1
|
Engelberg D, Baskin A, Ben Zaken S, Marbach I. The Saccharomyces cerevisiae ∑1278b strain is sensitive to NaCl because of mutations in its ENA1 gene. FEMS Yeast Res 2025; 25:foaf021. [PMID: 40317084 PMCID: PMC12091097 DOI: 10.1093/femsyr/foaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/24/2025] [Accepted: 05/01/2025] [Indexed: 05/04/2025] Open
Abstract
Most laboratory strains of the yeast Saccharomyces cerevisiae are incapable of invading agar, to form large colonies (mats), and to develop filament-like structures (pseudohyphae). A prominent strain that manifests these morphologies is ∑1278b. While induced transcription of the FLO11 gene is critical for executing invasive growth, mat formation, and pseudohyphal growth, downregulation of the 'general stress response' also seems to be required. As this response is weak in ∑1278b cells, we assumed that they may be sensitives to stresses. We report, however, that they are resistant to various stressors, but severely sensitive specifically to NaCl. We found that this sensitivity is a result of mutations in the single ∑1278b's ENA gene, encoding P-type sodium ATPase. Other laboratory strains harbor three to five copies of ENA, suggesting that ∑1278b was selected against Ena activity. Obtaining ∑1278b cells that can grow on NaCl allows checking its effect on colony morphologies. In the presence of NaCl, ∑1278b/ENA1+ cells do not invade agar, and do not form pseudohyphae or mats. Thus, we have found the following: (i) The ∑1278b strain differs from other laboratory strains with respect to sensitivity to NaCl, because it has no active Na+ ATPase exporter. (ii) NaCl is a suppressor of invasiveness, filamentous growth, and mat formation.
Collapse
Affiliation(s)
- David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Singapore–HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Alexey Baskin
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shelly Ben Zaken
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Irit Marbach
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
2
|
Bandara A, Li E, Charlebois DA. Magnetic field platform for experiments on well-mixed and spatially structured microbial populations. BIOPHYSICAL REPORTS 2024; 4:100165. [PMID: 38897412 PMCID: PMC11276921 DOI: 10.1016/j.bpr.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Magnetic fields have been shown to affect sensing, migration, and navigation in living organisms. However, the effects of magnetic fields on microorganisms largely remain to be elucidated. We develop an open-source, 3D-printed magnetic field exposure device to perform experiments on well-mixed and spatially structured microbial populations. This device is designed in AutoCAD, modeled in COMSOL, and validated using a Gaussmeter and experiments on the budding yeast Saccharomyces cerevisiae. We find that static magnetic field exposure slows the spatially structured expansion of yeast mats that expand in two dimensions, but not yeast mats that expand in three dimensions, across the surface of semi-solid yeast extract-peptone-dextrose agar media. We also find that magnetic fields do not affect the growth of planktonic yeast cells in well-mixed liquid yeast extract-peptone-dextrose media. This study provides an adaptable device for performing controlled magnetic field experiments on microbes and advances our understanding of the effects of magnetic fields on fungi.
Collapse
Affiliation(s)
- Akila Bandara
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Enoki Li
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel A Charlebois
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Hall R, Bandara A, Charlebois DA. Fitness effects of a demography-dispersal trade-off in expanding Saccharomyces cerevisiaemats. Phys Biol 2024; 21:026001. [PMID: 38194907 DOI: 10.1088/1478-3975/ad1ccd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Fungi expand in space and time to form complex multicellular communities. The mechanisms by which they do so can vary dramatically and determine the life-history and dispersal traits of expanding populations. These traits influence deterministic and stochastic components of evolution, resulting in complex eco-evolutionary dynamics during colony expansion. We perform experiments on budding yeast strains genetically engineered to display rough-surface and smooth-surface phenotypes in colony-like structures called 'mats'. Previously, it was shown that the rough-surface strain has a competitive advantage over the smooth-surface strain when grown on semi-solid media. We experimentally observe the emergence and expansion of segments with a distinct smooth-surface phenotype during rough-surface mat development. We propose a trade-off between dispersal and local carrying capacity to explain the relative fitness of these two phenotypes. Using a modified stepping-stone model, we demonstrate that this trade-off gives the high-dispersing, rough-surface phenotype a competitive advantage from standing variation, but that it inhibits this phenotype's ability to invade a resident smooth-surface population via mutation. However, the trade-off improves the ability of the smooth-surface phenotype to invade in rough-surface mats, replicating the frequent emergence of smooth-surface segments in experiments. Together, these computational and experimental findings advance our understanding of the complex eco-evolutionary dynamics of fungal mat expansion.
