1
|
Lemmens T, Šponer J, Krepl M. How Binding Site Flexibility Promotes RNA Scanning by TbRGG2 RRM: A Molecular Dynamics Simulation Study. J Chem Inf Model 2025; 65:896-907. [PMID: 39804219 PMCID: PMC11776045 DOI: 10.1021/acs.jcim.4c01954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket. This leads to a unique molecular mechanism through which the TbRGG2 RRM is capable of rapidly transitioning the U-rich sequence. In contrast, the presence of non-native cytidines induces stalling and destabilization of the complex. By leveraging extensive equilibrium dynamics and a large variety of binding states, TbRGG2 RRM effectively expedites diffusion along the RNA substrate while ensuring robust selectivity for U-rich sequences despite featuring a solitary binding pocket. We further substantiate our description of the complex dynamics by simulating the fully spontaneous association process of U-rich sequences to the TbRGG2 RRM. Our study highlights the critical role of dynamics and auxiliary binding states in interface dynamics employed by RNA-binding proteins, which is not readily apparent in traditional structural studies but could represent a general type of binding strategy employed by many RNA-binding proteins.
Collapse
Affiliation(s)
- Toon Lemmens
- Institute
of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| |
Collapse
|
2
|
Liu S, Wang H, Li X, Zhang F, Lee JKJ, Li Z, Yu C, Hu JJ, Zhao X, Suematsu T, Alvarez-Cabrera AL, Liu Q, Zhang L, Huang L, Aphasizheva I, Aphasizhev R, Zhou ZH. Structural basis of gRNA stabilization and mRNA recognition in trypanosomal RNA editing. Science 2023; 381:eadg4725. [PMID: 37410820 DOI: 10.1126/science.adg4725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/17/2023] [Indexed: 07/08/2023]
Abstract
In Trypanosoma brucei, the editosome, composed of RNA-editing substrate-binding complex (RESC) and RNA-editing catalytic complex (RECC), orchestrates guide RNA (gRNA)-programmed editing to recode cryptic mitochondrial transcripts into messenger RNAs (mRNAs). The mechanism of information transfer from gRNA to mRNA is unclear owing to a lack of high-resolution structures for these complexes. With cryo-electron microscopy and functional studies, we have captured gRNA-stabilizing RESC-A and gRNA-mRNA-binding RESC-B and RESC-C particles. RESC-A sequesters gRNA termini, thus promoting hairpin formation and blocking mRNA access. The conversion of RESC-A into RESC-B or -C unfolds gRNA and allows mRNA selection. The ensuing gRNA-mRNA duplex protrudes from RESC-B, likely exposing editing sites to RECC-catalyzed cleavage, uridine insertion or deletion, and ligation. Our work reveals a remodeling event facilitating gRNA-mRNA hybridization and assembly of a macromolecular substrate for the editosome's catalytic modality.
Collapse
Affiliation(s)
- Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hong Wang
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, USA
| | - Xiaorun Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Fan Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jane K J Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Zihang Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Jason J Hu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Xiaojing Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, USA
| | - Ana L Alvarez-Cabrera
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Qiushi Liu
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, USA
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, USA
- Department of Biochemistry, Boston University Medical Campus, Boston, MA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Salinas R, Cannistraci E, Schumacher MA. Structure of the T. brucei kinetoplastid RNA editing substrate-binding complex core component, RESC5. PLoS One 2023; 18:e0282155. [PMID: 36862634 PMCID: PMC9980740 DOI: 10.1371/journal.pone.0282155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Kinetoplastid protists such as Trypanosoma brucei undergo an unusual process of mitochondrial uridine (U) insertion and deletion editing termed kinetoplastid RNA editing (kRNA editing). This extensive form of editing, which is mediated by guide RNAs (gRNAs), can involve the insertion of hundreds of Us and deletion of tens of Us to form a functional mitochondrial mRNA transcript. kRNA editing is catalyzed by the 20 S editosome/RECC. However, gRNA directed, processive editing requires the RNA editing substrate binding complex (RESC), which is comprised of 6 core proteins, RESC1-RESC6. To date there are no structures of RESC proteins or complexes and because RESC proteins show no homology to proteins of known structure, their molecular architecture remains unknown. RESC5 is a key core component in forming the foundation of the RESC complex. To gain insight into the RESC5 protein we performed biochemical and structural studies. We show that RESC5 is monomeric and we report the T. brucei RESC5 crystal structure to 1.95 Å. RESC5 harbors a dimethylarginine dimethylaminohydrolase-like (DDAH) fold. DDAH enzymes hydrolyze methylated arginine residues produced during protein degradation. However, RESC5 is missing two key catalytic DDAH residues and does bind DDAH substrate or product. Implications of the fold for RESC5 function are discussed. This structure provides the first structural view of an RESC protein.
