor H-binding protein mAb was reduced by intact blocking IgG, but not by peptide:N-glycanase-treated blocking IgG, suggesting that blocking resulted from inhibition of classical pathway of complement. In conclusion, we have identified H.8 as a meningococcal target for novel blocking Abs in human serum. Such blocking Abs may reduce the efficacy of select antigroup B meningococcal protein vaccines. We also propose that outer membrane vesicle-containing meningococcal vaccines may be more efficacious if purged of subversive immunogens such as H.8.
Collapse
Affiliation(s)
- Tathagat Dutta Ray
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
13
|
Abstract
Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases.
Collapse
|
14
|
Aspholm M, Aas FE, Harrison OB, Quinn D, Vik Å, Viburiene R, Tønjum T, Moir J, Maiden MCJ, Koomey M. Structural alterations in a component of cytochrome c oxidase and molecular evolution of pathogenic Neisseria in humans. PLoS Pathog 2010; 6:e1001055. [PMID: 20808844 PMCID: PMC2924362 DOI: 10.1371/journal.ppat.1001055] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/21/2010] [Indexed: 12/26/2022] Open
Abstract
Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two rare alterations in the gene encoding the CcoP protein component of cytochrome cbb(3) oxidase that are phylogenetically informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent, microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape within a single host.
Collapse
Affiliation(s)
- Marina Aspholm
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Finn Erik Aas
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | | | - Diana Quinn
- Department of Biology (Area 10), University of York, Heslington, York, United Kingdom
| | - Åshild Vik
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Raimonda Viburiene
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
- Institute of Microbiology, University of Oslo, Oslo, Norway
| | - James Moir
- Department of Biology (Area 10), University of York, Heslington, York, United Kingdom
| | | | - Michael Koomey
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Hopper A, Tovell N, Cole J. A physiologically significant role in nitrite reduction of the CcoP subunit of the cytochrome oxidasecbb3fromNeisseria gonorrhoeae. FEMS Microbiol Lett 2009; 301:232-40. [DOI: 10.1111/j.1574-6968.2009.01824.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Sardiñas G, Climent Y, Rodríguez Y, González S, García D, Cobas K, Caballero E, Pérez Y, Brookes C, Taylor S, Gorringe A, Delgado M, Pajón R, Yero D. Assessment of vaccine potential of the Neisseria-specific protein NMB0938. Vaccine 2009; 27:6910-7. [PMID: 19751688 DOI: 10.1016/j.vaccine.2009.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/19/2009] [Accepted: 09/01/2009] [Indexed: 11/17/2022]
Abstract
The availability of complete genome sequence of Neisseria meningitidis serogroup B strain MC58 and reverse vaccinology has allowed the discovery of several novel antigens. Here, we have explored the potential of N. meningitidis lipoprotein NMB0938 as a vaccine candidate, based on investigation of gene sequence conservation and the antibody response elicited after immunization in mice. This antigen was previously identified by a genome-based approach as an outer membrane lipoprotein unique to the Neisseria genus. The nmb0938 gene was present in all 37 Neisseria isolates analyzed in this study. Based on amino acid sequence identity, 16 unique sequences were identified which clustered into three variants with identities ranging from 92 to 99%, with one cluster represented by the Neisseria lactamica strains. Recombinant protein NMB0938 (rNMB0938) was expressed in Escherichia coli and purified after solubilization of the insoluble fraction. Antisera produced in mice against purified rNMB0938 reacted with a range of meningococcal strains in whole-cell ELISA and western blotting. Using flow cytometry, it was also shown that anti-rNMB0938 antibodies bound to the surface of the homologous meningococcal strain and activated complement deposition. Moreover, antibodies against rNMB0938 elicited complement-mediated killing of meningococcal strains from both sequence variants and conferred passive protection against meningococcal bacteremia in infant rats. According to our results, NMB0938 represents a promising candidate to be included in a vaccine to prevent meningococcal disease.
