1
|
Abu-Raya B, Esser MJ, Nakabembe E, Reiné J, Amaral K, Diks AM, Imede E, Way SS, Harandi AM, Gorringe A, Le Doare K, Halperin SA, Berkowska MA, Sadarangani M. Antibody and B-cell Immune Responses Against Bordetella Pertussis Following Infection and Immunization. J Mol Biol 2023; 435:168344. [PMID: 37926426 DOI: 10.1016/j.jmb.2023.168344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants. Development of new immunization strategies relies on a comprehensive understanding of immune system responses to infection and immunization and how triggering these immune components would ensure protective immunity. In this review, we assess how B cells, and their secretory products, antibodies, respond to B. pertussis infection, current and novel vaccines and highlight similarities and differences in these responses. We first focus on antibody-mediated immunity. We discuss antibody (sub)classes, elaborate on antibody avidity, ability to neutralize pertussis toxin, and summarize different effector functions, i.e. ability to activate complement, promote phagocytosis and activate NK cells. We then discuss challenges and opportunities in studying B-cell immunity. We highlight shared and unique aspects of B-cell and plasma cell responses to infection and immunization, and discuss how responses to novel immunization strategies better resemble those triggered by a natural infection (i.e., by triggering responses in mucosa and production of IgA). With this comprehensive review, we aim to shed some new light on the role of B cells and antibodies in the pertussis immunity to guide new vaccine development.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | - Mirjam J Esser
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eve Nakabembe
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Department of Obstetrics and Gynaecology, Makerere University College of Health Sciences, Upper Mulago Hill Road, Kampala, P.O. Box 7072, Uganda
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Kyle Amaral
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Annieck M Diks
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden ZA 2333, the Netherlands
| | - Esther Imede
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Sing Sing Way
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Ali M Harandi
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Gorringe
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Makerere University-Johns Hopkins University Research Collaboration, MU-JHU, Upper Mulago Hill, Kampala, P.O. Box 23491, Uganda
| | - Scott A Halperin
- Canadian Center for Vaccinology, Departments of Pediatrics and Microbiology and Immunology, Dalhousie University, Izaak Walton Killam Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - Magdalena A Berkowska
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Blanc P, Liu Y, Reveneau N, Cavell B, Gorringe A, Renauld-Mongénie G. The role of bactericidal and opsonic activity in immunity against Bordetella pertussis. Expert Rev Vaccines 2022; 21:1727-1738. [PMID: 36369768 DOI: 10.1080/14760584.2022.2137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Pertussis vaccines have drastically reduced the disease burden in humans since their implementation. Despite their success, pertussis remains an important global public health challenge. Bordetella pertussis resurgence could be a result of greater surveillance combined with improved diagnosis methods, changes in Bordetella pertussis biology, vaccine schedules, and/or coverage. Additionally, mechanisms of protection conferred by acellular pertussis (aP) and whole-cell pertussis (wP) vaccines differ qualitatively. There are no clear immune correlates of protection for pertussis vaccines. Pertussis antigens can induce toxin neutralizing antibodies, block adherence or engage complement mediated phagocytic/bactericidal killing. AREAS COVERED We reviewed the existing evidence on antibody-mediated serum bactericidal and opsonophagocytic activity and discussed the relevance of these functional antibodies in the development of next-generation pertussis vaccines. EXPERT OPINION Current paradigm proposes that wP vaccines may confer greater herd protection than aP vaccines due to their enhanced clearance of bacteria from the nasopharynx in animal models. Functional antibodies may contribute to the reduction of nasal colonization, which differentiates aP and wP vaccines. Understanding the intrinsic differences in protective immune responses elicited by each class of vaccines will help to identify biomarkers that can be used as immunological end points in clinical trials.