Collapse
Affiliation(s)
- Raul Salinas
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| | - Emily Cannistraci
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| |
Collapse
|
4
|
Sortino K, Tylec BL, Chen R, Sun Y, Read LK. Conserved and transcript-specific functions of the RESC factors, RESC13 and RESC14, in kinetoplastid RNA editing. RNA (NEW YORK, N.Y.) 2022; 28:1496-1508. [PMID: 36096641 PMCID: PMC9745829 DOI: 10.1261/rna.079389.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/28/2022] [Indexed: 05/21/2023]
Abstract
Uridine insertion/deletion RNA editing is an extensive post-transcriptional modification of mitochondrial mRNAs in kinetoplastid organisms, including Trypanosoma brucei This process is carried out using trans-acting gRNAs and complex protein machinery. The essential RNA editing substrate binding complex (RESC) serves as the scaffold that modulates protein and RNA interactions during editing, and contains the guide RNA binding complex (GRBC), the RNA editing mediator complexes (REMCs), and organizer proteins. Despite the importance of RESC in editing, the functions of each protein comprising this complex are not completely understood. Here, we further define the roles of a REMC protein, RESC13, and a RESC organizer, RESC14, using high-throughput sequencing on two large pan-edited mRNAs, A6 and COIII. When comparing our analyses to that of a previously published small pan-edited mRNA, RPS12, we find that RESC13 has conserved functions across the three transcripts with regard to editing initiation, gRNA utilization, gRNA exchange, and restricting the formation of long misedited junctions that likely arise from its ability to modulate RNA structure. However, RESC13 does have transcript-specific effects on the types of long junctions whose formation it restricts. RESC14 has a conserved effect on gRNA utilization across the three transcripts analyzed, but has transcript-specific effects on editing initiation, gRNA exchange, and junction formation. Our data suggest that transcript-specific effects of both proteins are due to differences in transcript length and sequences as well as transcript-specific protein interactions. These findings highlight the importance of studying multiple transcripts to determine the function of editing factors.
Collapse
Affiliation(s)
- Katherine Sortino
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Brianna L Tylec
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Runpu Chen
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| |
Collapse
|
5
|
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Göringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, McDermott SM, Ochsenreiter T, Read LK, Salavati R, Schnaufer A, Schneider A, Simpson L, Stuart K, Yurchenko V, Zhou ZH, Zíková A, Zhang L, Zimmer S, Aphasizhev R. Lexis and Grammar of Mitochondrial RNA Processing in Trypanosomes. Trends Parasitol 2020; 36:337-355. [PMID: 32191849 PMCID: PMC7083771 DOI: 10.1016/j.pt.2020.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA.