Collapse
Affiliation(s)
- Gretel Sardiñas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Cubanacan, Habana 10600, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Seib KL, Wu HJ, Kidd SP, Apicella MA, Jennings MP, McEwan AG. Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol Mol Biol Rev 2006; 70:344-61. [PMID: 16760307 PMCID: PMC1489540 DOI: 10.1128/mmbr.00044-05] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neisseria gonorrhoeae is a host-adapted pathogen that colonizes primarily the human genitourinary tract. This bacterium encounters reactive oxygen and reactive nitrogen species as a consequence of localized inflammatory responses in the urethra of males and endocervix of females and also of the activity of commensal lactobacilli in the vaginal flora. This review describes recent advances in the understanding of defense systems against oxidative stress in N. gonorrhoeae and shows that while some of its defenses have similarities to the paradigm established with Escherichia coli, there are also some key differences. These differences include the presence of a defense system against superoxide based on manganese ions and a glutathione-dependent system for defense against nitric oxide which is under the control of a novel MerR-like transcriptional regulator. An understanding of the defenses against oxidative stress in N. gonorrhoeae and their regulation may provide new insights into the ways in which this bacterium survives challenges from polymorphonuclear leukocytes and urogenital epithelial cells.
Collapse
Affiliation(s)
- Kate L Seib
- The School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Wu HJ, Seib KL, Edwards JL, Apicella MA, McEwan AG, Jennings MP. Azurin of pathogenic Neisseria spp. is involved in defense against hydrogen peroxide and survival within cervical epithelial cells. Infect Immun 2006; 73:8444-8. [PMID: 16299348 PMCID: PMC1307039 DOI: 10.1128/iai.73.12.8444-8448.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laz, a lipid-modified azurin of the human pathogens Neisseria gonorrhoeae and Neisseria meningitidis, is involved in defense against oxidative stress and copper toxicity; laz mutant strains are hypersensitive to hydrogen peroxide and copper. The N. gonorrhoeae laz mutant also has decreased survival in an ex vivo primary human ectocervical epithelial assay.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- The School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Yamada T, Fialho AM, Punj V, Bratescu L, Gupta TKD, Chakrabarty AM. Internalization of bacterial redox protein azurin in mammalian cells: entry domain and specificity. Cell Microbiol 2005; 7:1418-31. [PMID: 16153242 DOI: 10.1111/j.1462-5822.2005.00567.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Azurin is a member of a group of copper-containing redox proteins called cupredoxins. Different cupredoxins are produced by different aerobic bacteria as agents of electron transfer. Recently, we demonstrated that azurin enters into J774 and several types of cancer cells leading to the induction of apoptosis. We now demonstrate that azurin is internalized in J774 or cancer cells in a temperature-dependent manner. Azurin shows preferential entry into cancer compared with normal cells. An 28-amino-acid fragment of azurin fused to glutathione S-transferase (GST) or the green fluorescent protein (GFP), which are incapable of entering mammalian cells by themselves, can be internalized in J774 or human melanoma or breast cancer cells at 37 degrees C, but not at 4 degrees C. Competition experiments as well as studies with inhibitors such as cytochalasin D suggest that azurin may enter cells, at least in part, by a receptor-mediated endocytic process. The 28-amino-acid peptide therefore acts as a potential protein transduction domain (PTD), and can be used as a vehicle to transport cargo proteins such as GST and GST-GFP fusion proteins. Another member of the cupredoxin family, rusticyanin, that has also been shown to enter J774 and human cancer cells and exert cytotoxicity, does not demonstrate preferential entry for cancer cells and lacks the structural features characteristic of the azurin PTD.
Collapse
Affiliation(s)
- Tohru Yamada
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, 60612, USA
| | | | | | | | | | | |
Collapse
|
20
|
Fisette PL, Ram S, Andersen JM, Guo W, Ingalls RR. The Lip lipoprotein from Neisseria gonorrhoeae stimulates cytokine release and NF-kappaB activation in epithelial cells in a Toll-like receptor 2-dependent manner. J Biol Chem 2003; 278:46252-60. [PMID: 12966099 DOI: 10.1074/jbc.m306587200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human pathogen Neisseria gonorrhoeae produces an array of diseases ranging from urethritis to disseminated gonococcal infections. Early events in the establishment of infection involve interactions between N. gonorrhoeae and the mucosal epithelium, which leads to the local release of inflammatory mediators. Because of this, it is important to identify the bacterial virulence factors and host cell components that contribute to inflammation. Using a series of column chromatography steps, we purified a lipoprotein from N. gonorrhoeae strain F62 called Lip. This outer membrane antigen expresses a conserved epitope known as H.8, which is common to all pathogenic Neisseria species. We found the purified preparation of Lip to be a potent inflammatory mediator capable of inducing the release of the chemokine interleukin (IL)-8 and the cytokine IL-6 by immortalized human endocervical epithelial cells and the production of IL-8 and the activation of the transcription factor NF-kappaB by human embryonic kidney 293 (HEK) cells transfected with toll-like receptor (TLR) 2. Upon removal of Lip by immunoprecipitation, the ability of the H.8/Lip preparation to stimulate NF-kappaB activation was abolished. In addition to TLR2, the activation of NF-kappaB by H.8/Lip in HEK cells was enhanced upon coexpression of TLR1 but not TLR6. These observations provide evidence that Lip is capable of inducing the release of inflammatory mediators from epithelial cells in a TLR2-dependent manner.
