1
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
2
|
Status and Challenges for Vaccination against Avian H9N2 Influenza Virus in China. Life (Basel) 2022; 12:life12091326. [PMID: 36143363 PMCID: PMC9505450 DOI: 10.3390/life12091326] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
In China, H9N2 avian influenza virus (AIV) has become widely prevalent in poultry, causing huge economic losses after secondary infection with other pathogens. Importantly, H9N2 AIV continuously infects humans, and its six internal genes frequently reassort with other influenza viruses to generate novel influenza viruses that infect humans, threatening public health. Inactivated whole-virus vaccines have been used to control H9N2 AIV in China for more than 20 years, and they can alleviate clinical symptoms after immunization, greatly reducing economic losses. However, H9N2 AIVs can still be isolated from immunized chickens and have recently become the main epidemic subtype. A more effective vaccine prevention strategy might be able to address the current situation. Herein, we analyze the current status and vaccination strategy against H9N2 AIV and summarize the progress in vaccine development to provide insight for better H9N2 prevention and control.
Collapse
|
3
|
Hou L, Yu X, Zhang Y, Du L, Zhang Y, Cheng H, Zheng Q, Chen J, Hou J. Enhanced Immune Responses in Mice Induced by the c-di-GMP Adjuvanted Inactivated Vaccine for Pseudorabies Virus. Front Immunol 2022; 13:845680. [PMID: 35432301 PMCID: PMC9009373 DOI: 10.3389/fimmu.2022.845680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Cyclic dimeric guanosine monophosphate (c-di-GMP) is a bacterial second messenger with immunomodulatory activities in mice, suggesting potential applications as a vaccine immunopotentiator or therapeutic agent. In this study, we evaluated the efficacy of c-di-GMP as an immunopotentiator for pseudorabies virus (PRV) inactivated vaccine in a murine model. We found that c-di-GMP improved the humoral and cellular immune responses induced by PRV inactivated vaccine and its effects on immunity reached the level comparable to that of a live attenuated vaccine. Furthermore, c-di-GMP enhanced the murine antibody response against the viral glycoprotein gB up to 120 days after immunization. The c-di-GMP–adjuvanted PRV inactivated vaccine induced long-term humoral immunity by promoting a potent T follicular helper cell response, which is known to directly control the magnitude of the germinal center B cell response. Furthermore, the c-di-GMP enhanced the response of bone marrow plasma cells and upregulated the expression of Bcl-2 and Mcl-1, which have been identified as anti-apoptotic regulatory genes of germinal center and memory B cells. Our findings open a new avenue for improving the immune efficacy of PRV inactivated vaccines.
Collapse
Affiliation(s)
- Liting Hou
- National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Xiaoming Yu
- National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Yuanyuan Zhang
- National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Luping Du
- National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Yuanpeng Zhang
- National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Haiwei Cheng
- National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Qisheng Zheng
- National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Jin Chen
- National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Jibo Hou
- National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
4
|
Liu Y, Wang X, Zhou J, Shi S, Shen T, Chen L, Zhang M, Liao C, Wang C. Development of PDA Nanoparticles for H9N2 Avian Influenza BPP-V/BP-IV Epitope Peptide Vaccines: Immunogenicity and Delivery Efficiency Improvement. Front Immunol 2021; 12:693972. [PMID: 34386005 PMCID: PMC8353371 DOI: 10.3389/fimmu.2021.693972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
The protection of current influenza vaccines is limited due to the viral antigenic shifts and antigenic drifts. The universal influenza vaccine is a new hotspot in vaccine research that aims to overcome these problems. Polydopamine (PDA), a versatile biomaterial, has the advantages of an excellent biocompatibility, controllable particle size, and distinctive drug loading approach in drug delivery systems. To enhance the immunogenicities and delivery efficiencies of H9N2 avian influenza virus (AIV) epitope peptide vaccines, PDA nanoparticles conjugated with the BPP-V and BP-IV epitope peptides were used to prepare the nano BPP-V and BP-IV epitope peptide vaccines, respectively. The characteristics of the newly developed epitope peptide vaccines were then evaluated, revealing particle sizes ranging from approximately 240 to 290 nm (PDI<0.3), indicating that the synthesized nanoparticles were stable. Simultaneously, the immunoprotective effects of nano BPP-V and BP-IV epitope peptide vaccines were assessed. The nano BPP-V and BP-IV epitope vaccines, especially nano BP-IV epitope vaccine, quickly induced anti-hemagglutinin (HA) antibody production and a sustained immune response, significantly promoted humoral and cellular immune responses, reduced viral lung damage and provided effective protection against AIV viral infection. Together, these results reveal that PDA, as a delivery carrier, can improve the immunogenicities and delivery efficiencies of H9N2 AIV nano epitope vaccines, thereby providing a theoretical basis for the design and development of PDA as a carrier of new universal influenza vaccines.
