1
|
Urrea-Quezada A, Balmaceda-Baca R, Garibay A, Hernández J, Valenzuela O. Serum IgG Responses to gp15 and gp40 Protein-Derived Synthetic Peptides From Cryptosporidium parvum. Front Cell Infect Microbiol 2022; 11:810887. [PMID: 35127561 PMCID: PMC8807513 DOI: 10.3389/fcimb.2021.810887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Cryptosporidium spp. are responsible for moderate to severe diarrhea, mainly in children and immunocompromised patients. Using ELISA, the recognition of synthetic peptides generated from the sequences of the Cryptosporidium parvum gp40 and gp15 proteins by serum IgM and IgG antibodies from patients infected (cases) with Cryptosporidium hominis, C. parvum, and Cryptosporidium canis, and uninfected individuals (controls) was evaluated. A statistically significant difference (p = 0.0025) was found in terms of the recognition of peptides A133 and A32 between cases and controls. Additional studies are necessary to understand the potential of these peptides as vaccine candidates.
Collapse
Affiliation(s)
| | - Ruben Balmaceda-Baca
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | - Adriana Garibay
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Mexico
- *Correspondence: Olivia Valenzuela, ;
| |
Collapse
|
2
|
Egorov AI, Griffin SM, Ward HD, Reilly K, Fout GS, Wade TJ. Application of a salivary immunoassay in a prospective community study of waterborne infections. WATER RESEARCH 2018; 142:289-300. [PMID: 29890477 PMCID: PMC6781621 DOI: 10.1016/j.watres.2018.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 05/10/2023]
Abstract
Quantifying sporadic waterborne infections in community settings can be challenging. Salivary antibody immunoassays are a promising non-invasive tool that can be used in prospective studies of common infections, especially those involving children. This study was conducted in a Massachusetts city, which uses a microbiologically contaminated river as its water source, during summer-early winter periods before and after construction of a new drinking water treatment plant. Monthly saliva samples (7480 samples from 1170 children and 816 adults) were analyzed for immunoglobulin G (IgG) responses to recombinant proteins of Cryptosporidium, one genogroup I (GI) and two GII noroviruses. Immunoconversion was defined as at least four-fold increase in specific antibody responses between two monthly samples with a post-conversion response above a flexible age-dependent cut-off. Episodes of gastroenteritis (diarrhea or vomiting or cramps) were associated with 3.2 (95% confidence limits 1.1; 9.5) adjusted odds ratio (aOR) of immunoconversion to Cryptosporidium; episodes of combined diarrhea and vomiting symptoms were associated with 3.5 (0.8; 15.0) and 4.6 (1.7; 12.6) aORs of an immunoconversion to GI and GII noroviruses, respectively. Swimming in natural water bodies or chlorinated pools was associated with 2.3 (0.4; 15.4) and 4.9 (1.6; 15.5) aORs of immunoconversion to Cryptosporidium, respectively. In a subset of study participants who did not use home water filters, consumption of at least some amount of non-boiled tap water reported in a monthly recall survey was associated with 11.1 (1.2; 100.0) and 0.6 (0.1; 2.5) aORs of immunoconversion to Cryptosporidium before and after the new water treatment plant construction, respectively. Among individuals who used home water filters, associations between non-boiled tap water consumption and Cryptosporidium immunoconversion were not significant before and after new plant construction with aORs of 0.8 (0.2; 3.3) and 0.3 (0.1; 1.6), respectively. The interaction effect of study phase and non-boiled tap water consumption on Cryptosporidium immunoconversions was statistically significant in the entire study population with aOR of 5.4 (1.1; 25.6). This was the first study that has used a salivary antibody immunoassay to demonstrate significant associations between gastrointestinal symptoms and Cryptosporidium and norovirus infections, and between water-related exposures and Cryptosporidium infections.