Collapse
Affiliation(s)
- Pascal Blanc
- Research & Development, Sanofi, Marcy l'Etoile, France
| | - Yuanqing Liu
- Research & Development, Sanofi, Marcy l'Etoile, France
| | | | - Breeze Cavell
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, UK
| | - Andrew Gorringe
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, UK
| | | |
Collapse
|
3
|
Biselli R, Nisini R, Lista F, Autore A, Lastilla M, De Lorenzo G, Peragallo MS, Stroffolini T, D’Amelio R. A Historical Review of Military Medical Strategies for Fighting Infectious Diseases: From Battlefields to Global Health. Biomedicines 2022; 10:2050. [PMID: 36009598 PMCID: PMC9405556 DOI: 10.3390/biomedicines10082050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
The environmental conditions generated by war and characterized by poverty, undernutrition, stress, difficult access to safe water and food as well as lack of environmental and personal hygiene favor the spread of many infectious diseases. Epidemic typhus, plague, malaria, cholera, typhoid fever, hepatitis, tetanus, and smallpox have nearly constantly accompanied wars, frequently deeply conditioning the outcome of battles/wars more than weapons and military strategy. At the end of the nineteenth century, with the birth of bacteriology, military medical researchers in Germany, the United Kingdom, and France were active in discovering the etiological agents of some diseases and in developing preventive vaccines. Emil von Behring, Ronald Ross and Charles Laveran, who were or served as military physicians, won the first, the second, and the seventh Nobel Prize for Physiology or Medicine for discovering passive anti-diphtheria/tetanus immunotherapy and for identifying mosquito Anopheline as a malaria vector and plasmodium as its etiological agent, respectively. Meanwhile, Major Walter Reed in the United States of America discovered the mosquito vector of yellow fever, thus paving the way for its prevention by vector control. In this work, the military relevance of some vaccine-preventable and non-vaccine-preventable infectious diseases, as well as of biological weapons, and the military contributions to their control will be described. Currently, the civil-military medical collaboration is getting closer and becoming interdependent, from research and development for the prevention of infectious diseases to disasters and emergencies management, as recently demonstrated in Ebola and Zika outbreaks and the COVID-19 pandemic, even with the high biocontainment aeromedical evacuation, in a sort of global health diplomacy.
Collapse
Affiliation(s)
- Roberto Biselli
- Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Florigio Lista
- Dipartimento Scientifico, Policlinico Militare, Comando Logistico dell’Esercito, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Alberto Autore
- Osservatorio Epidemiologico della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Marco Lastilla
- Istituto di Medicina Aerospaziale, Comando Logistico dell’Aeronautica Militare, Viale Piero Gobetti 2, 00185 Roma, Italy
| | - Giuseppe De Lorenzo
- Comando Generale dell’Arma dei Carabinieri, Dipartimento per l’Organizzazione Sanitaria e Veterinaria, Viale Romania 45, 00197 Roma, Italy
| | - Mario Stefano Peragallo
- Centro Studi e Ricerche di Sanità e Veterinaria, Comando Logistico dell’Esercito, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Tommaso Stroffolini
- Dipartimento di Malattie Infettive e Tropicali, Policlinico Umberto I, 00161 Roma, Italy
| | - Raffaele D’Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Roma, Italy
| |
Collapse
|
4
|
Generation of a Universal Human Complement Source by Large-Scale Depletion of IgG and IgM from Pooled Human Plasma. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2414:341-362. [PMID: 34784045 DOI: 10.1007/978-1-0716-1900-1_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Complement is a key component of functional immunological assays used to evaluate vaccine-mediated immunity to a range of bacterial and viral pathogens. However, standardization of these assays is complicated due to the availability of a human complement source that lacks existing antibodies acquired either through vaccination or natural circulation of the pathogen of interest. We have developed a method for depleting both IgG and IgM in 200 mL batches from pooled hirudin-derived human plasma by sequential affinity chromatography using a Protein G Sepharose column followed by POROS™ CaptureSelect™ IgM Affinity resin. The production of large IgG- and IgM-depleted batches of human plasma that retains total hemolytic and alternative pathway activities allows for improved assay standardization and comparison of immune responses in large clinical trials.