| | - Juan Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - H Ulrich Göringer
- Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Stephen Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Susan Madison-Antenucci
- Parasitology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Dmitri A Maslov
- Department of Molecular, Cell, and Systems Biology, University of California - Riverside, Riverside, CA 92521, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern CH-3012, Switzerland
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sara Zimmer
- University of Minnesota Medical School, Duluth campus, Duluth, MN 55812, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
6
|
McAdams NM, Harrison GL, Tylec BL, Ammerman ML, Chen R, Sun Y, Read LK. MRB10130 is a RESC assembly factor that promotes kinetoplastid RNA editing initiation and progression. RNA (NEW YORK, N.Y.) 2019; 25:1177-1191. [PMID: 31221726 PMCID: PMC6800514 DOI: 10.1261/rna.071902.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/18/2019] [Indexed: 05/03/2023]
Abstract
Uridine insertion deletion editing in kinetoplastid protozoa requires a complex machinery, a primary component of which is the RNA editing substrate binding complex (RESC). RESC contains two modules termed GRBC (guide RNA binding complex) and REMC (RNA editing mediator complex), although how interactions between these modules and their mRNA and gRNA binding partners are controlled is not well understood. Here, we demonstrate that the ARM/HEAT repeat containing RESC protein, MRB10130, controls REMC association with mRNA- and gRNA-loaded GRBC. High-throughput sequencing analyses show that MRB10130 functions in both initiation and 3' to 5' progression of editing through gRNA-defined domains. Editing intermediates that accumulate upon MRB10130 depletion significantly intersect those in cells depleted of another RESC organizer, MRB7260, but are distinct from those in cells depleted of specific REMC proteins. We present a model in which MRB10130 coordinates numerous protein-protein and protein-RNA interactions during editing progression.
Collapse
Affiliation(s)
- Natalie M McAdams
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Gregory L Harrison
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Brianna L Tylec
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Michelle L Ammerman
- Department of Chemistry and Biochemistry, Kettering University, Flint, Michigan 48504, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| |
Collapse
|
7
|
Travis B, Shaw PLR, Liu B, Ravindra K, Iliff H, Al-Hashimi H, Schumacher MA. The RRM of the kRNA-editing protein TbRGG2 uses multiple surfaces to bind and remodel RNA. Nucleic Acids Res 2019; 47:2130-2142. [PMID: 30544166 PMCID: PMC6393287 DOI: 10.1093/nar/gky1259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Kinetoplastid RNA (kRNA) editing takes place in the mitochondria of kinetoplastid protists and creates translatable mRNAs by uridine insertion/deletion. Extensively edited (pan-edited) transcripts contain quadruplex forming guanine stretches, which must be remodeled to promote uridine insertion/deletion. Here we show that the RRM domain of the essential kRNA-editing factor TbRGG2 binds poly(G) and poly(U) RNA and can unfold both. A region C-terminal to the RRM mediates TbRGG2 dimerization, enhancing RNA binding. A RRM-U4 RNA structure reveals a unique RNA-binding mechanism in which the two RRMs of the dimer employ aromatic residues outside the canonical RRM RNA-binding motifs to encase and wrench open the RNA, while backbone atoms specify the uridine bases. Notably, poly(G) RNA is bound via a different binding surface. Thus, these data indicate that TbRGG2 RRM can bind and remodel several RNA substrates suggesting how it might play multiple roles in the kRNA editing process.
Collapse
Affiliation(s)
- Brady Travis
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Porsha L R Shaw
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Krishna Ravindra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hadley Iliff
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
8
|
Dixit S, Lukeš J. Combinatorial interplay of RNA-binding proteins tunes levels of mitochondrial mRNA in trypanosomes. RNA (NEW YORK, N.Y.) 2018; 24:1594-1606. [PMID: 30120147 PMCID: PMC6191715 DOI: 10.1261/rna.066233.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/10/2018] [Indexed: 05/11/2023]
Abstract
MRP1/2 is a heteromeric protein complex that functions in the trypanosomatid mitochondrion as part of the RNA editing machinery, which facilitates multiple targeted insertions and deletions of uridines. MRP1/2 was shown to interact with MRB8170, which initiates RNA editing by marking pre-edited mRNAs, while TbRGG2 is required for its efficient progression on pan-edited mRNAs. Both MRP1/2 and TbRGG2 are capable of modulating RNA-RNA interactions in vitro. As determined by using iCLIP and RIP-qPCR, RNAs bound to MRP1/2 are characterized and compared with those associated with MRB8170 and TbRGG2. We provide evidence that MRP1 and MRB8170 have correlated binding and similar RNA crosslinking peak profiles over minimally and never-edited mRNAs. Our results suggest that MRP1 assists MRB8170 in RNA editing on minimally edited mRNAs.