Collapse
Affiliation(s)
- Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Jiangfei Zhou
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Min Zhang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
|
6
|
Sun H, Fei L, Zhu B, Shi M. Quick and improved immune responses to inactivated H9N2 avian influenza vaccine by purified active fraction of Albizia julibrissin saponins. BMC Vet Res 2020; 16:427. [PMID: 33160337 PMCID: PMC7648552 DOI: 10.1186/s12917-020-02648-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 10/28/2020] [Indexed: 01/29/2023] Open
Abstract
Background H9N2 Low pathogenic avian influenza virus (LPAIV) raises public health concerns and its eradication in poultry becomes even more important in preventing influenza. AJSAF is a purified active saponin fraction from the stem bark of Albizzia julibrissin. In this study, AJSAF was evaluated for the adjuvant potentials on immune responses to inactivated H9N2 avian influenza virus vaccine (IH9V) in mice and chicken in comparison with commercially oil-adjuvant. Results AJSAF significantly induced faster and higher H9 subtype avian influenza virus antigen (H9–Ag)-specific IgG, IgG1, IgG2a and IgG2b antibody titers in mice and haemagglutination inhibition (HI) and IgY antibody levels in chicken immunized with IH9V. AJSAF also markedly promoted Con A-, LPS- and H9–Ag-stimulated splenocyte proliferation and natural killer cell activity. Furthermore, AJSAF significantly induced the production of both Th1 (IL-2 and IFN-γ) and Th2 (IL-10) cytokines, and up-regulated the mRNA expression levels of Th1 and Th2 cytokines and transcription factors in splenocytes from the IH9V-immunized mice. Although oil-formulated inactivated H9N2 avian influenza vaccine (CH9V) also elicited higher H9–Ag-specific IgG and IgG1 in mice and HI antibody titer in chicken, this robust humoral response was later produced. Moreover, serum IgG2a and IgG2b antibody titers in CH9V-immunized mice were significantly lower than those of IH9V alone group. Conclusions AJSAF could improve antigen-specific humoral and cellular immune responses, and simultaneously trigger a Th1/Th2 response to IH9V. AJSAF might be a safe and efficacious adjuvant candidate for H9N2 avian influenza vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02648-1.
Collapse
Affiliation(s)
- Hongxiang Sun
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Liyan Fei
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Binnian Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minghua Shi
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Kumosani T, Yaghmoor S, Abdulaal WH, Barbour E. Evaluation in broilers of aerosolized nanoparticles vaccine encapsulating imuno-stimulant and antigens of avian influenza virus/Mycoplasma gallisepticum. BMC Vet Res 2020; 16:319. [PMID: 32867774 PMCID: PMC7457747 DOI: 10.1186/s12917-020-02539-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background The global prevalence of economic primary infection of poultry by H9N2 virus, including the Lineage A, panzootic group ME1, and associated with secondary infection by Mycoplasma gallisepticum (MG), is alarming to the sustainability of the poultry sector. This research evaluated in broilers the immunity and protection induced by aerosolization of liposomal nanoparticles vaccine, encapsulating antigens of H9N2 virus and MG, with or without the incorporation of Echinacea extract (EE) immuno-stimulant. Six different treatments (TRTs) of broilers were included in the experimental design, with three replicate pens/TRT and stocking of 20 day-old birds/replicate. Results The tracheobronchial washings of birds subjected to aerosolization of liposomal nanoparticles, encapsulating antigens of H9N2 and MG and EE had the highest significant mean levels of each of IgA and IgG specific to H9N2 and MG, associated with lowest tracheal MG colonization, tracheal H9N2 recovery, tracheal histopathologic lesions, mortality, and best performance in body weight and feed conversion compared to all other challenged birds allocated to different treatments (P < 0.05). However, the control broilers, free from challenge with MG and H9N2, had the lowest mortality and tracheal lesions, and the highest production performance. Conclusion The aerosolization of liposomal nanoparticles, encapsulating antigens of H9N2 and MG and EE resulted in enough local immunity for protection of broilers against infection, and in attaining the highest production performance in challenged birds. The potential implication of vaccinating with safe killed nanoparticle vaccines is of utmost importance to the global poultry sector.