Collapse
Affiliation(s)
- Rebekah Hall
- Department of Mathematical and Statistical Sciences, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
| | - Akila Bandara
- Department of Physics, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
| | - Daniel A Charlebois
- Department of Physics, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Forehand AL, Myagmarsuren D, Chen Z, Murphy HA. Variation in pH gradients and FLO11 expression in mat biofilms from environmental isolates of the yeast Saccharomyces cerevisiae. Microbiologyopen 2022; 11:e1277. [PMID: 35478280 PMCID: PMC9059236 DOI: 10.1002/mbo3.1277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Saccharomyces cerevisiae produces a multicellular phenotype, known as a mat, on a semi-solid medium. This biofilm phenotype was first described in the lab strain Σ1278b and has been analyzed mostly in this same background. Yeast cells form a mat by spreading across the medium and adhering to each other and the surface, in part through the variegated expression of the cell adhesion, FLO11. This process creates a characteristic floral pattern and generates pH and glucose gradients outward from the center of the mat. Mats are encapsulated in a liquid which may aid in surface spreading and diffusion. Here, we examine thirteen environmental isolates that vary visually in the phenotype. We predicted that mat properties were universal and increased morphological complexity would be associated with more extreme trait values. Our results showed that pH varied significantly among strains, but was not correlated to mat complexity. Only two isolates generated significant liquid boundaries and neither produced visually complex mats. In five isolates, we tracked the initiation of FLO11 using green fluorescent protein (GFP) under the control of the endogenous promoter. Strains varied in when and how much GFP was detected, with increased signal associated with increased morphological complexity. Generally, the signal was strongest in the center of the mat and absent at the expanding edge. Our results show that traits discovered in one background vary and exist independently of mat complexity in natural isolates. The environment may favor different sets of traits, which could have implications for how this yeast adapts to its many ecological niches.
Collapse
Affiliation(s)
- Amy L. Forehand
- Department of BiologyWilliam & MaryWilliamsburgVirginiaUSA,Present address:
Amy L. Forehand, Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Ziyan Chen
- Department of BiologyWilliam & MaryWilliamsburgVirginiaUSA,Present address:
Ziyan Chen, School of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | |
Collapse
|
5
|
Vandermeulen MD, Cullen PJ. Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity. PLoS Genet 2022; 18:e1009988. [PMID: 34982769 PMCID: PMC8759647 DOI: 10.1371/journal.pgen.1009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/14/2022] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Phenotypes can change during exposure to different environments through the regulation of signaling pathways that operate in integrated networks. How signaling networks produce different phenotypes in different settings is not fully understood. Here, Gene by Environment Interactions (GEIs) were used to explore the regulatory network that controls filamentous/invasive growth in the yeast Saccharomyces cerevisiae. GEI analysis revealed that the regulation of invasive growth is decentralized and varies extensively across environments. Different regulatory pathways were critical or dispensable depending on the environment, microenvironment, or time point tested, and the pathway that made the strongest contribution changed depending on the environment. Some regulators even showed conditional role reversals. Ranking pathways' roles across environments revealed an under-appreciated pathway (OPI1) as the single strongest regulator among the major pathways tested (RAS, RIM101, and MAPK). One mechanism that may explain the high degree of regulatory plasticity observed was conditional pathway interactions, such as conditional redundancy and conditional cross-pathway regulation. Another mechanism was that different pathways conditionally and differentially regulated gene expression, such as target genes that control separate cell adhesion mechanisms (FLO11 and SFG1). An exception to decentralized regulation of invasive growth was that morphogenetic changes (cell elongation and budding pattern) were primarily regulated by one pathway (MAPK). GEI analysis also uncovered a round-cell invasion phenotype. Our work suggests that GEI analysis is a simple and powerful approach to define the regulatory basis of complex phenotypes and may be applicable to many systems.
Collapse
Affiliation(s)
- Matthew D. Vandermeulen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
6
|
FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae. Pathogens 2021; 10:pathogens10111509. [PMID: 34832664 PMCID: PMC8617999 DOI: 10.3390/pathogens10111509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating or hostile environmental conditions. This adaptation most often involves morphological changes such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation, giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.