Collapse
|
5
|
Bordetella pertussis in School-Age Children, Adolescents and Adults: A Systematic Review of Epidemiology and Mortality in Europe. Infect Dis Ther 2021; 10:2071-2118. [PMID: 34435338 PMCID: PMC8387212 DOI: 10.1007/s40121-021-00520-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Pertussis (whooping cough) epidemics persist globally despite high vaccine coverage among infants and young children. The resurgence of pertussis in high-income countries is partly due to waning vaccine immunity, resulting in a pool of unprotected adolescents and adults. However, pertussis is generally less severe in adolescents and adults, and this difference in presentation means it can often be unrecognised by healthcare professionals, meaning that it is largely under-diagnosed in older populations. A systematic search of MEDLINE, EMBASE and BIOSIS was undertaken to identify studies published between 1 January 1990 and 17 June 2019, with information on pertussis epidemiology and mortality in school-aged children, adolescents and adults in Europe. A formal statistical comparison (e.g. using meta-analyses) was not possible because of the mix of methodologies reported. There were 69 epidemiological studies and 19 mortality studies identified for review. Over the past decade, the reported incidence of notified pertussis cases varied widely between European countries, which is likely associated with differences in surveillance systems, diagnostic techniques and reporting regulations. However, several studies show that pertussis is circulating among adolescents and adults in Europe, and although pertussis-related morbidity and mortality are highest in infants, there is evidence that adults aged > 50 years are at increased risk. For example, in a hospital-based surveillance study in Portugal, between 2000 and 2015, 94% of hospitalised pertussis cases were infants aged < 1 year, with a case fatality rate (CFR) of 0.8%; however, among hospitalised adult cases of pertussis, the CFRs were 11.5% (aged 18–64 years) and 17.4% (aged > 65 years). Very few European countries currently include pertussis boosters for adults in the national immunisation strategy. In addition to increasing pertussis vaccination coverage in adolescents and adults, mitigation strategies in European countries should include improved diagnosis and treatment in these populations.
Collapse
|
6
|
Barkoff AM, Knuutila A, Mertsola J, He Q. Evaluation of Anti-PT Antibody Response after Pertussis Vaccination and Infection: The Importance of Both Quantity and Quality. Toxins (Basel) 2021; 13:toxins13080508. [PMID: 34437379 PMCID: PMC8402585 DOI: 10.3390/toxins13080508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Pertussis toxin (PT) is considered the main virulence factor causing whooping cough or pertussis. The protein is widely studied and its composition was revealed and sequenced already during the 1980s. The human immune system creates a good response against PT when measured in quantity. However, the serum anti-PT antibodies wane rapidly, and only a small amount of these antibodies are found a few years after vaccination/infection. Therefore, multiple approaches to study the functionality (quality) of these antibodies, e.g., avidity, neutralizing capacity, and epitope specificity, have been investigated. In addition, the long-term B cell memory (Bmem) to PT is crucial for good protection throughout life. In this review, we summarize the findings from functional PT antibody and Bmem studies. These results are discussed in line with the quantity of serum anti-PT antibodies. PT neutralizing antibodies and anti-PT antibodies with proper avidity are crucial for good protection against the disease, and certain epitopes have been identified to have multiple functions in the protection. Although PT-specific Bmem responses are detectable at least five years after vaccination, long-term surveillance is lacking. Variation of the natural boosting of circulating Bordetella pertussis in communities is an important confounding factor in these memory studies.