Collapse
Affiliation(s)
- Andrey I Egorov
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, RTP, NC, USA.
| | - Shannon M Griffin
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Dept. of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Kevin Reilly
- EPA Region 1 (New England), United States Environmental Protection Agency, Boston, MA, USA
| | - G Shay Fout
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Timothy J Wade
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, RTP, NC, USA
| |
Collapse
|
3
|
Ryan U, Zahedi A, Paparini A. Cryptosporidium in humans and animals-a one health approach to prophylaxis. Parasite Immunol 2017; 38:535-47. [PMID: 27454991 DOI: 10.1111/pim.12350] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/05/2016] [Indexed: 01/13/2023]
Abstract
Cryptosporidium is a major cause of moderate-to-severe diarrhoea in humans worldwide, second only to rotavirus. Due to the wide host range and environmental persistence of this parasite, cryptosporidiosis can be zoonotic and associated with foodborne and waterborne outbreaks. Currently, 31 species are recognized as valid, and of these, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of infections in humans. The immune status of the host, both innate and adaptive immunity, has a major impact on the severity of the disease and its prognosis. Immunocompetent individuals typically experience self-limiting diarrhoea and transient gastroenteritis lasting up to 2 weeks and recover without treatment, suggesting an efficient host antiparasite immune response. Immunocompromised individuals can suffer from intractable diarrhoea, which can be fatal. Effective drug treatments and vaccines are not yet available. As a result of this, the close cooperation and interaction between veterinarians, health physicians, environmental managers and public health operators is essential to properly control this disease. This review focuses on a One Health approach to prophylaxis, including the importance of understanding transmission routes for zoonotic Cryptosporidium species, improved sanitation and better risk management, improved detection, diagnosis and treatment and the prospect of an effective anticryptosporidial vaccine.
Collapse
Affiliation(s)
- U Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia.
| | - A Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - A Paparini
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| |
Collapse
|
4
|
Haserick JR, Klein JA, Costello CE, Samuelson J. Cryptosporidium parvum vaccine candidates are incompletely modified with O-linked-N-acetylgalactosamine or contain N-terminal N-myristate and S-palmitate. PLoS One 2017; 12:e0182395. [PMID: 28792526 PMCID: PMC5549699 DOI: 10.1371/journal.pone.0182395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022] Open
Abstract
Cryptosporidium parvum (studied here) and Cryptosporidium hominis are important causes of diarrhea in infants and immunosuppressed persons. C. parvum vaccine candidates, which are on the surface of sporozoites, include glycoproteins with Ser- and Thr-rich domains (Gp15, Gp40, and Gp900) and a low complexity, acidic protein (Cp23). Here we used mass spectrometry to determine that O-linked GalNAc is present in dense arrays on a glycopeptide with consecutive Ser derived from Gp40 and on glycopeptides with consecutive Thr derived from Gp20, a novel C. parvum glycoprotein with a formula weight of ~20 kDa. In contrast, the occupied Ser or Thr residues in glycopeptides from Gp15 and Gp900 are isolated from one another. Gly at the N-terminus of Cp23 is N-myristoylated, while Cys, the second amino acid, is S-palmitoylated. In summary, C. parvum O-GalNAc transferases, which are homologs of host enzymes, densely modify arrays of Ser or Thr, as well as isolated Ser and Thr residues on C. parvum vaccine candidates. The N-terminus of an immunodominant antigen has lipid modifications similar to those of host cells and other apicomplexan parasites. Mass spectrometric demonstration here of glycopeptides with O-glycans complements previous identification C. parvum O-GalNAc transferases, lectin binding to vaccine candidates, and human and mouse antibodies binding to glycopeptides. The significance of these post-translational modifications is discussed with regards to the function of these proteins and the design of serological tests and vaccines.
Collapse
Affiliation(s)
- John R. Haserick
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joshua A. Klein
- Program for Bioinformatics, Boston University, Boston, Massachusetts, United States of America
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Murugesan M, Ganesan SK, Ajjampur SS. Cryptosporidiosis in children in the Indian subcontinent. Trop Parasitol 2017; 7:18-28. [PMID: 28459011 PMCID: PMC5369269 DOI: 10.4103/tp.tp_2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cryptosporidiosis is a leading cause of diarrheal disease among children under two in developing countries. Previous estimates have shown a high burden of cryptosporidial diarrhea in children from Sub-Saharan Africa and South Asia. Asymptomatic cryptosporidial infections which go undetected and untreated have been shown to result in significant malnutrition. In this review, we carried out a literature search of studies published on cryptosporidiosis in children in the Indian subcontinent from 1983 to 2016. Of the 154 publications identified, 54 were included for final analysis with both hospital-based and community-based studies. There were wide variations in reported prevalence rates from hospital studies and highlight the need to be carry out these studies with uniform sampling and molecular tools for detection, especially in countries with a dearth of information. Community-based studies, however, showed similarities in spite of differences in when (the late 1990s up until recently) and where (South India or Bangladesh) they were conducted. When more sensitive detection methods were used, cryptosporidial diarrhea accounted for 7%–9% of all diarrhea episodes and 20%–30% of children in these cohorts experienced at least one cryptosporidial diarrheal episode. High rates of asymptomatic infections with increased detection by serology and multiple infections (symptomatic and asymptomatic) were also documented in all cohorts. This overview brings to light the high burden of disease associated with cryptosporidiosis in children in the subcontinent and the gaps in knowledge to be addressed.