Collapse
|
7
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
8
|
Gallo AJ, Tronnolone H, Green JEF, Binder BJ. Modelling uniaxial non-uniform yeast colony growth: Comparing an agent-based model and continuum approximations. J Theor Biol 2021; 523:110715. [PMID: 33862095 DOI: 10.1016/j.jtbi.2021.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Biological experiments have shown that yeast can be restricted to grow in a uniaxial direction, vertically upwards from an agar plate to form a colony. The growth occurs as a consequence of cell proliferation driven by a nutrient supply at the base of the colony, and the height of the colony has been observed to increase linearly with time. Within the colony the nutrient concentration is non-constant and yeast cells throughout the colony will therefore not have equal access to nutrient, resulting in non-uniform growth. In this work, an agent based model is developed to predict the microscopic spatial distribution of labelled cells within the colony when the probability of cell proliferation can vary in space and time. We also describe a method for determining the average trajectories or pathlines of labelled cells within a colony growing in a uniaxial direction, enabling us to connect the microscopic and macroscopic behaviours of the system. We present results for six cases, which involve different assumptions for the presence or absence of a quiescent region (where no cell proliferation occurs), the size of the proliferative region, and the spatial variation of proliferation rates within the proliferative region. These six cases are designed to provide qualitative insight into likely growth scenarios whilst remaining amenable to analysis. We compare our macroscopic results to experimental observations of uniaxial colony growth for two cases where only a fixed number of cells at the base of the colony can proliferate. The model predicts that the height of the colony will increase linearly with time in both these cases, which is consistent with experimental observations. However, our model shows how different functional forms for the spatial dependence of the proliferation rate can be distinguished by tracking the pathlines of cells at different positions in the colony. More generally, our methodology can be applied to other biological systems exhibiting uniaxial growth, providing a framework for classifying or determining regions of uniform and non-uniform growth.
Collapse
Affiliation(s)
- Anthony J Gallo
- School of Mathematical Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Hayden Tronnolone
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide5001, Australia
| | - J Edward F Green
- School of Mathematical Sciences, The University of Adelaide, Adelaide 5005, Australia.
| | - Benjamin J Binder
- School of Mathematical Sciences, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
9
|
Oppler ZJ, Parrish ME, Murphy HA. Variation at an adhesin locus suggests sociality in natural populations of the yeast Saccharomyces cerevisiae. Proc Biol Sci 2019; 286:20191948. [PMID: 31615361 PMCID: PMC6834051 DOI: 10.1098/rspb.2019.1948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microbes engage in numerous social behaviours that are critical for survival and reproduction, and that require individuals to act as a collective. Various mechanisms ensure that collectives are composed of related, cooperating cells, thus allowing for the evolution and stability of these traits, and for selection to favour traits beneficial to the collective. Since microbes are difficult to observe directly, sociality in natural populations can instead be investigated using evolutionary genetic signatures, as social loci can be evolutionary hotspots. The budding yeast has been studied for over a century, yet little is known about its social behaviour in nature. Flo11 is a highly regulated cell adhesin required for most laboratory social phenotypes; studies suggest it may function in cell recognition and its heterogeneous expression may be adaptive for collectives such as biofilms. We investigated this locus and found positive selection in the areas implicated in cell-cell interaction, suggesting selection for kin discrimination. We also found balancing selection at an upstream activation site, suggesting selection on the level of variegated gene expression. Our results suggest this model yeast is surprisingly social in natural environments and is probably engaging in various forms of sociality. By using genomic data, this research provides a glimpse of otherwise unobservable interactions.
Collapse
Affiliation(s)
- Zachary J Oppler
- Department of Biology, William & Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
| | - Meadow E Parrish
- Department of Biology, William & Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
| | - Helen A Murphy
- Department of Biology, William & Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
| |
Collapse
|
10
|
Váchová L, Palková Z. How structured yeast multicellular communities live, age and die? FEMS Yeast Res 2019; 18:4950397. [PMID: 29718174 DOI: 10.1093/femsyr/foy033] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/20/2018] [Indexed: 12/28/2022] Open
Abstract
Yeasts, like other microorganisms, create numerous types of multicellular communities, which differ in their complexity, cell differentiation and in the occupation of different niches. Some of the communities, such as colonies and some types of biofilms, develop by division and subsequent differentiation of cells growing on semisolid or solid surfaces to which they are attached or which they can penetrate. Aggregation of individual cells is important for formation of other community types, such as multicellular flocs, which sediment to the bottom or float to the surface of liquid cultures forming flor biofilms, organized at the border between liquid and air under specific circumstances. These examples together with the existence of more obscure communities, such as stalks, demonstrate that multicellularity is widespread in yeast. Despite this fact, identification of mechanisms and regulations involved in complex multicellular behavior still remains one of the challenges of microbiology. Here, we briefly discuss metabolic differences between particular yeast communities as well as the presence and functions of various differentiated cells and provide examples of the ability of these cells to develop different ways to cope with stress during community development and aging.