Collapse
Affiliation(s)
- Taha Kumosani
- Department of Biochemistry, Faculty of Science, Experimental Biochemistry Unit, King Fahd Medical Research Center and Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University (KAU), Jeddah, Kingdom of Saudi Arabia.
| | - Soonham Yaghmoor
- Experimental Biochemistry Unit, King Fahd Medical Research Center and Production of Bioproducts for Industrial Applications Research Group, KAU, Jeddah, Kingdom of Saudi Arabia
| | - Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Elie Barbour
- Adjunct to Department of Biochemistry, Faculty of Science, KAU, Jeddah, Kingdom of Saudi Arabia.,Director of R and D Department, Opticon Hygiene Consulting, Oechsli 7, 8807, Freienbach, Switzerland
| |
Collapse
|
8
|
Sun Y, Chen X, Zhang L, Liu H, Liu S, Yu H, Wang X, Qin Y, Li P. The antiviral property of Sargassum fusiforme polysaccharide for avian leukosis virus subgroup J in vitro and in vivo. Int J Biol Macromol 2019; 138:70-78. [PMID: 31306705 DOI: 10.1016/j.ijbiomac.2019.07.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Avian Leukosis Virus Subgroup J (ALV-J) is an oncogenic retrovirus, mainly spread by vertical and horizontal transmission, which have caused severe losses in world poultry industry. Sargassum fusiforme polysaccharide (SFP), a marine algae sulfated polysaccharide, has attracted more attention due to its variously biological activities. In this study, the anti-ALV-J property of SFP was assessed in vivo and in vitro. The results demonstrated that different Mw of SFPs showed virustatic activity to ALV-J in vitro by combining with the virus when ALV-J adsorbed onto the host cells. When treated with SFPs, the ALV-J gene and protein expression reduced clearly and SFP-3 (Molecular weight 9 kDa) had the best antiviral effect. Results in vivo showed that the immunosuppression of the ALV-J infected chickens were relieved by SFP-3. Moreover, SFP-3 obviously inhibit the viral shedding and alleviated the organs damage caused by ALV-J. This study offered a new method for ALV-J treatment and enriched the potential application of SFP.
Collapse
Affiliation(s)
- Yuhao Sun
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Lili Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China
| | - Hong Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xueqin Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
9
|
Li J, Li TX, Ma Y, Zhang Y, Li DY, Xu HR. Bursopentin (BP5) induces G1 phase cell cycle arrest and endoplasmic reticulum stress/mitochondria-mediated caspase-dependent apoptosis in human colon cancer HCT116 cells. Cancer Cell Int 2019; 19:130. [PMID: 31123429 PMCID: PMC6521404 DOI: 10.1186/s12935-019-0849-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background Bursopentin (BP5) is a multifunctional pentapeptide found in the chicken bursa of Fabricius. Recent study indicated that BP5 significantly stimulates expression of p53 protein in colon cancer HCT116 cells. However, the effects and underlying mechanisms of BP5 on HCT116 cell proliferation remain largely unclear. Methods Analyses of cell viability, cell cycle arrest as well as apoptosis were performed to study the actions of BP5 on HCT116 cells. Western blot analyse was assayed to measure the cell cycle-related and apoptosis-related proteins. Specific siRNAs targeting IRE1, ATF-6, and PERK were used for IRE1, ATF-6, and PERK knockdown, respectively. Cellular reactive oxygen species (ROS) were detected using a H2DCF-DA green fluorescence probe. Cytosolic free Ca2+ concentrations and mitochondrial membrane potential (ΔΨm) were measured using Fluo-3 AM and JC-1 stains, respectively. Results BP5 possessed strong inhibitory effects on the cell growth and induced apoptosis in HCT116 cells. Mechanistically, BP5 arrested the cell cycle at G1 phase by increasing p53 and p21 expression and decreasing cyclin E1-CDK2 complex expression. BP5 treatment dramatically activated the endoplasmic reticulum (ER) stress-mediated apoptotic pathway, as revealed by the significantly enhanced