Collapse
Affiliation(s)
- Sameer Dixit
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| |
Collapse
|
9
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
10
|
McAdams NM, Simpson RM, Chen R, Sun Y, Read LK. MRB7260 is essential for productive protein-RNA interactions within the RNA editing substrate binding complex during trypanosome RNA editing. RNA (NEW YORK, N.Y.) 2018; 24:540-556. [PMID: 29330168 PMCID: PMC5855954 DOI: 10.1261/rna.065169.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/08/2018] [Indexed: 05/20/2023]
Abstract
The trypanosome RNA editing substrate binding complex (RESC) acts as the platform for mitochondrial uridine insertion/deletion RNA editing and facilitates the protein-protein and protein-RNA interactions required for the editing process. RESC is broadly comprised of two subcomplexes: GRBC (guide RNA binding complex) and REMC (RNA editing mediator complex). Here, we characterize the function and position in RESC organization of a previously unstudied RESC protein, MRB7260. We show that MRB7260 forms numerous RESC-related complexes, including a novel, small complex with the guide RNA binding protein, GAP1, which is a canonical GRBC component, and REMC components MRB8170 and TbRGG2. RNA immunoprecipitations in MRB7260-depleted cells show that MRB7260 is critical for normal RNA trafficking between REMC and GRBC. Analysis of protein-protein interactions also reveals an important role for MRB7260 in promoting stable association of the two subcomplexes. High-throughput sequencing analysis of RPS12 mRNAs from MRB7260 replete and depleted cells demonstrates that MRB7260 is critical for gRNA exchange and early gRNA utilization, with the exception of the initiating gRNA. Together, these data demonstrate that MRB7260 is essential for productive protein-RNA interactions with RESC during RNA editing.
Collapse
Affiliation(s)
- Natalie M McAdams
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Rachel M Simpson
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| |
Collapse
|
11
|
Simpson RM, Bruno AE, Chen R, Lott K, Tylec BL, Bard JE, Sun Y, Buck MJ, Read LK. Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization. Nucleic Acids Res 2017; 45:7965-7983. [PMID: 28535252 PMCID: PMC5737529 DOI: 10.1093/nar/gkx458] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
Abstract
Uridine insertion/deletion RNA editing is an essential process in kinetoplastid parasites whereby mitochondrial mRNAs are modified through the specific insertion and deletion of uridines to generate functional open reading frames, many of which encode components of the mitochondrial respiratory chain. The roles of numerous non-enzymatic editing factors have remained opaque given the limitations of conventional methods to interrogate the order and mechanism by which editing progresses and thus roles of individual proteins. Here, we examined whole populations of partially edited sequences using high throughput sequencing and a novel bioinformatic platform, the Trypanosome RNA Editing Alignment Tool (TREAT), to elucidate the roles of three proteins in the RNA Editing Mediator Complex (REMC). We determined that the factors examined function in the progression of editing through a gRNA; however, they have distinct roles and REMC is likely heterogeneous in composition. We provide the first evidence that editing can proceed through numerous paths within a single gRNA and that non-linear modifications are essential, generating commonly observed junction regions. Our data support a model in which RNA editing is executed via multiple paths that necessitate successive re-modification of junction regions facilitated, in part, by the REMC variant containing TbRGG2 and MRB8180.