Collapse
Affiliation(s)
- Alex-Mikael Barkoff
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
| | - Aapo Knuutila
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
| | - Jussi Mertsola
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, 20520 Turku, Finland
| | - Qiushui He
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
- Correspondence: ; Tel.: +358-40-472-2255
| |
Collapse
|
7
|
Acquaye-Seedah E, Huang Y, Sutherland JN, DiVenere AM, Maynard JA. Humanised monoclonal antibodies neutralise pertussis toxin by receptor blockade and reduced retrograde trafficking. Cell Microbiol 2018; 20:e12948. [PMID: 30152075 PMCID: PMC6519169 DOI: 10.1111/cmi.12948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Pertussis toxin (PTx) is a major protective antigen produced by Bordetella pertussis that is included in all current acellular vaccines. Of several well‐characterized monoclonal antibodies binding this toxin, the humanised hu1B7 and hu11E6 antibodies are highly protective in multiple in vitro and in vivo assays. In this study, we determine the molecular mechanisms of protection mediated by these antibodies. Neither antibody directly binds the B. pertussis bacterium nor supports antibody‐dependent complement cytotoxicity. Both antibodies, either individually or as a cocktail, form multivalent complexes with soluble PTx that bind the FcγRIIb receptor more tightly than antibody alone, suggesting that the antibodies may accelerate PTx clearance via immune complex formation. However, a receptor binding assay and cellular imaging indicate that the main mechanism used by hu11E6 is competitive inhibition of PTx binding to its cellular receptor. In contrast, the main hu1B7 neutralising mechanism appears to be inhibition of PTx internalisation and retrograde trafficking. We assessed the effects of hu1B7 on PTx retrograde trafficking in CHO‐K1 cells using quantitative immunofluorescence microscopy. In the absence of hu1B7 or after incubation with an isotype control antibody, PTx colocalizes to organelles in a manner consistent with retrograde transport. However, after preincubation with hu1B7, PTx appears restricted to the membrane surface with colocalization to organelles associated with retrograde transport significantly reduced. Together, these data support a model whereby hu11E6 and hu1B7 interfere with PTx receptor binding and PTx retrograde trafficking, respectively.
Collapse
Affiliation(s)
- Edith Acquaye-Seedah
- Department of Biochemistry, The University of Texas at Austin, Austin, Texas.,Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Yimin Huang
- Department of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Jamie N Sutherland
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrea M DiVenere
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Jennifer A Maynard
- Department of Biochemistry, The University of Texas at Austin, Austin, Texas.,Department of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
8
|
Hovingh ES, Kuipers B, Bonačić Marinović AA, Jan Hamstra H, Hijdra D, Mughini Gras L, van Twillert I, Jongerius I, van Els CACM, Pinelli E. Detection of opsonizing antibodies directed against a recently circulating Bordetella pertussis strain in paired plasma samples from symptomatic and recovered pertussis patients. Sci Rep 2018; 8:12039. [PMID: 30104573 PMCID: PMC6089961 DOI: 10.1038/s41598-018-30558-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/02/2018] [Indexed: 01/20/2023] Open
Abstract
Correlates of protection (CoPs) against the highly contagious respiratory disease whooping cough, caused by Bordetella pertussis, remain elusive. Characterizing the antibody response to this pathogen is essential towards identifying potential CoPs. Here, we evaluate levels, avidity and functionality of B. pertussis-specific-antibodies from paired plasma samples derived from symptomatic and recovered pertussis patients, as well as controls. Natural infection is expected to induce protective immunity. IgG levels and avidity to nine B. pertussis antigens were determined using a novel multiplex panel. Furthermore, opsonophagocytosis of a B. pertussis clinical isolate by neutrophils was measured. Findings indicate that following infection, B. pertussis-specific antibody levels of (ex-) pertussis patients waned, while the avidity of antibodies directed against the majority of studied antigens increased. Opsonophagocytosis indices decreased upon recovery, but remained higher than controls. Random forest analysis of all the data revealed that 28% of the opsonophagocytosis index variances could be explained by filamentous hemagglutinin- followed by pertussis toxin-specific antibodies. We propose to further explore which other B. pertussis-specific antibodies can better predict opsonophagocytosis. Moreover, other B. pertussis-specific antibody functions as well as the possible integration of these functions in combination with other immune cell properties should be evaluated towards the identification of CoPs against pertussis.