expression of unfolded protein response (UPR) sensors (IRE1α, ATF6, PERK) as well as downstream signaling molecules (XBP-1s, eIF2α, ATF4 and CHOP), and by the significantly altered the BP5-induced phenotypic changes in IRE1, ATF6, and PERK knockdown cells. Additionally, BP5-induced ER stress was accompanied by the accumulation of cytosolic free Ca2+ and intracellular ROS. Furthermore, BP5 treatment resulted in the increase of Bax expression, the decrease of Bcl-2 expression and the reduction of ΔΨm, subsequently causing a release of cytochrome c from the mitochondria into the cytoplasm and finally enhancing the activities of caspase-9 and -3. In addition, z-VAD-fmk, a pan-caspase inhibitor, markedly rescued BP5-induced cell viability reduction and reduced BP5-induced apoptosis. Conclusions Our present results suggest that BP5 has an anticancer capacity to arrest cell cycle at G1 phase and to trigger ER stress/mitochondria-mediated caspase-dependent apoptosis in HCT116 cells. Therefore, our findings provide insight into further investigations of the anticancer activities of BP5. Electronic supplementary material The online version of this article (10.1186/s12935-019-0849-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Li
- 1Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009 People's Republic of China.,2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009 People's Republic of China
| | - Tian-Xiang Li
- 3Department of Clinical Medicine, Kangda College of Nanjing Medical University, Lianyungang, 222000 People's Republic of China
| | - Yao Ma
- 1Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009 People's Republic of China.,2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009 People's Republic of China
| | - Yong Zhang
- 1Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009 People's Republic of China.,2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009 People's Republic of China
| | - De-Yuan Li
- 4Key Lab of Animal Disease Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Hai-Rong Xu
- 1Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009 People's Republic of China.,2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009 People's Republic of China.,5Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 People's Republic of China
| |
Collapse
|
10
|
Zhang C, Zhou J, Liu Z, Liu Y, Cai K, Shen T, Liao C, Wang C. Comparison of immunoadjuvant activities of four bursal peptides combined with H9N2 avian influenza virus vaccine. J Vet Sci 2019; 19:817-826. [PMID: 30173497 PMCID: PMC6265577 DOI: 10.4142/jvs.2018.19.6.817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
The bursa of Fabricius (BF) is a central humoral immune organ unique to birds. Four bursal peptides (BP-I, BP-II, BP-III, and BP-IV) have been isolated and identified from the BF. In this study, the immunoadjuvant activities of BPs I to IV were examined in mice immunized with H9N2 avian influenza virus (AIV) vaccine. The results suggested that BP-I effectively enhanced cell-mediated immune responses, increased the secretion of Th1 (interferon gamma)- and Th2 (interleukin-4)-type cytokines, and induced an improved cytotoxic T-lymphocyte (CTL) response to the H9N2 virus. BP-II mainly elevated specific antibody production, especially neutralizing antibodies, and increased Th1- and Th2-type cytokine secretion. BP-III had no significant effect on antibody production or cell-mediated immune responses compared to those in the control group. A strong immune response at both the humoral and cellular levels was induced by BP-IV. Furthermore, a virus challenge experiment followed by H&E staining revealed that BP-I and BP-II promoted removal of the virus and conferred protection in mouse lungs. BP-IV significantly reduced viral titers and histopathological changes and contributed to protection against H9N2 AIV challenge in mouse lungs. This study further elucidated the immunoadjuvant activities of BPs I to IV, providing a novel insight into immunoadjuvants for use in vaccine design.