Collapse
Affiliation(s)
- Rachel M. Simpson
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| | - Andrew E. Bruno
- Center for Computational Research, University at Buffalo, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Kaylen Lott
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| | - Brianna L. Tylec
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| | - Jonathan E. Bard
- Genomics and Bioinformatics Core, University at Buffalo, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
- Center for Computational Research, University at Buffalo, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Michael J. Buck
- Department of Biochemistry, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 701 Ellicott St., Buffalo, NY 14203, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
12
|
Differential Binding of Mitochondrial Transcripts by MRB8170 and MRB4160 Regulates Distinct Editing Fates of Mitochondrial mRNA in Trypanosomes. mBio 2017; 8:mBio.02288-16. [PMID: 28143982 PMCID: PMC5285507 DOI: 10.1128/mbio.02288-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A dozen mRNAs are edited by multiple insertions and/or deletions of uridine residues in the mitochondrion of Trypanosoma brucei Several protein complexes have been implicated in performing this type of RNA editing, including the mitochondrial RNA-binding complex 1 (MRB1). Two paralogous novel RNA-binding proteins, MRB8170 and MRB4160, are loosely associated with the core MRB1 complex. Their roles in RNA editing and effects on target mRNAs are so far not well understood. In this study, individual-nucleotide-resolution UV-cross-linking and affinity purification (iCLAP) revealed a preferential binding of both proteins to mitochondrial mRNAs, which was positively correlated with their extent of editing. Integrating additional in vivo and in vitro data, we propose that binding of MRB8170 and/or MRB4160 onto pre-mRNA marks it for the initiation of editing and that initial binding of both proteins may facilitate the recruitment of other components of the RNA editing/processing machinery to ensure efficient editing. Surprisingly, MRB8170 also binds never-edited mRNAs, suggesting that at least this paralog has an additional role outside RNA editing to shape the mitochondrial transcriptome. IMPORTANCE Trypanosoma brucei mitochondrial mRNAs undergo maturation by RNA editing, a unique process involving decrypting open reading frames by the precise deletion and/or insertion of uridine (U) residues at specific positions on an mRNA. This process is catalyzed by multiprotein complexes, such as the RNA editing core complex, which provides the enzymatic activities needed for U insertion/deletion at a single editing site. Less well understood is how RNA editing occurs throughout an mRNA bearing multiple sites. To address this question, we mapped at single-nucleotide resolution the RNA interactions of two unique RNA-binding proteins (RBPs). These RBPs are part of the mitochondrial RNA-binding complex 1, hypothesized to mediate multiple rounds of RNA editing. Both RBPs were shown to mark mRNAs for the process in correlation with the number of editing sites on the transcript. Surprisingly, one also binds mRNAs that bypass RNA editing, indicating that it may have an additional role outside RNA editing.
Collapse
|
13
|
Simpson RM, Bruno AE, Bard JE, Buck MJ, Read LK. High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA (NEW YORK, N.Y.) 2016; 22:677-95. [PMID: 26908922 PMCID: PMC4836643 DOI: 10.1261/rna.055160.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/28/2016] [Indexed: 05/20/2023]
Abstract
Uridine insertion/deletion RNA editing in kinetoplastids entails the addition and deletion of uridine residues throughout the length of mitochondrial transcripts to generate translatable mRNAs. This complex process requires the coordinated use of several multiprotein complexes as well as the sequential use of noncoding template RNAs called guide RNAs. The majority of steady-state mitochondrial mRNAs are partially edited and often contain regions of mis-editing, termed junctions, whose role is unclear. Here, we report a novel method for sequencing entire populations of pre-edited partially edited, and fully edited RNAs and analyzing editing characteristics across populations using a new bioinformatics tool, the Trypanosome RNA Editing Alignment Tool (TREAT). Using TREAT, we examined populations of two transcripts, RPS12 and ND7-5', in wild-typeTrypanosoma brucei We provide evidence that the majority of partially edited sequences contain junctions, that intrinsic pause sites arise during the progression of editing, and that the mechanisms that mediate pausing in the generation of canonical fully edited sequences are distinct from those that mediate the ends of junction regions. Furthermore, we identify alternatively edited sequences that constitute plausible alternative open reading frames and identify substantial variability in the 5' UTRs of both canonical and alternatively edited sequences. This work is the first to use high-throughput sequencing to examine full-length sequences of whole populations of partially edited transcripts. Our method is highly applicable to current questions in the RNA editing field, including defining mechanisms of action for editing factors and identifying potential alternatively edited sequences.