Collapse
Affiliation(s)
- Philip L Fisette
- Division of Infectious Diseases, Department of Physiology and Biophysics, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
21
|
De Gaspari EN. Production and characterization of a new monoclonal antibody against Neisseria meningitidis: study of the cross-reactivity with different bacterial genera. Hybridoma (Larchmt) 2000; 19:445-53. [PMID: 11152396 DOI: 10.1089/027245700750053931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have generated a hybridoma cell line which produces an 8C7Br1 clone of the IgM antibody isotype. It recognizes the 50-, 65-, and 60-kDa antigens and is reactive with strains of N. meningitidis in the 98% of local Neisseria genera by Dot-ELISA assays. Two percent of the strains of N. meningitidis B do not present reactivity with the 8C7Br1 monoclonal antibody (MAb). The antibody reacted against N. meningitidis of serogroups A, B, C, X, Y, Z, and different serotypes and subtypes of N. meningitidis B and C by means of Dot-ELISA and Immunoblot. It cross-reacted with Neisseria gonorrhoeae, Neisseria lactamica, Haemophilus influenzae type b, Escherichia coli, Salmonella typhimurium, Salmonella typhi, Shigella flexneri, Bordetella pertussis, and Bacillus subtilis. The 8C7Br1 MAb reacted with the 65-kDa protein present in the prototype meningococcal strains B:16:B6(B2a:P1.5.2) and 2996 (B2b:P1.5.2). In H. influenzae type b, E. coli and B. subtilis, the MAb recognized the protein of 60, 65, and 70 kDa, respectively. FACS analysis showed that 8C7Brl MAb could recognize the 50-kDa protein on the surface of N. meningitidis homologous (B:4:P1.9) strain. These results, together with the bactericidal activity of 8C7Br1, and an experiment of passive protection in mice, demonstrated the potential importance of the cross-reactive protein as a candidate antigen for N. meningitidis B vaccine composition.
Collapse
Affiliation(s)
- E N De Gaspari
- Immunology Section, Adolfo Lutz Institute, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Plante M, Cadieux N, Rioux CR, Hamel J, Brodeur BR, Martin D. Antigenic and molecular conservation of the gonococcal NspA protein. Infect Immun 1999; 67:2855-61. [PMID: 10338491 PMCID: PMC96592 DOI: 10.1128/iai.67.6.2855-2861.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1998] [Accepted: 03/15/1999] [Indexed: 11/20/2022] Open
Abstract
A low-molecular-weight protein named NspA (neisserial surface protein A) was recently identified in the outer membrane of all Neisseria meningitidis strains tested. Antibodies directed against this protein were shown to protect mice against an experimental meningococcal infection. Hybridization experiments clearly demonstrated that the nspA gene was also present in the genomes of the 15 Neisseria gonorrhoeae strains tested. Cloning and sequencing of the nspA gene of N. gonorrhoeae B2 revealed an open reading frame of 525 nucleotides coding for a polypeptide of 174 amino acid residues, with a calculated molecular weight of 18,316 and a pI of 10.21. Comparison of the predicted amino acid sequence of the NspA polypeptides from the gonococcal strains B2 and FA1090, together with that of the meningococcal strain 608B, revealed an identity of 93%, suggesting that the NspA protein is highly conserved among pathogenic Neisseria strains. The level of identity rose to 98% when only the two gonococcal predicted NspA polypeptides were compared. To evaluate the level of antigenic conservation of the gonococcal NspA protein, monoclonal antibodies (MAbs) were generated. Four of the seven NspA-specific MAbs described in this report recognized their corresponding epitope in 100% of the 51 N. gonorrhoeae strains tested. Radioimmunobinding assays clearly indicated that the gonococcal NspA protein is exposed at the surface of intact cells.