Collapse
Affiliation(s)
- Cong Zhang
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiangfei Zhou
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhixin Liu
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yongqing Liu
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Kairui Cai
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Tengfei Shen
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengshui Liao
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chen Wang
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
11
|
Zhang C, Zhou J, Cai K, Zhang W, Liao C, Wang C. Gene cloning, expression and immune adjuvant properties of the recombinant fusion peptide Tα1-BLP on avian influenza inactivate virus vaccine. Microb Pathog 2018; 120:147-154. [DOI: 10.1016/j.micpath.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
|
12
|
Ma LB, Xu BY, Huang M, He QG. Effects of recombinant Agrocybe aegerita lectin as an immunoadjuvant on immune responses. Immunopharmacol Immunotoxicol 2017; 40:6-12. [DOI: 10.1080/08923973.2017.1392561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Li-bao Ma
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Bao-yang Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Min Huang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qi-gai He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| |
Collapse
|
13
|
Ma LB, Xu BY, Huang M, Sun LH, Yang Q, Chen YJ, Yin YL, He QG, Sun H. Adjuvant effects mediated by the carbohydrate recognition domain of Agrocybe aegerita lectin interacting with avian influenza H 9N 2 viral surface glycosylated proteins. J Zhejiang Univ Sci B 2017; 18:653-661. [PMID: 28786240 DOI: 10.1631/jzus.b1600106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the potential adjuvant effect of Agrocybe aegerita lectin (AAL), which was isolated from mushroom, against a virulent H9N2 strain in vivo and in vitro. METHODS In trial 1, 50 BALB/c male mice (8 weeks old) were divided into five groups (n=10 each group) which received a subcutaneous injection of inactivated H9N2 (control), inactivated H9N2+0.2% (w/w) alum, inactivated H9N2+0.5 mg recombinant AAL/kg body weight (BW), inactivated H9N2+1.0 mg AAL/kg BW, and inactivated H9N2+2.5 mg AAL/kg BW, respectively, four times at 7-d intervals. In trial 2, 30 BALB/c male mice (8 weeks old) were divided into three groups (n=10 each group) which received a subcutaneous injection of inactivated H9N2 (control), inactivated H9N2+2.5 mg recombinant wild-type AAL (AAL-wt)/kg BW, and inactivated H9N2+2.5 mg carbohydrate recognition domain (CRD) mutant AAL (AAL-mutR63H)/kg BW, respectively, four times at 7-d intervals. Seven days after the final immunization, serum samples were collected from each group for analysis. Hemagglutination assay, immunogold electron microscope, lectin blotting, and co-immunoprecipitation were used to study the interaction between AAL and H9N2 in vitro. RESULTS IgG, IgG1, and IgG2a antibody levels were significantly increased in the sera of mice co-immunized with inactivated H9N2 and AAL when compared to mice immunized with inactivated H9N2 alone. No significant increase of the IgG antibody level was detected in the sera of the mice co-immunized with inactivated H9N2 and AAL-mutR63H. Moreover, AAL-wt, but not mutant AAL-mutR63H, adhered to the surface of H9N2 virus. The interaction between AAL and the H9N2 virus was further demonstrated to be associated with the CRD of AAL binding to the surface glycosylated proteins, hemagglutinin and neuraminidase. CONCLUSIONS Our findings indicated that AAL could be a safe and effective adjuvant capable of boosting humoral immunity against H9N2 viruses in mice through its interaction with the viral surface glycosylated proteins, hemagglutinin and neuraminidase.
Collapse
Affiliation(s)
- Li-Bao Ma
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao-Yang Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Huang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lv-Hui Sun
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Jie Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ya-Lin Yin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi-Gai He
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan 430071, China.,State Key Laboratory of Virology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
14
|
Quinteiro-Filho WM, Calefi AS, Cruz DSG, Aloia TPA, Zager A, Astolfi-Ferreira CS, Piantino Ferreira JA, Sharif S, Palermo-Neto J. Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected with Salmonella Enteritidis. Vet Immunol Immunopathol 2017; 186:19-28. [PMID: 28413046 DOI: 10.1016/j.vetimm.2017.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/31/2017] [Accepted: 02/25/2017] [Indexed: 01/05/2023]
Abstract
A high ambient temperature is a highly relevant stressor in poultry production. Heat stress (HS) has been reported to reduce animal welfare, performance indices and increase Salmonella susceptibility. Salmonella spp. are major zoonotic pathogen that cause over 1 billion of human infections worldwide annually. Therefore, the current study was designed to analyze the effect of heat stress on Salmonella infection in chickens through modulation of the immune responses. Salmonella Enteritidis was inoculated via gavage at one day of age (106cfu/mL). Heat stress 31±1°C was applied from 35 to 41 days of age. Broiler chickens were divided into the following groups of 12 chickens: control (C); heat stress (HS31°C); S. Enteritidis positive control (PC); and S. Enteritidis+heat stress (PHS31°C). We observed that heat stress increased corticosterone serum levels. Concomitantly heat stress decreased (1) the IgA and IFN-γ plasmatic levels; (2) the mRNA expression of IL-6, IL-12 in spleen and IL-1β, IL-10, TGF-β in cecal tonsils; (3) the mRNA expression of AvBD4 and AvBD6 in cecal tonsils; and (4) the mRNA expression of TLR2 in spleen and cecal tonsils of chickens infected with S. Enteritidis (PHS31°C group). Heat stress also increased Salmonella colonization in the crop and caecum as well as Salmonella invasion to the spleen, liver and bone marrow, showing a deficiency in the control of S. Enteritidis induced infection. Together, the present data suggested that heat stress activated hypothalamus-pituitary-adrenal (HPA) axis, as observed by the increase in the corticosterone levels, which in turn presumably decreases the immune system activity, leading to an impairment of the intestinal mucosal barrier and increasing chicken susceptibility to the invasion of different organs by S. Enteritidis .