Collapse
Affiliation(s)
- Rachel M Simpson
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| | - Andrew E Bruno
- Center for Computational Research, University at Buffalo, Buffalo, New York 14203, USA
| | - Jonathan E Bard
- University at Buffalo Genomics and Bioinformatics Core, Buffalo, New York 14222, USA
| | - Michael J Buck
- Deparment of Biochemistry, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| |
Collapse
|
14
|
Gazestani VH, Nikpour N, Mehta V, Najafabadi HS, Moshiri H, Jardim A, Salavati R. A Protein Complex Map of Trypanosoma brucei. PLoS Negl Trop Dis 2016; 10:e0004533. [PMID: 26991453 PMCID: PMC4798371 DOI: 10.1371/journal.pntd.0004533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/20/2016] [Indexed: 12/27/2022] Open
Abstract
The functions of the majority of trypanosomatid-specific proteins are unknown, hindering our understanding of the biology and pathogenesis of Trypanosomatida. While protein-protein interactions are highly informative about protein function, a global map of protein interactions and complexes is still lacking for these important human parasites. Here, benefiting from in-depth biochemical fractionation, we systematically interrogated the co-complex interactions of more than 3354 protein groups in procyclic life stage of Trypanosoma brucei, the protozoan parasite responsible for human African trypanosomiasis. Using a rigorous methodology, our analysis led to identification of 128 high-confidence complexes encompassing 716 protein groups, including 635 protein groups that lacked experimental annotation. These complexes correlate well with known pathways as well as for proteins co-expressed across the T. brucei life cycle, and provide potential functions for a large number of previously uncharacterized proteins. We validated the functions of several novel proteins associated with the RNA-editing machinery, identifying a candidate potentially involved in the mitochondrial post-transcriptional regulation of T. brucei. Our data provide an unprecedented view of the protein complex map of T. brucei, and serve as a reliable resource for further characterization of trypanosomatid proteins. The presented results in this study are available at: www.TrypsNetDB.org. Due to high evolutionary divergence of trypanosomatid pathogens from other eukaryotes, accurate prediction of functional roles for most of their proteins is not feasible based on homology-based approaches. Although protein co-complex maps provide a compelling tool for the functional annotation of proteins, as subunits of a complex are expected to be involved in similar biological processes, the current knowledge about these maps is still rudimentary. Here, we systematically examined the protein co-complex membership of more than one third of T. brucei proteome using two orthogonal fractionation approaches. A high-confidence network of co-complex relationships predicts the network context of 866 proteins, including many hypothetical and experimentally unannotated proteins. To our knowledge, this study presents the largest proteomics-based interaction map of trypanosomatid parasites to date, providing a useful resource for formulating new biological hypothesises and further experimental leads.
Collapse
Affiliation(s)
- Vahid H. Gazestani
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Najmeh Nikpour
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Hamed S. Najafabadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Houtan Moshiri
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Armando Jardim
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
15
|
Huang Z, Faktorová D, Křížová A, Kafková L, Read LK, Lukeš J, Hashimi H. Integrity of the core mitochondrial RNA-binding complex 1 is vital for trypanosome RNA editing. RNA (NEW YORK, N.Y.) 2015; 21:2088-102. [PMID: 26447184 PMCID: PMC4647463 DOI: 10.1261/rna.052340.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/09/2015] [Indexed: 05/20/2023]
Abstract
Trypanosoma brucei is the causative agent of the human and veterinarian diseases African sleeping sickness and nagana. A majority of its mitochondrial-encoded transcripts undergo RNA editing, an essential process of post-transcriptional uridine insertion and deletion to produce translatable mRNA. Besides the well-characterized RNA editing core complex, the mitochondrial RNA-binding 1 (MRB1) complex is one of the key players. It comprises a core complex of about six proteins, guide RNA-associated proteins (GAPs) 1/2, which form a heterotetramer that binds and stabilizes gRNAs, plus MRB5390, MRB3010, and MRB11870, which play roles in initial stages of RNA editing, presumably guided by the first gRNA:mRNA duplex in the case of the latter two proteins. To better understand all functions of the MRB1 complex, we performed a functional analysis of the MRB8620 core subunit, the only one not characterized so far. Here we show that MRB8620 plays a role in RNA editing in both procyclic and bloodstream stages of T. brucei, which reside in the tsetse fly vector and mammalian circulatory system, respectively. While RNAi silencing of MRB8620 does not affect procyclic T. brucei fitness when grown in glucose-containing media, it is somewhat compromised in cells grown in the absence of this carbon source. MRB8620 is crucial for integrity of the MRB1 core, such as its association with GAP1/2, which presumably acts to deliver gRNAs to this complex. In contrast, GAP1/2 is not required for the fabrication of the MRB1 core. Disruption of the MRB1 core assembly is followed by the accumulation of mRNAs associated with GAP1/2.