Collapse
Affiliation(s)
- Elise S Hovingh
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Betsy Kuipers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Axel A Bonačić Marinović
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hendrik Jan Hamstra
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Danielle Hijdra
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lapo Mughini Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Inonge van Twillert
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ilse Jongerius
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands.,Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Cecile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elena Pinelli
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
9
|
Brookes C, Freire-Martin I, Cavell B, Alexander F, Taylor S, Persaud R, Fry N, Preston A, Diavatopoulos D, Gorringe A. Bordetella pertussis isolates vary in their interactions with human complement components. Emerg Microbes Infect 2018; 7:81. [PMID: 29739922 PMCID: PMC5940884 DOI: 10.1038/s41426-018-0084-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
Whooping cough is a re-emerging respiratory tract infection. It has become clear that there is a need for better understanding of protective immune responses and variation between Bordetella pertussis strains to aid the development of improved vaccines. In order to survive in the host, B. pertussis has evolved mechanisms to evade complement-mediated killing, including the ability to bind complement-regulatory proteins. Here we evaluate the variation in interactions with the complement system among recently isolated strains. Isolates whose genomes appear highly similar and cluster together on a SNP-based dendrogram were found to vary significantly in resistance to complement-mediated killing and in the deposition of C3b/iC3b, C5b-9 and C1 esterase inhibitor (C1-INH). The key role of Vag8 as a receptor for C1-INH was confirmed and its expression was shown to vary in a panel of isolates. A Vag8 knockout mutant showed increased sensitivity to complement-mediated killing. Antibodies in convalescent sera blocked C1-INH binding to B. pertussis and may play an important role in natural immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruby Persaud
- Public Health England, Porton Down, Salisbury, UK
| | - Norman Fry
- Public Health England, 61 Colindale Avenue, London, UK
| | - Andrew Preston
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Dimitri Diavatopoulos
- Laboratory of Medical immunology, Nijmegen Medical Centre, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
10
|
van der Lee S, Stoof SP, van Ravenhorst MB, van Gageldonk PGM, van der Maas NAT, Sanders EAM, Buisman AM, Berbers GAM. Enhanced Bordetella pertussis acquisition rate in adolescents during the 2012 epidemic in the Netherlands and evidence for prolonged antibody persistence after infection. ACTA ACUST UNITED AC 2018; 22. [PMID: 29183555 PMCID: PMC5710659 DOI: 10.2807/1560-7917.es.2017.22.47.17-00011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In 2012 a large epidemic of pertussis occurred in the Netherlands. We assessed pertussis toxin (PT) antibody levels in longitudinal serum samples from Dutch 10–18 year-olds, encompassing the epidemic, to investigate pertussis infection incidence. Methods: Blood was sampled in October 2011 (n = 239 adolescents), then 1 year (2012; n = 228) and 3 years (2014; n = 167) later. PT-IgG concentrations were measured by immunoassay and concentrations ≥50 IU/mL (seropositive) assumed indicative of an infection within the preceding year. Results: During the 2012 epidemic, 10% of participants became seropositive, while this was just 3% after the epidemic. The pertussis acquisition rate proved to be sixfold higher during the epidemic (97 per 1,000 person-years) compared with 2012–2014 (16 per 1,000 person-years). In 2012, pertussis notifications among adolescents nationwide were 228/100,000 (0.23%), which is at least 40 times lower than the seropositivity percentage. Remarkably, 17 of the 22 seropositive participants in 2011, were still seropositive in 2012 and nine remained seropositive for at least 3 years. Discussion: Longitudinal studies allow a better estimation of pertussis infections in the population. A PT-IgG concentration ≥50 IU/mL as indication of recent infection may overestimate these numbers in cross-sectional serosurveillance and should be used carefully.