Collapse
Affiliation(s)
- M Plante
- Unité de Recherche en Vaccinologie, Centre Hospitalier Universitaire de Québec et Université Laval, Ste-Foy, Québec, Canada G1V 4G2
| | | | | | | | | | | |
Collapse
|
23
|
Haake DA, Martinich C, Summers TA, Shang ES, Pruetz JD, McCoy AM, Mazel MK, Bolin CA. Characterization of leptospiral outer membrane lipoprotein LipL36: downregulation associated with late-log-phase growth and mammalian infection. Infect Immun 1998; 66:1579-87. [PMID: 9529084 PMCID: PMC108091 DOI: 10.1128/iai.66.4.1579-1587.1998] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/1997] [Accepted: 01/21/1998] [Indexed: 02/07/2023] Open
Abstract
We report the cloning of the gene encoding a 36-kDa leptospiral outer membrane lipoprotein, designated LipL36. We obtained the N-terminal amino acid sequence of a staphylococcal V8 proteolytic-digest fragment in order to design an oligonucleotide probe. A Lambda-Zap II library containing EcoRI fragments of Leptospira kirschneri DNA was screened, and a 2.3-kb DNA fragment which contained the entire structural lipL36 gene was identified. Several lines of evidence indicate that LipL36 is lipid modified in a manner similar to that of LipL41, a leptospiral outer membrane lipoprotein we described in a previous study (E. S. Shang, T. A. Summers, and D. A. Haake, Infect. Immun. 64:2322-2330, 1996). The deduced amino acid sequence of LipL36 would constitute a 364-amino-acid polypeptide with a 20-amino-acid signal peptide, followed by an L-X-Y-C lipoprotein signal peptidase cleavage site. LipL36 is solubilized by Triton X-114 extraction of L. kirschneri; phase separation results in partitioning of LipL36 exclusively into the hydrophobic, detergent phase. LipL36 is intrinsically labeled during incubation of L. kirschneri in media containing [3H]palmitate. Processing of LipL36 is inhibited by globomycin, a selective inhibitor of lipoprotein signal peptidase. After processing, LipL36 is exported to the outer membrane along with LipL41 and lipopolysaccharide. Unlike LipL41, there appears to be differential expression of LipL36. In early-log-phase cultures, LipL36 is one of the most abundant L. kirschneri proteins. However, LipL36 levels drop considerably beginning in mid-log phase. LipL36 expression in vivo was evaluated by examining the humoral immune response to leptospiral antigens in the hamster model of leptospirosis. Hamsters surviving challenge with culture-adapted virulent L. kirschneri generate a strong antibody response to LipL36. In contrast, sera from hamsters surviving challenge with host-adapted L. kirschneri do not recognize LipL36. These findings suggest that LipL36 expression is downregulated during mammalian infection, providing a marker for studying the mechanisms by which pathogenic Leptospira species adapt to the host environment.
Collapse
Affiliation(s)
- D A Haake
- Division of Infectious Diseases, West Los Angeles Veterans Affairs Medical Center, California 90073, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gunn JS, Alpuche-Aranda CM, Loomis WP, Belden WJ, Miller SI. Characterization of the Salmonella typhimurium pagC/pagD chromosomal region. J Bacteriol 1995; 177:5040-7. [PMID: 7665482 PMCID: PMC177282 DOI: 10.1128/jb.177.17.5040-5047.1995] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The PhoP/PhoQ two-component system regulates Salmonella typhimurium genes that are essential to bacterial virulence and survival within macrophages. The best characterized of these PhoP-activated genes (pag) is pagC, which encodes a 188-amino-acid envelope protein (W. S. Pulkkinen and S. I. Miller, J. Bacteriol. 173:86-93, 1991). We here report the identification of four genes (pagD, envE, msgA, and envF) located 5' to pagC. Each gene is transcribed from its own promoter, two of which (msgA and pagD) were defined by primer extension analysis. Three of these genes (pagD, envE, and envF) are predicted to encode envelope proteins. The pagD gene is transcribed in a direction opposite from that of and adjacent to pagC and is positively regulated by PhoP/PhoQ. Transposon insertions within pagD and msgA attenuate bacterial virulence and survival within macrophages; however, deletion of pagD has no effect on virulence. The product of the envF gene is predicted to be a lipoprotein on the basis of the presence of a consensus lipid attachment site. The low G + C content of these genes and the homology of msgA to Shigella plasmid DNA suggest that this region may have been acquired by horizontal transmission.