Collapse
Affiliation(s)
- Zhenqiu Huang
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| | - Drahomíra Faktorová
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| | - Adéla Křížová
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| | - Lucie Kafková
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Julius Lukeš
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Hassan Hashimi
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| |
Collapse
|
16
|
Aphasizheva I, Aphasizhev R. U-Insertion/Deletion mRNA-Editing Holoenzyme: Definition in Sight. Trends Parasitol 2015; 32:144-156. [PMID: 26572691 DOI: 10.1016/j.pt.2015.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 11/16/2022]
Abstract
RNA editing is a process that alters DNA-encoded sequences and is distinct from splicing, 5' capping, and 3' additions. In 30 years since editing was discovered in mitochondria of trypanosomes, several functionally and evolutionarily unrelated mechanisms have been described in eukaryotes, archaea, and viruses. Editing events are predominantly post-transcriptional and include nucleoside insertions and deletions, and base substitutions and modifications. Here, we review the mechanism of uridine insertion/deletion mRNA editing in kinetoplastid protists typified by Trypanosoma brucei. This type of editing corrects frameshifts, introduces translation punctuation signals, and often adds hundreds of uridines to create protein-coding sequences. We focus on protein complexes responsible for editing reactions and their interactions with other elements of the mitochondrial gene expression pathway.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA.
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
17
|
Read LK, Lukeš J, Hashimi H. Trypanosome RNA editing: the complexity of getting U in and taking U out. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:33-51. [PMID: 26522170 DOI: 10.1002/wrna.1313] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
RNA editing, which adds sequence information to RNAs post-transcriptionally, is a widespread phenomenon throughout eukaryotes. The most complex form of this process is the uridine (U) insertion/deletion editing that occurs in the mitochondria of kinetoplastid protists. RNA editing in these flagellates is specified by trans-acting guide RNAs and entails the insertion of hundreds and deletion of dozens of U residues from mitochondrial RNAs to produce mature, translatable mRNAs. An emerging model indicates that the machinery required for trypanosome RNA editing is much more complicated than previously appreciated. A family of RNA editing core complexes (RECCs), which contain the required enzymes and several structural proteins, catalyze cycles of U insertion and deletion. A second, dynamic multiprotein complex, the Mitochondrial RNA Binding 1 (MRB1) complex, has recently come to light as another essential component of the trypanosome RNA editing machinery. MRB1 likely serves as the platform for kinetoplastid RNA editing, and plays critical roles in RNA utilization and editing processivity. MRB1 also appears to act as a hub for coordination of RNA editing with additional mitochondrial RNA processing events. This review highlights the current knowledge regarding the complex molecular machinery involved in trypanosome RNA editing. WIREs RNA 2016, 7:33-51. doi: 10.1002/wrna.1313 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Laurie K Read
- University at Buffalo School of Medicine, Buffalo, NY, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
18
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
19
|
An arginine-glycine-rich RNA binding protein impacts the abundance of specific mRNAs in the mitochondria of Trypanosoma brucei. EUKARYOTIC CELL 2014; 14:149-57. [PMID: 25480938 DOI: 10.1128/ec.00232-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In kinetoplastid parasites, regulation of mitochondrial gene expression occurs posttranscriptionally via RNA stability and RNA editing. In addition to the 20S editosome that contains the enzymes required for RNA editing, a dynamic complex called the mitochondrial RNA binding 1 (MRB1) complex is also essential for editing. Trypanosoma brucei RGG3 (TbRGG3) was originally identified through its interaction with the guide RNA-associated proteins 1 and 2 (GAP1/2), components of the MRB1 complex. Both the arginine-glycine-rich character of TbRGG3, which suggests a function in RNA binding, and its interaction with MRB1 implicate TbRGG3 in mitochondrial gene regulation. Here, we report an in vitro and in vivo characterization of TbRGG3 function in T. brucei mitochondria. We show that in vitro TbRGG3 binds RNA with broad sequence specificity and has the capacity to modulate RNA-RNA interactions. In vivo, inducible RNA interference (RNAi) studies demonstrate that TbRGG3 is essential for proliferation of insect vector stage T. brucei. TbRGG3 ablation does not cause a defect in RNA editing but, rather, specifically affects the abundance of two preedited transcripts as well as their edited counterparts. Protein-protein interaction studies show that TbRGG3 associates with GAP1/2 apart from the remainder of the MRB1 complex, as well as with several non-MRB1 proteins that are required for mitochondrial RNA editing and/or stability. Together, these studies demonstrate that TbRGG3 is an essential mitochondrial gene regulatory factor that impacts the stabilities of specific RNAs.