Collapse
Affiliation(s)
- Saskia van der Lee
- Department of Peadiatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands.,Centre for Infectious Disease Control, National institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Susanne P Stoof
- Department of Peadiatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands.,Centre for Infectious Disease Control, National institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mariette B van Ravenhorst
- Department of Peadiatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands.,Centre for Infectious Disease Control, National institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Pieter G M van Gageldonk
- Centre for Infectious Disease Control, National institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Nicoline A T van der Maas
- Centre for Infectious Disease Control, National institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elisabeth A M Sanders
- Department of Peadiatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Guy A M Berbers
- Centre for Infectious Disease Control, National institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
11
|
Barkoff AM, Gröndahl-Yli-Hannuksela K, He Q. Seroprevalence studies of pertussis: what have we learned from different immunized populations. Pathog Dis 2015. [PMID: 26208655 DOI: 10.1093/femspd/ftv050] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bordetella pertussis is a pathogen-causing whooping cough (pertussis) in humans. Although vaccination against the disease is effective, the bacterium is still circulating among population and can even cause death. Especially young infants, who lack protection, are vulnerable. The laboratory diagnostic methods to detect B. pertussis are culture, PCR and ELISA serology. Reported cases of the disease vary among countries but usually the incidence rates are low, <1 to 10/100 000. However, pertussis often goes unrecognized among patients as it presents itself like the common cold, especially in adults and elders who are often the source of the infection. This makes pertussis difficult to monitor and control. Serological surveillance is an easy manner to estimate the real burden of the disease among population. Furthermore, to have reliable results, anti-PT IgG antibodies should be measured, as PT is the only specific antigen to B. pertussis. This review aims to evaluate available pertussis seroprevalence studies throughout the world, and to compare the findings from countries with different vaccination histories and strategies. Estimation of the real burden of pertussis is compared to reported numbers. In addition, future aspects in seroprevalence studies are considered.
Collapse
Affiliation(s)
- Alex-Mikael Barkoff
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | | | - Qiushui He
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Antibody-mediated complement C3b/iC3b binding to group B Streptococcus in paired mother and baby serum samples in a refugee population on the Thailand-Myanmar border. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:319-26. [PMID: 25589553 DOI: 10.1128/cvi.00803-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) is the leading cause of neonatal sepsis and meningitis. In this study, we determined antibody-mediated deposition of complement C3b/iC3b onto the bacterial cell surface of GBS serotypes Ia, Ib, II, III, and V. This was determined for 520 mother and umbilical cord serum sample pairs obtained at the time of birth from a population on the Thailand-Myanmar border. Antibody-mediated deposition of complement C3b/iC3b was detected to at least one serotype in 91% of mothers, despite a known carriage rate in this population of only 12%. Antibody-mediated C3b/iC3b deposition corresponded to known carriage rates, with the highest levels of complement deposition observed onto the most prevalent serotype (serotype II) followed by serotypes Ia, III, V, and Ib. Finally, neonates born to mothers carrying serotype II GBS at the time of birth showed higher antibody-mediated C3b/iC3b deposition against serotype II GBS than neonates born to mothers with no serotype II carriage. Assessment of antibody-mediated C3b/iC3b deposition against GBS may provide insights into the seroepidemiology of anti-GBS antibodies in mothers and infants in different populations.
Collapse
|
13
|
Abstract
Bordetella pertussis produces two serologically distinct fimbriae, Fim2 and Fim3. Expression of these antigens is governed by the BvgA/S system and by the length of a poly(C) tract in the promoter of each gene. Fim2 and Fim3 are important antigens for whole cell pertussis vaccines as clinical trials have shown an association of anti-fimbriae antibody-mediated agglutination and protection. The current five component acellular pertussis vaccine contains co-purified Fim2/3 and provided good efficacy in clinical trials with the anti-Fim antibody response correlating with protection when pre and post exposure antibody levels were analysed. The predominant serotype of B. pertussis isolates has changed over time in most countries but it is not understood whether this is vaccine-driven or whether serotype is linked to the prevailing predominant genotype. Recent studies have shown that both Fim2 and Fim3 are expressed during infection and that Fim2 is more immunogenic than Fim3 in the acellular vaccine.
Collapse
|
14
|
Development of a large scale human complement source for use in bacterial immunoassays. J Immunol Methods 2013; 391:39-49. [PMID: 23485926 DOI: 10.1016/j.jim.2013.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 11/20/2022]
Abstract
The serum bactericidal assay is the correlate of protection for meningococcal disease but the use and comparison of functional immunological assays for the assessment of meningococcal vaccines is complicated by the sourcing of human complement. This is due to high levels of immunity in the population acquired through natural meningococcal carriage and means that many individuals must be screened to find donors with suitably low bactericidal titres against the target strain. The use of different donors for each meningococcal strain means that comparisons of assay responses between strains and between laboratories is difficult. We have developed a method for IgG-depletion of 300 ml batches of pooled human lepirudin-derived plasma using Protein G sepharose affinity chromatography that retains complement activity. However, IgG-depletion also removed C1q. This was also eluted from the affinity matrix, concentrated and added to the complement source. The final complement source retained mean alternative pathway activity of 96.8% and total haemolytic activity of 84.2% in four batches. Complement components C3, C5, properdin and factor H were retained following the process and the IgG-depleted complement was shown to be suitable for use in antibody-mediated complement deposition and serum bactericidal activity assays against serogroup B meningococci. The generation of large IgG-depleted batches of pooled human plasma allows for the comparison of immunological responses to diverse meningococcal strain panels in large clinical trials.