Collapse
Affiliation(s)
- Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic
| | - Zdena Palková
- Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| |
Collapse
|
11
|
Unique Patterns and Biogeochemical Relevance of Two-Component Sensing in Marine Bacteria. mSystems 2019; 4:mSystems00317-18. [PMID: 30746496 PMCID: PMC6365647 DOI: 10.1128/msystems.00317-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
Marine microbes must manage variation in their chemical, physical, and biological surroundings. Because they directly link bacterial physiology to environmental changes, TCS systems are crucial to the bacterial cell. This study surveyed TCS systems in a large number of marine bacteria and identified key phylogenetic and lifestyle patterns in environmental sensing. We found evidence that, in comparison with bacteria as a whole, marine organisms have irregular TCS system constructs which might represent an adaptation specific to the marine environment. Additionally, we demonstrate the biogeochemical relevance of TCS systems by correlating the presence of the PMT9312_0717 response regulator protein to phosphate concentrations in the South Pacific. We highlight that despite their potential ecological and biogeochemical relevance, TCS systems have been understudied in the marine ecosystem. This report expands our understanding of the breadth of bacterial TCS systems and how marine bacteria have adapted to survive in their unique environment. Two-component sensory (TCS) systems link microbial physiology to the environment and thus may play key roles in biogeochemical cycles. In this study, we surveyed the TCS systems of 328 diverse marine bacterial species. We identified lifestyle traits such as copiotrophy and diazotrophy that are associated with larger numbers of TCS system genes within the genome. We compared marine bacterial species with 1,152 reference bacterial species from a variety of habitats and found evidence of extra response regulators in marine genomes. Examining the location of TCS genes along the circular bacterial genome, we also found that marine bacteria have a large number of “orphan” genes, as well as many hybrid histidine kinases. The prevalence of “extra” response regulators, orphan genes, and hybrid TCS systems suggests that marine bacteria break with traditional understanding of how TCS systems operate. These trends suggest prevalent regulatory networking, which may allow coordinated physiological responses to multiple environmental signals and may represent a specific adaptation to the marine environment. We examine phylogenetic and lifestyle traits that influence the number and structure of two-component systems in the genome, finding, for example, that a lack of two-component systems is a hallmark of oligotrophy. Finally, in an effort to demonstrate the importance of TCS systems to marine biogeochemistry, we examined the distribution of Prochlorococcus/Synechococcus response regulator PMT9312_0717 in metaproteomes of the tropical South Pacific. We found that this protein’s abundance is related to phosphate concentrations, consistent with a putative role in phosphate regulation. IMPORTANCE Marine microbes must manage variation in their chemical, physical, and biological surroundings. Because they directly link bacterial physiology to environmental changes, TCS systems are crucial to the bacterial cell. This study surveyed TCS systems in a large number of marine bacteria and identified key phylogenetic and lifestyle patterns in environmental sensing. We found evidence that, in comparison with bacteria as a whole, marine organisms have irregular TCS system constructs which might represent an adaptation specific to the marine environment. Additionally, we demonstrate the biogeochemical relevance of TCS systems by correlating the presence of the PMT9312_0717 response regulator protein to phosphate concentrations in the South Pacific. We highlight that despite their potential ecological and biogeochemical relevance, TCS systems have been understudied in the marine ecosystem. This report expands our understanding of the breadth of bacterial TCS systems and how marine bacteria have adapted to survive in their unique environment.
Collapse
|
12
|
Going with the Flo: The Role of Flo11-Dependent and Independent Interactions in Yeast Mat Formation. J Fungi (Basel) 2018; 4:jof4040132. [PMID: 30544497 PMCID: PMC6308949 DOI: 10.3390/jof4040132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 01/20/2023] Open
Abstract
Strains of the bakers’ yeast Saccharomyces cerevisiae that are able to generate a multicellular structure called a mat on low percentage (0.3%) agar plates are given a selective advantage over strains that cannot exhibit this phenotype. This environment may exhibit some similarities to the rotting fruit on which S. cerevisiae often grows in nature. Mat formation occurs when the cells spread over the plate as they grow, and cells in the center of the biofilm aggregate to form multicellular structures that resemble a floral pattern. This multicellular behavior is dependent on the cell surface flocculin Flo11. This review covers recent information on the structure of Flo11 and how this likely impacts mat formation as well as how variegated expression of Flo11 influences mat formation. Finally, it also discusses several Flo11-independent genetic factors that control mat formation, such as vacuolar protein sorting (VPS) genes, cell wall signaling components, and heat shock proteins.