Collapse
|
20
|
Ammerman ML, Tomasello DL, Faktorová D, Kafková L, Hashimi H, Lukeš J, Read LK. A core MRB1 complex component is indispensable for RNA editing in insect and human infective stages of Trypanosoma brucei. PLoS One 2013; 8:e78015. [PMID: 24250748 PMCID: PMC3820961 DOI: 10.1371/journal.pone.0078015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
Uridine insertion/deletion RNA editing is a unique and vital process in kinetoplastids, required for creation of translatable open reading frames in most mitochondrially-encoded RNAs. Emerging as a key player in this process is the mitochondrial RNA binding 1 (MRB1) complex. MRB1 comprises an RNA-independent core complex of at least six proteins, including the GAP1/2 guide RNA (gRNA) binding proteins. The core interacts in an RNA-enhanced or -dependent manner with imprecisely defined TbRGG2 subcomplexes, Armadillo protein MRB10130, and additional factors that comprise the dynamic MRB1 complex. Towards understanding MRB1 complex function in RNA editing, we present here functional characterization of the pentein domain-containing MRB1 core protein, MRB11870. Inducible RNAi studies demonstrate that MRB11870 is essential for proliferation of both insect vector and human infective stage T. brucei. MRB11870 ablation causes a massive defect in RNA editing, affecting both pan-edited and minimally edited mRNAs, but does not substantially affect mitochondrial RNA stability or processing of precursor transcripts. The editing defect in MRB1-depleted cells occurs at the initiation stage of editing, as pre-edited mRNAs accumulate. However, the gRNAs that direct editing remain abundant in the knockdown cells. To examine the contribution of MRB11870 to MRB1 macromolecular interactions, we tagged core complexes and analyzed their composition and associated proteins in the presence and absence of MRB11870. These studies demonstrated that MRB11870 is essential for association of GAP1/2 with the core, as well as for interaction of the core with other proteins and subcomplexes. Together, these data support a model in which the MRB1 core mediates functional interaction of gRNAs with the editing machinery, having GAP1/2 as its gRNA binding constituents. MRB11870 is a critical component of the core, essential for its structure and function.
Collapse
Affiliation(s)
- Michelle L. Ammerman
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Danielle L. Tomasello
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Lucie Kafková
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Laurie K. Read
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hashimi H, Zimmer SL, Ammerman ML, Read LK, Lukeš J. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex. Trends Parasitol 2013; 29:91-9. [PMID: 23305619 PMCID: PMC3558622 DOI: 10.1016/j.pt.2012.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 12/17/2022]
Abstract
Our understanding of kinetoplastid RNA (kRNA) editing has centered on this paradigm: guide RNAs (gRNAs) provide a blueprint for uridine insertion/deletion into mitochondrial mRNAs by the RNA editing core complex (RECC). The characterization of constituent subunits of the mitochondrial RNA-binding complex 1 (MRB1) implies that it too is vital to the editing process. The recently elucidated MRB1 architecture will be instrumental in putting functional data from individual subunits into context. Our model depicts two functions for MRB1: mediating multi-round kRNA editing by coordinating the exchange of multiple gRNAs required by RECC to edit lengthy regions of mRNAs, and then linking kRNA editing with other RNA processing events.
Collapse
Affiliation(s)
- Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, and Faculty of Science, University of South Bohemia, České Budějovice (Budweis) 370 05, Czech Republic
| | - Sara L. Zimmer
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, NY 14214, USA
| | - Michelle L. Ammerman
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, NY 14214, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, NY 14214, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, and Faculty of Science, University of South Bohemia, České Budějovice (Budweis) 370 05, Czech Republic
| |
Collapse
|