Collapse
|
15
|
Seroprevalence of antibodies to pertussis and diphtheria among healthy adults in China. J Infect 2011; 63:441-6. [DOI: 10.1016/j.jinf.2011.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/18/2011] [Accepted: 07/08/2011] [Indexed: 11/24/2022]
|
16
|
Immunization of teenagers with a fifth dose of reduced DTaP-IPV induces high levels of pertussis antibodies with a significant increase in opsonophagocytic activity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1269-74. [PMID: 21677109 DOI: 10.1128/cvi.05067-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Waning vaccine-induced immunity against Bordetella pertussis is observed among adolescents and adults. A high incidence of pertussis has been reported in this population, which serves as a reservoir for B. pertussis. A fifth dose of reduced antigen of diphtheria-tetanus-acellular-pertussis and inactivated polio vaccine was given as a booster dose to healthy teenagers. The antibody activity against B. pertussis antigens was measured prior to and 4 to 8 weeks after the booster by different assays: enzyme-linked immunosorbent assays (ELISAs) of IgG and IgA against pertussis toxin (PT) and filamentous hemagglutinin (FHA), IgG against pertactin (PRN), opsonophagocytic activity (OPA), and IgG binding to live B. pertussis. There was a significant increase in the IgG activity against PT, FHA, and PRN following the booster immunization (P < 0.001). The prebooster sera showed a geometric mean OPA titer of 65.1 and IgG binding to live bacteria at a geometric mean concentration of 164.9 arbitrary units (AU)/ml. Following the fifth dose, the OPA increased to a titer of 360.4, and the IgG concentration against live bacteria increased to 833.4 AU/ml (P < 0.001 for both). The correlation analyses between the different assays suggest that antibodies against FHA and PRN contribute the most to the OPA and IgG binding.
Collapse
|
17
|
Kapaskelis AM, Vouloumanou EK, Rafailidis PI, Hatzopoulou P, Nikita D, Falagas ME. High prevalence of antibody titers against Bordetella pertussis in an adult population with prolonged cough. Respir Med 2008; 102:1586-91. [PMID: 18684605 DOI: 10.1016/j.rmed.2008.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 06/03/2008] [Accepted: 06/03/2008] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pertussis is mainly considered as a disease of childhood. However, an increasing number of adults with infection due to Bordetella pertussis is reported in the literature. METHODS A retrospective cohort study of patients with a new origin-cough of more than 3 weeks duration who were evaluated by an internal medicine-infectious diseases group practice in Athens, Greece during the period 10/2005-12/2007 was performed; patients underwent serological testing for B. pertussis infection. RESULTS Five hundred and fifty-four adult patients underwent B. pertussis serological testing from whom 441 had a single IgM/IgG measurement. The percentage of seropositivity in the IgM/IgG B. pertussis serological testing was 71.5% in the population studied (397/554 patients; for patients who had IgM/IgG B. pertussis serological testing in more than one occasions, only the result of the first IgM/IgG measurement was taken into account for this analysis). For the subset of patients with a single IgM/IgG measurement, the percentage of seropositivity against B. pertussis was 70.7% (312/441 patients). CONCLUSIONS B. pertussis infection should be considered as a significant pathogenic infection in a significant proportion of adult patients presenting a new origin-cough of more than 3 weeks duration. In order to reduce the burden of pertussis disease in adults as well as transmission of pertussis in children, booster vaccination is recommended for adolescents and adults.
Collapse
|