Collapse
|
13
|
Willaert RG. Adhesins of Yeasts: Protein Structure and Interactions. J Fungi (Basel) 2018; 4:jof4040119. [PMID: 30373267 PMCID: PMC6308950 DOI: 10.3390/jof4040119] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of yeast cells to adhere to other cells or substrates is crucial for many yeasts. The budding yeast Saccharomyces cerevisiae can switch from a unicellular lifestyle to a multicellular one. A crucial step in multicellular lifestyle adaptation is self-recognition, self-interaction, and adhesion to abiotic surfaces. Infectious yeast diseases such as candidiasis are initiated by the adhesion of the yeast cells to host cells. Adhesion is accomplished by adhesin proteins that are attached to the cell wall and stick out to interact with other cells or substrates. Protein structures give detailed insights into the molecular mechanism of adhesin-ligand interaction. Currently, only the structures of a very limited number of N-terminal adhesion domains of adhesins have been solved. Therefore, this review focuses on these adhesin protein families. The protein architectures, protein structures, and ligand interactions of the flocculation protein family of S. cerevisiae; the epithelial adhesion family of C. glabrata; and the agglutinin-like sequence protein family of C. albicans are reviewed and discussed.
Collapse
Affiliation(s)
- Ronnie G Willaert
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), IJRG VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
- Department Bioscience Engineering, University Antwerp, 2020 Antwerp, Belgium.
| |
Collapse
|
14
|
Nutrient-limited growth with non-linear cell diffusion as a mechanism for floral pattern formation in yeast biofilms. J Theor Biol 2018; 448:122-141. [DOI: 10.1016/j.jtbi.2018.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022]
|
15
|
Snyder PJ, LaJeunesse DR, Reddy P, Kirste R, Collazo R, Ivanisevic A. Bioelectronics communication: encoding yeast regulatory responses using nanostructured gallium nitride thin films. NANOSCALE 2018; 10:11506-11516. [PMID: 29888776 PMCID: PMC6195121 DOI: 10.1039/c8nr03684e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Baker's yeast, S. cerevisiae, is a model organism that is used in synthetic biology. The work demonstrates how GaN nanostructured thin films can encode physiological responses in S. cerevisiae yeast. The Ga-polar, n-type, GaN thin films are characterized via Photocurrent Measurements, Atomic Force Microscopy and Kelvin Probe Force Microscopy. UV light is used to induce persistent photoconductivity that results in charge accumulation on the surface. The morphological, chemical and electronic properties of the nanostructured films are utilized to activate the cell wall integrity pathway and alter the amount of chitin produced by the yeast. The encoded cell responses are induced by the semiconductor interfacial properties associated with nanoscale topography and the accumulation of charge on the surface that promotes the build-up of oxygen species and in turn cause a hyperoxia related change in the yeast. The thin films can also alter the membrane voltage of yeast. The observed modulation of the membrane voltage of the yeast exposed to different GaN samples supports the notion that the semiconductor material can cause cell polarization. The results thus define a strategy for bioelectronics communication where the roughness, surface chemistry and charge of the wide band gap semiconductor's thin film surface initiate the encoding of the yeast response.
Collapse
Affiliation(s)
- Patrick J Snyder
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Tenório RP, Barros W. Patterns in Saccharomyces cerevisiae yeast colonies via magnetic resonance imaging. Integr Biol (Camb) 2017; 9:68-75. [PMID: 27942686 DOI: 10.1039/c6ib00219f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the use of high-resolution magnetic resonance imaging methods to observe pattern formation in colonies of Saccharomyces cerevisiae. Our results indicate substantial signal loss localized in specific regions of the colony rendering useful imaging contrast. This imaging contrast is recognizable as being due to discontinuities in magnetic susceptibility (χ) between different spatial regions. At the microscopic pixel level, the local variations in the magnetic susceptibility (Δχ) induce a loss in the NMR signal, which was quantified via T2 and T2* maps, permitting estimation of Δχ values for different regions of the colony. Interestingly the typical petal/wrinkling patterns present in the colony have a high degree of correlation with the estimated susceptibility distribution. We conclude that the presence of magnetic susceptibility inclusions, together with their spatial arrangement within the colony, may be a potential cause of the susceptibility distribution and therefore the contrast observed on the images.
Collapse
Affiliation(s)
- Rômulo P Tenório
- Centro Regional de Ciências Nucleares do Nordeste, Comissão Nacional de Energia Nuclear, Av. Prof. Luiz Freire, 200, Cidade Universitária, 50740-540, Recife, Pernambuco, Brazil.