Collapse
Affiliation(s)
- Malathi Murugesan
- Division of Gastrointestinal Sciences, Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - Santhosh Kumar Ganesan
- Division of Gastrointestinal Sciences, Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sitara Sr Ajjampur
- Division of Gastrointestinal Sciences, Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Haserick JR, Leon DR, Samuelson J, Costello CE. Asparagine-Linked Glycans of Cryptosporidium parvum Contain a Single Long Arm, Are Barely Processed in the Endoplasmic Reticulum (ER) or Golgi, and Show a Strong Bias for Sites with Threonine. Mol Cell Proteomics 2017; 16:S42-S53. [PMID: 28179475 PMCID: PMC5393390 DOI: 10.1074/mcp.m116.066035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/05/2017] [Indexed: 12/27/2022] Open
Abstract
Cryptosporidium parvum causes severe diarrhea in infants in developing countries and in immunosuppressed persons, including those with AIDS. We are interested in the Asn-linked glycans (N-glycans) of C. parvum, because (1) the N-glycan precursor is predicted to contain five mannose and two glucose residues on a single long arm versus nine mannose and three glucose residues on the three-armed structure common in host N-glycans, (2) C. parvum is a rare eukaryote that lacks the machinery for N-glycan-dependent quality control of protein folding in the lumen of the Endoplasmic Reticulum (ER), and (3) ER and Golgi mannosidases, as well as glycosyltransferases that build complex N-glycans, are absent from the predicted proteome. The C. parvum N-glycans reported here, which were determined using a combination of collision-induced dissociation and electronic excitation dissociation, contain a single, unprocessed mannose arm ± terminal glucose on the trimannosyl chitobiose core. Upon nanoUPLC-MS/MS separation and analysis of the C. parvum tryptic peptides, the total ion and extracted oxonium ion chromatograms delineated 32 peptides with occupied N-glycan sites; these were derived from 16 glycoproteins. Although the number of potential N-glycan sites with Thr (NxT) is only about twice that with Ser (NxS), almost 90% of the occupied N-glycan sites contain NxT. The two most abundant C. parvum proteins modified with N-glycans were an immunodominant antigen on the surface of sporozoites (gp900) and the possible oocyst wall protein 1 (POWP1). Seven other glycoproteins with N-glycans were unique to C. parvum; five shared common ancestry with other apicomplexans; two glycoproteins shared common ancestry with many organisms. In summary, C. parvum N-glycans are remarkable for the absence of ER and Golgi modification and for the strong bias toward occupancy of N-glycan motifs containing Thr.
Collapse
Affiliation(s)
- John R Haserick
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
- §Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Deborah R Leon
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | - John Samuelson
- §Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Catherine E Costello
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
| |
Collapse
|
7
|
Exum NG, Pisanic N, Granger DA, Schwab KJ, Detrick B, Kosek M, Egorov AI, Griffin SM, Heaney CD. Use of Pathogen-Specific Antibody Biomarkers to Estimate Waterborne Infections in Population-Based Settings. Curr Environ Health Rep 2016; 3:322-34. [PMID: 27352014 PMCID: PMC5424709 DOI: 10.1007/s40572-016-0096-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review discusses the utility of pathogen-specific antibody biomarkers for improving estimates of the population burden of waterborne infections, assessing the fraction of infections that can be prevented by specific water treatments, and understanding transmission routes and the natural history and ecology of disease in different populations (including asymptomatic infection rates). RECENT FINDINGS We review recent literature on the application of pathogen-specific antibody response data to estimate incidence and prevalence of acute infections and their utility to assess the contributions of waterborne transmission pathways. Advantages and technical challenges associated with the use of serum versus minimally invasive salivary antibody biomarkers in cross-sectional and prospective surveys are discussed. We highlight recent advances and challenges and outline future directions for research, development, and application of antibody-based and other immunological biomarkers of waterborne infections.