Collapse
Affiliation(s)
- J S Gunn
- Infectious Disease Unit, Massachusetts General Hospital, Boston, USA
| | | | | | | | | |
Collapse
|
25
|
Adimora AA, Sparling PF, Cohen MS. VACCINES FOR CLASSIC SEXUALLY TRANSMITTED DISEASES. Infect Dis Clin North Am 1994. [DOI: 10.1016/s0891-5520(20)30630-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Affiliation(s)
- T F Meyer
- Max-Planck-Institut für Biologie, Abt. Infektionsbiologie, Tübingen, Germany
| | | | | |
Collapse
|
27
|
Hoehn GT, Clark VL. The major anaerobically induced outer membrane protein of Neisseria gonorrhoeae, Pan 1, is a lipoprotein. Infect Immun 1992; 60:4704-8. [PMID: 1398981 PMCID: PMC258221 DOI: 10.1128/iai.60.11.4704-4708.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pan 1 is an acidic outer membrane protein of Neisseria gonorrhoeae that is expressed only when gonococci are grown anaerobically. On silver-stained sodium dodecyl sulfate-polyacrylamide gels, Pan 1 migrates as an intense but diffuse 54-kDa protein. The deduced amino acid sequence of Pan 1 from the aniA (anaerobically induced protein) open reading frame reveals a lipoprotein consensus sequence, Ala-Leu-Ala-Ala-Cys, and a processed molecular mass of 39 kDa. Furthermore, there is strong homology at the N terminus and C terminus of Pan 1 to the termini of the gonococcal outer membrane lipoproteins Lip and Laz. [3H]palmitic acid labeling of gonococci grown under oxygen-limited conditions demonstrated specific incorporation of label into Pan 1, suggesting further that Pan 1 is a lipoprotein.
Collapse
Affiliation(s)
- G T Hoehn
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, New York 14642
| | | |
Collapse
|
28
|
Spinola SM, Griffiths GE, Bogdan J, Menegus MA. Characterization of an 18,000-molecular-weight outer membrane protein of Haemophilus ducreyi that contains a conserved surface-exposed epitope. Infect Immun 1992; 60:385-91. [PMID: 1370430 PMCID: PMC257640 DOI: 10.1128/iai.60.2.385-391.1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of antigenically conserved surface components of Haemophilus ducreyi may facilitate the development of reagents to diagnose and prevent chancroid. A hybridoma derived from a mouse immunized with nontypeable Haemophilus influenzae produced a monoclonal antibody (MAb), designated 3B9, that bound to 35 of 35 H. ducreyi strains isolated from diverse geographic regions. The MAb 3B9 bound to a non-heat-modifiable H. ducreyi outer membrane protein (OMP) whose apparent molecular weight was 18,000 (the 18K OMP), and the 3B9 epitope did not phase vary at a rate of greater than 10(-3) in H. ducreyi. In immunoelectron microscopy, the 3B9 epitope was surface exposed, and there was intrastrain and interstrain variability in the amount of 3B9 labelling of whole cells. The MAb 3B9 cross-reacted with many species of the family Pasteurellaceae and bound to the 16.6K peptidoglycan-associated lipoprotein (P6 or PAL) of H. influenzae. Unlike P6, the 18K OMP did not copurify with peptidoglycan. In Western blots (immunoblots), five of seven serum samples obtained from patients with chancroid and four of five serum samples obtained from patients with other genital ulcer diseases at the time of presentation contained antibodies that bound to the 18K OMP. In a competition enzyme-linked immunosorbent assay, four of these serum samples inhibited the binding of 3B9 to H. ducreyi by more than 50%. We conclude that members of Pasteurellaceae expressed a conserved epitope on OMPs that sometimes had different physical characteristics. Patients with chancroid usually have antibodies to the 18K OMP and the 3B9 epitope that may have resulted from infection with H. ducreyi or previous exposure to other Haemophilus or Actinobacillus sp. strains.