| | - Wilson Barros
- Departamento de Física, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| |
Collapse
|
17
|
Chen X, Song W, Gao C, Qin W, Luo Q, Liu J, Liu L. Fumarate Production by Torulopsis glabrata: Engineering Heterologous Fumarase Expression and Improving Acid Tolerance. PLoS One 2016; 11:e0164141. [PMID: 27711153 PMCID: PMC5053504 DOI: 10.1371/journal.pone.0164141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/20/2016] [Indexed: 01/12/2023] Open
Abstract
Fumarate is a well-known biomass building block compound. However, the poor catalytic efficiency of fumarase is one of the major factors preventing its widespread production. To address this issue, we selected residues 159HPND162 of fumarase from Rhizopus oryzae as targets for site-directed mutagenesis based on molecular docking analysis. Twelve mutants were generated and characterized in detail. Kinetic studies showed that the Km values of the P160A, P160T, P160H, N161E, and D162W mutants were decreased, whereas Km values of H159Y, H159V, H159S, N161R, N161F, D162K, and D162M mutants were increased. In addition, all mutants displayed decreased catalytic efficiency except for the P160A mutant, whose kcat/Km was increased by 33.2%. Moreover, by overexpressing the P160A mutant, the engineered strain T.G-PMS-P160A was able to produce 5.2 g/L fumarate. To further enhance fumarate production, the acid tolerance of T.G-PMS-P160A was improved by deleting ade12, a component of the purine nucleotide cycle, and the resulting strain T.G(△ade12)-PMS-P160A produced 9.2 g/L fumarate. The strategy generated in this study opens up new avenues for pathway optimization and efficient production of natural products.
Collapse
Affiliation(s)
- Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, China
| | - Wei Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, China
| | - Wen Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p. mSphere 2016; 1:mSphere00129-16. [PMID: 27547826 PMCID: PMC4989245 DOI: 10.1128/msphere.00129-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022] Open
Abstract
As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the expression of Flo11-dependent phenotypes, including flocculation. In this study, we investigated the molecular basis of this strain-specific phenotypic variability. Our data indicate that strain-specific differences in the level of flocculation result from significant sequence differences in the FLO11 alleles and do not depend on quantitative differences in FLO11 expression or on surface hydrophobicity. We further have shown that beads coated with amino-terminal domain peptide bind preferentially to homologous cells. These data show that variability in the structure of the Flo11 adhesion domain may thus be an important determinant of membership in microbial communities and hence may drive selection and evolution. FLO11 encodes a yeast cell wall flocculin that mediates a variety of adhesive phenotypes in Saccharomyces cerevisiae. Flo11p is implicated in many developmental processes, including flocculation, formation of pseudohyphae, agar invasion, and formation of microbial mats and biofilms. However, Flo11p mediates different processes in different yeast strains. To investigate the mechanisms by which FLO11 determines these differences in colony morphology, flocculation, and invasion, we studied gene structure, function, and expression levels. Nonflocculent Saccharomyces cerevisiae Σ1278b cells exhibited significantly higher FLO11 mRNA expression, especially in the stationary phase, than highly flocculent S. cerevisiae var. diastaticus. The two strains varied in cell surface hydrophobicity, and Flo11p contributed significantly to surface hydrophobicity in S. cerevisiae var. diastaticus but not in strain Σ1278b. Sequencing of the FLO11 gene in S. cerevisiae var. diastaticus revealed strain-specific differences, including a 15-amino-acid insertion in the adhesion domain. Flo11p adhesion domains from strain Σ1278b and S. cerevisiae var. diastaticus were expressed and used to coat magnetic beads. The adhesion domain from each strain bound preferentially to homologous cells, and the preferences were independent of the cells in which the adhesion domains were produced. These results are consistent with the idea that strain-specific variations in the amino acid sequences in the adhesion domains cause different Flo11p flocculation activities. The results also imply that strain-specific differences in expression levels, posttranslational modifications, and allelic differences outside the adhesion domains have little effect on flocculation. IMPORTANCE As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the expression of Flo11-dependent phenotypes, including flocculation. In this study, we investigated the molecular basis of this strain-specific phenotypic variability. Our data indicate that strain-specific differences in the level of flocculation result from significant sequence differences in the FLO11 alleles and do not depend on quantitative differences in FLO11 expression or on surface hydrophobicity. We further have shown that beads coated with amino-terminal domain peptide bind preferentially to homologous cells. These data show that variability in the structure of the Flo11 adhesion domain may thus be an important determinant of membership in microbial communities and hence may drive selection and evolution.
Collapse
|
19
|
Sidari R, Caridi A. Nutrient depletion modifies cell wall adsorption activity of wine yeast. World J Microbiol Biotechnol 2016; 32:89. [DOI: 10.1007/s11274-016-2047-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/08/2016] [Indexed: 12/23/2022]
|
20
|
Kraushaar T, Brückner S, Veelders M, Rhinow D, Schreiner F, Birke R, Pagenstecher A, Mösch HU, Essen LO. Interactions by the Fungal Flo11 Adhesin Depend on a Fibronectin Type III-like Adhesin Domain Girdled by Aromatic Bands. Structure 2015; 23:1005-17. [DOI: 10.1016/j.str.2015.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/06/2015] [Accepted: 03/25/2015] [Indexed: 12/23/2022]
|
21
|
Abstract
Many microbial species form biofilms/mats under nutrient-limiting conditions, and fungal pathogens rely on this social behavior for virulence. In budding yeast, mat formation is dependent on the mucin-like flocculin Flo11, which promotes cell-to-cell and cell-to-substrate adhesion in mats. The biofilm/mat assays described here allow the evaluation of the role of Flo11 in the formation of mats. Cells are grown on surfaces with different degrees of rigidity to assess their expansion and three-dimensional architecture, and the cells are also exposed to plastic surfaces to quantify their adherence. These assays are broadly applicable to studying biofilm/mat formation in microbial species.