Collapse
Affiliation(s)
- Natalie G Exum
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nora Pisanic
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Acute and Chronic Care, School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kellogg J Schwab
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Barbara Detrick
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Margaret Kosek
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrey I Egorov
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shannon M Griffin
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Christopher D Heaney
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Room W7033B, 615 North Wolfe Street, Baltimore, Maryland, 21205-2179, USA.
| |
Collapse
|
8
|
The Global Burden of Pediatric Cryptosporidium Infections. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Lazarus RP, Ajjampur SSR, Sarkar R, Geetha JC, Prabakaran AD, Velusamy V, Naumova EN, Ward HD, Kang G. Serum Anti-Cryptosporidial gp15 Antibodies in Mothers and Children Less than 2 Years of Age in India. Am J Trop Med Hyg 2015; 93:931-938. [PMID: 26304924 PMCID: PMC4703283 DOI: 10.4269/ajtmh.15-0044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/22/2015] [Indexed: 11/27/2022] Open
Abstract
Little is known about the type and longevity of the humoral response to cryptosporidial infections in developing countries. We evaluated serum antibody response to Cryptosporidium gp15 in 150 sets of maternal, preweaning and postinfection/end-of-follow-up sera from children followed up to 2 years of age to determine the influence of maternal and preweaning serological status on childhood cryptosporidiosis. Fifty two percent (N = 78) of mothers and 20% (N = 30) of children were seropositive preweaning. However, most positive preweaning samples from children were collected early in life indicating transplacental transfer and subsequent rapid waning of antibodies. Although 62% (N = 94) of children had a parasitologically confirmed cryptosporidial infection (detected by stool polymerase chain reaction) during the follow-up, only 54% (N = 51) of children were seropositive postinfection. Given there were striking differences in seropositivity depending on when the sample was collected, even though Cryptosporidium was detected in the stool of the majority of the children, this study indicates that antibodies wane rapidly. During follow-up, the acquisition or severity of cryptosporidial infections was not influenced by maternal (P = 0.331 and 0.720, respectively) as well as the preweaning serological status of the child (P = 0.076 and 0.196, respectively).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gagandeep Kang
- *Address correspondence to Gagandeep Kang, Division of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, Tamil Nadu, India. E-mail:
| |
Collapse
|
10
|
Zhang L, Fu Y, Jing W, Xu Q, Zhao W, Feng M, Tachibana H, Sui G, Cheng X. Rapid microfluidic immunoassay for surveillance and diagnosis of Cryptosporidium infection in human immunodeficiency virus-infected patients. BIOMICROFLUIDICS 2015; 9:024114. [PMID: 25945140 PMCID: PMC4401809 DOI: 10.1063/1.4916229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/15/2015] [Indexed: 05/04/2023]
Abstract
Cryptosporidiosis has been reported to be associated with HIV/acquired immune deficiency syndrome, which greatly reduces the quality of life and shortens the life expectancy of HIV-infected patients. In order to properly treat the infected patients, accurate and automatic diagnostic tools need to be developed. In this study, a novel microfluidic immunochip system was presented for the surveillance and the rapid detection of Cryptosporidium infection in 190 HIV-infected patients from Guangxi, China, using the P23 antigen of Cryptosporidium. The procedure of detection can be completed within 10 min with 2 μl sample consumption. The system also was evaluated using the standard ELISA method. Among 190 HIV-infected individuals, the rate of P23 positivity was 13.7%. Seropositivity in HIV-infected individuals was higher in female patients. The seropositivity to P23 was higher in HIV-infected individuals with high viral load, although the difference was statistically insignificant. Significantly higher Cryptosporidium seropositivity was observed in HIV-infected individuals with a CD4(+) T-cell count of <200 cells/μl than in those with ≥200 cells/μl. Our results also demonstrate that a lower CD4(+) T-cell count may reflect an increased accumulated risk for cryptosporidiosis. The detection system was further validated using the standard ELISA method and good correlation between the two methods was found (r = 0.80). Under the same sensitivity, this new microfluidic chip device had a specificity of 98.2%. This developed system may provide a powerful platform for the fast screening of Cryptospordium infection in HIV-infected patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University , Shanghai, China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University , Shanghai, China