Collapse
Affiliation(s)
- S M Spinola
- Department of Medicine, School of Medicine, State University of New York, Buffalo 14215
| | | | | | | |
Collapse
|
29
|
Engleberg NC, Howe DC, Rogers JE, Arroyo J, Eisenstein BI. Characterization of a Legionella pneumophila gene encoding a lipoprotein antigen. Mol Microbiol 1991; 5:2021-9. [PMID: 1766377 DOI: 10.1111/j.1365-2958.1991.tb00824.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A prominent 19 kDa surface antigen of Legionella pneumophila, cloned in Escherichia coli, was found to be intimately associated with peptidoglycan. The DNA region encoding this antigen was mapped on an 11.9 kb plasmid by means of deletion analysis and transposon mutagenesis. PhoA+ gene fusions, gene-rated by TnphoA insertions into this region, confirmed the presence of a gene encoding a secreted protein. PhoA+ transposon insertions were also associated with loss of the 19 kDa antigen in immunoassays using a monoclonal antibody (mAb1E9) and the replacement of the 19 kDa antigen with larger fusion proteins in immunoblots using Legionella immune serum. A 1540bp PstI fragment carrying the gene was sequenced, and the open reading frame encoding the antigen was identified. The gene encodes a polypeptide 176 amino acid residues long and 18913Da in size. The presence of a signal sequence of 22 amino acids with a consensus sequence for cleavage by signal peptidase II indicates that the antigen is a lipoprotein, and striking similarity with peptidoglycan-associated lipoproteins (PALs) from E. coli (51% amino acid homology) and Haemophilus influenzae (55% homology) is noted. We conclude that the 19kDa antigen of L. pneumophila is the structural equivalent of the PAL found in other Gram-negative species and suggest that its post-translational acylation may explain its potency as an immunogen.
Collapse
Affiliation(s)
- N C Engleberg
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | | | | | |
Collapse
|
30
|
Hoehn GT, Clark VL. Distribution of a protein antigenically related to the major anaerobically induced gonococcal outer membrane protein among other Neisseria species. Infect Immun 1990; 58:3929-33. [PMID: 2123827 PMCID: PMC313757 DOI: 10.1128/iai.58.12.3929-3933.1990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Pan 1 protein of Neisseria gonorrhoeae is a novel 54-kDa outer membrane protein expressed only when gonococci are grown in the absence of oxygen. It is a major antigen recognized by sera from patients with gonococcal infection. We raised mouse monospecific polyclonal antiserum to gel-purified Pan 1 from gonococcal strain F62. The antiserum was broadly cross-reactive among gonococcal strains; all strains tested reacted in immunoblot analysis proportionate to the amount of Pan 1 visible in silver-stained sodium dodecyl sulfate (SDS)-polyacrylamide gels. In immunoblot experiments, N. lactamica and N. cinerea reacted very strongly to the anti-Pan 1 antiserum, whereas N. sicca, N. flava, and N. mucosa did not react at all. The other commensals tested, N. subflava and N. perflava, exhibited only a minor reaction. These results correlated with the apparent amount of Pan 1 seen on SDS-polyacrylamide gels of outer membranes. SDS-polyacrylamide gel analysis of six meningococcal strains revealed no visible anaerobically induced outer membrane proteins, and the subsequent immunoblots showed only slight or no reaction to the anti-Pan 1 antibody. In the four meningococcal strains that did react slightly with the antiserum, a Pan 1-like protein was seen only in anaerobically grown cells. Thus, meningococci did not express Pan 1 at levels comparable to that found in gonococci; however, when Pan 1 was expressed in meningococcal strains, it was oxygen regulated. This is the first example of a protein found in the gonococcal outer membrane that, under identical growth conditions, is not expressed at similar levels in the meningococcus.
Collapse
Affiliation(s)
- G T Hoehn
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, New York 14642
| | | |
Collapse
|
31
|
Affiliation(s)
- G F Brooks
- Department of Laboratory Medicine, University of California, San Francisco 94143
| | | |
Collapse
|
32
|
Affiliation(s)
- E C Tramont
- Department of Bacterial Diseases, Walter Reed Army Institute of Research, Washington, DC 20307-5001
| |
Collapse
|