Collapse
|
22
|
Faria-Oliveira F, Carvalho J, Belmiro CLR, Ramalho G, Pavão M, Lucas C, Ferreira C. Elemental biochemical analysis of the polysaccharides in the extracellular matrix of the yeastSaccharomyces cerevisiae. J Basic Microbiol 2015; 55:685-94. [DOI: 10.1002/jobm.201400781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/08/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Fábio Faria-Oliveira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| | - Joana Carvalho
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| | - Celso LR Belmiro
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Federal University of Rio de Janeiro; Campus of Macaé RJ Brazil
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Institute of Medical Biochemistry; Federal University of Rio de Janeiro; RJ Brazil
| | - Gustavo Ramalho
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Institute of Medical Biochemistry; Federal University of Rio de Janeiro; RJ Brazil
| | - Mauro Pavão
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Institute of Medical Biochemistry; Federal University of Rio de Janeiro; RJ Brazil
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| | - Célia Ferreira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| |
Collapse
|
23
|
Chen L, Noorbakhsh J, Adams RM, Samaniego-Evans J, Agollah G, Nevozhay D, Kuzdzal-Fick J, Mehta P, Balázsi G. Two-dimensionality of yeast colony expansion accompanied by pattern formation. PLoS Comput Biol 2014; 10:e1003979. [PMID: 25504059 PMCID: PMC4263361 DOI: 10.1371/journal.pcbi.1003979] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/10/2014] [Indexed: 11/19/2022] Open
Abstract
Yeasts can form multicellular patterns as they expand on agar plates, a phenotype that requires a functional copy of the FLO11 gene. Although the biochemical and molecular requirements for such patterns have been examined, the mechanisms underlying their formation are not entirely clear. Here we develop quantitative methods to accurately characterize the size, shape, and surface patterns of yeast colonies for various combinations of agar and sugar concentrations. We combine these measurements with mathematical and physical models and find that FLO11 gene constrains cells to grow near the agar surface, causing the formation of larger and more irregular colonies that undergo hierarchical wrinkling. Head-to-head competition assays on agar plates indicate that two-dimensional constraint on the expansion of FLO11 wild type (FLO11) cells confers a fitness advantage over FLO11 knockout (flo11Δ) cells on the agar surface. Microbial biofilms are commonly found in nature and are highly relevant to public health. Biofilms can impose high risks to drinking water distribution by stable adherence to the interior of water pipes, and to food industry by contamination of food processing systems. Biofilm adherence to indwelling medical devices causes high rates of clinical infections that are difficult to eliminate as biofilm microbes resist treatment with antibiotics and biocides. These microbial abilities are related to the spatial composition and overall morphology of the biofilm. While the mechanisms underlying biofilm structure and morphology have been examined for bacteria, much less is known about eukaryotic biofilms. Here we find that the size, shape and patterning of budding yeast colonies can arise from constraining colony expansion to the surface of agar plates. Through computational analysis and mathematical modeling, we find that rapid colony expansion, colony shape irregularity and hierarchical wrinkling of the yeast colony surface can result from two-dimensionality of expansion imposed by the adhesin FLO11. Finally, we find that two-dimensional expansion conveys competitive advantage during head-to-head competition with the mutant cells lacking FLO11.