Collapse
Affiliation(s)
- W M Quinteiro-Filho
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | - A S Calefi
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - D S G Cruz
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - T P A Aloia
- Experimental Research Laboratory, Albert Einstein Jewish Institute for Education and Research, Albert Einstein Hospital, Sao Paulo, Brazil
| | - A Zager
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - C S Astolfi-Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - J A Piantino Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - S Sharif
- Laboratory of Immunology, Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - J Palermo-Neto
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
15
|
Song L, Chen X, Liu X, Zhang F, Hu L, Yue Y, Li K, Li P. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides. Mar Drugs 2015; 14:4. [PMID: 26729137 PMCID: PMC4728501 DOI: 10.3390/md14010004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023] Open
Abstract
Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV.
Collapse
Affiliation(s)
- Lin Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Xiaodong Liu
- College of Animal Science and Technology, Qingdao Agriculture University, No.700 Changcheng Road, Qingdao 266109, China.
| | - Fubo Zhang
- College of Animal Science and Technology, Qingdao Agriculture University, No.700 Changcheng Road, Qingdao 266109, China.
| | - Linfeng Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Yang Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
16
|
Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genomics 2012; 13:278. [PMID: 22726614 PMCID: PMC3496578 DOI: 10.1186/1471-2164-13-278] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/12/2012] [Indexed: 01/06/2023] Open
Abstract
Background Avian influenza virus (AIV) outbreaks are worldwide threats to both poultry and humans. Our previous study suggested microRNAs (miRNAs) play significant roles in the regulation of host response to AIV infection in layer chickens. The objective of this study was to test the hypothesis if genetic background play essential role in the miRNA regulation of AIV infection in chickens and if miRNAs that were differentially expressed in layer with AIV infection would be modulated the same way in broiler chickens. Furthermore, by integrating with parallel mRNA expression profiling, potential molecular mechanisms of host response to AIV infection can be further exploited. Results Total RNA isolated from the lungs of non-infected and low pathogenic H5N3 infected broilers at four days post-infection were used for both miRNA deep sequencing and mRNA microarray analyses. A total of 2.6 M and 3.3 M filtered high quality reads were obtained from infected and non-infected chickens by Solexa GA-I Sequencer, respectively. A total of 271 miRNAs in miRBase 16.0 were identified and one potential novel miRNA was discovered. There were 121 miRNAs differentially expressed at the 5% false discovery rate by Fisher’s exact test. More miRNAs were highly expressed in infected lungs (108) than in non-infected lungs (13), which was opposite to the findings in layer chickens. This result suggested that a different regulatory mechanism of host response to AIV infection mediated by miRNAs might exist in broiler chickens. Analysis using the chicken 44 K Agilent microarray indicated that 508 mRNAs (347 down-regulated) were differentially expressed following AIV infection. Conclusions A comprehensive analysis combining both miRNA and targeted mRNA gene expression suggests that gga-miR-34a, 122–1, 122–2, 146a, 155, 206, 1719, 1594, 1599 and 451, and MX1, IL-8, IRF-7, TNFRS19 are strong candidate miRNAs or genes involved in regulating the host response to AIV infection in the lungs of broiler chickens. Further miRNA or gene specific knock-down assay is warranted to elucidate underlying mechanism of AIV infection regulation in the chicken.
Collapse
|