| | - Wenwen Jing
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University , Shanghai, China
| | - Qing Xu
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University , Shanghai, China
| | - Wang Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environment Science and Engineering, Fudan University , Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University , Shanghai, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine , Isehara, Kanagawa, Japan
| | | | | |
Collapse
|
11
|
White AC. Cryptosporidiosis (Cryptosporidium Species). MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:3173-3183.e6. [DOI: 10.1016/b978-1-4557-4801-3.00284-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Hagen RM, Loderstaedt U, Frickmann H. An evaluation of the potential use of Cryptosporidium species as agents for deliberate release. J ROY ARMY MED CORPS 2013; 160:289-94. [PMID: 24302120 DOI: 10.1136/jramc-2013-000186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION We evaluated the potential of Cryptosporidium spp. for intentional transmission as a terrorist tactic in asymmetric conflicts in terms of the recognised optimum conditions for biological warfare. METHODS Published and widely accepted criteria regarding the optimum conditions for the success of biological warfare based on experience from passive biological warfare research were applied to hypothetical intentional Cryptosporidium spp. transmission. RESULT The feasibility of the use of Cryptosporidium spp. transmission for terrorist purposes was established. Particularly on tropical deployments with poor hygiene conditions, such attacks might have a good chance of remaining undetected as a deliberate terrorist attack. CONCLUSIONS Intentional transmission should be suspected in cases of sudden outbreaks of cryptosporidiosis, particularly where adequate food and drinking water hygiene precautions are being enforced. Appropriate diagnostic procedures should be available so that the diagnosis is not missed.
Collapse
Affiliation(s)
- Ralf Matthias Hagen
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany
| | - U Loderstaedt
- Department of Clinical Chemistry, University Medical Centre Goettingen, Goettingen, Germany
| | - H Frickmann
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany Institute for Medical Microbiology, Virology and Hygiene, University Hospital of Rostock, Rostock, Germany
| |
Collapse
|
13
|
Sarkar R, Ajjampur SSR, Prabakaran AD, Geetha JC, Sowmyanarayanan TV, Kane A, Duara J, Muliyil J, Balraj V, Naumova EN, Ward H, Kang G. Cryptosporidiosis among children in an endemic semiurban community in southern India: does a protected drinking water source decrease infection? Clin Infect Dis 2013; 57:398-406. [PMID: 23709650 DOI: 10.1093/cid/cit288] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A quasi-experimental study was conducted to determine whether or not a protected water supply (bottled drinking water) could prevent or delay cryptosporidial infections among children residing in an endemic community. METHODS A total of 176 children residing in a semiurban slum area in southern India were enrolled preweaning and received either bottled (n = 90) or municipal (n = 86) drinking water based on residence in specific streets. Weekly surveillance visits were conducted until children reached their second birthday. Stool samples were collected every month and during diarrheal episodes, and were tested for the presence of Cryptosporidium species by polymerase chain reaction. Differences in the incidence of cryptosporidiosis between bottled and municipal water groups were compared using Poisson survival models, and a propensity score model was developed to adjust for the effect of potential confounders. RESULTS A total of 186 episodes of cryptosporidiosis, mostly asymptomatic, were observed in 118 (67%) children during the follow-up period at a rate of 0.59 episodes per child-year. Diarrhea associated with Cryptosporidium species tended to be longer in duration and more severe. Stunting at 6 months was associated with a higher risk of cryptosporidiosis (rate ratio [RR] = 1.40; 95% confidence interval [CI], 1.03-1.91). A higher gastrointestinal disease burden was also seen in children with cryptosporidiosis. Drinking bottled water was not associated with a reduced risk of cryptosporidiosis (adjusted RR = 0.86; 95% CI, .60-1.23). CONCLUSIONS This study documented a high burden of cryptosporidiosis among children in an endemic Indian slum community. The lack of association between drinking bottled water and cryptosporidiosis suggests possible spread from asymptomatically infected individuals involving multiple transmission pathways.
Collapse
Affiliation(s)
- Rajiv Sarkar
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|