Collapse
Affiliation(s)
- Lin Chen
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Javad Noorbakhsh
- Department of Physics, Metcalf Science Center (SCI), Boston University, Boston, Massachusetts, United States of America
| | - Rhys M. Adams
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Joseph Samaniego-Evans
- Department of Physics, Metcalf Science Center (SCI), Boston University, Boston, Massachusetts, United States of America
| | - Germaine Agollah
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Dmitry Nevozhay
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Jennie Kuzdzal-Fick
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pankaj Mehta
- Department of Physics, Metcalf Science Center (SCI), Boston University, Boston, Massachusetts, United States of America
| | - Gábor Balázsi
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The Louis and Beatrice Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Faria-Oliveira F, Carvalho J, Belmiro CLR, Martinez-Gomariz M, Hernaez ML, Pavão M, Gil C, Lucas C, Ferreira C. Methodologies to generate, extract, purify and fractionate yeast ECM for analytical use in proteomics and glycomics. BMC Microbiol 2014; 14:244. [PMID: 25344425 PMCID: PMC4219020 DOI: 10.1186/s12866-014-0244-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/09/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In a multicellular organism, the extracellular matrix (ECM) provides a cell-supporting scaffold and helps maintaining the biophysical integrity of tissues and organs. At the same time it plays crucial roles in cellular communication and signalling, with implications in spatial organisation, motility and differentiation. Similarly, the presence of an ECM-like extracellular polymeric substance is known to support and protect bacterial and fungal multicellular aggregates, such as biofilms or colonies. However, the roles and composition of this microbial ECM are still poorly understood. RESULTS This work presents a protocol to produce S. cerevisiae and C. albicans ECM in an equally highly reproducible manner. Additionally, methodologies for the extraction and fractionation into protein and glycosidic analytical pure fractions were improved. These were subjected to analytical procedures, respectively SDS-PAGE, 2-DE, MALDI-TOF-MS and LC-MS/MS, and DAE and FPLC. Additional chemical methods were also used to test for uronic acids and sulphation. CONCLUSIONS The methodologies hereby presented were equally efficiently applied to extract high amounts of ECM material from S. cerevisiae and C. albicans mats, therefore showing their robustness and reproducibility for yECM molecular and structural characterization. yECM from S. cerevisiae and C. albicans displayed a different proteome and glycoside fractions. S. cerevisiae yECM presented two well-defined polysaccharides with different mass/charge, and C. albicans ECM presented a single different one. The chemical methods further suggested the presence of uronic acids, and chemical modification, possibly through sulphate substitution. All taken, the procedures herein described present the first sensible and concise approach to the molecular and chemical characterisation of the yeast ECM, opening the way to the in-depth study of the microbe multicellular aggregates structure and life-style.
Collapse
Affiliation(s)
- Fábio Faria-Oliveira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.
| | - Joana Carvalho
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.
| | - Celso L R Belmiro
- Institute of Medical Biochemistry, Laboratory of Glycoconjugates Biochemistry and Cellular Biology, Federal University of Rio de Janeiro/ Polo de Macaé, Macaé, Brazil.
| | - Montserrat Martinez-Gomariz
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid UCM-PCM), Madrid, Spain.
| | - Maria Luisa Hernaez
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid UCM-PCM), Madrid, Spain.
| | - Mauro Pavão
- Institute of Medical Biochemistry, Laboratory of Glycoconjugates Biochemistry and Cellular Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Concha Gil
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid UCM-PCM), Madrid, Spain. .,Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| | - Cândida Lucas
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.
| | - Célia Ferreira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.
| |
Collapse
|
25
|
Sidari R, Caridi A, Howell KS. Wild Saccharomyces cerevisiae strains display biofilm-like morphology in contact with polyphenols from grapes and wine. Int J Food Microbiol 2014; 189:146-52. [PMID: 25150672 DOI: 10.1016/j.ijfoodmicro.2014.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 01/01/2023]
Abstract
Polyphenols are a major component of wine grapes, and contribute to color and flavor, but their influence upon yeast growth forms has not been investigated. In this work we have studied the effect of polyphenols on the ability of natural isolates of wine-related Saccharomyces cerevisiae strains to form biofilms attaching to plastic surfaces, to grow as mat colonies, to invade media, and to display filamentous growth. The use of carbon- and nitrogen-rich or deficient media simulated grape juice fermentation conditions. The addition of wine polyphenols to these media affected biofilm formation, and cells exhibited a wide variety of invasiveness and mat formation ability with associated different growth and footprint patterns. Microscopic observation revealed that some strains switched to filamentous phenotypes which were able to invade media. The wide range of phenotypic expression observed could have a role in selection of strains suitable for inoculated wine fermentations and may explain the persistence of yeast strains in vineyard and winery environments.
Collapse
Affiliation(s)
- Rossana Sidari
- Unit of Microbiology, Department of AGRARIA, Mediterranea University of Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy.
| | - Andrea Caridi
- Unit of Microbiology, Department of AGRARIA, Mediterranea University of Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy
| | - Kate S Howell
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
26
|
Rodriguez ME, Orozco H, Cantoral JM, Matallana E, Aranda A. Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast. FEMS Yeast Res 2014; 14:845-57. [PMID: 24920206 DOI: 10.1111/1567-1364.12173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022] Open
Abstract
Cell-to-cell and cell-to-environment interactions of microorganisms are of substantial relevance for their biotechnological use. In the yeast Saccharomyces cerevisiae, flocculation can be an advantage to clarify final liquid products after fermentation, and biofilm formation may be relevant for the encapsulation of strains of interest. The adhesion properties of wine yeast strains can be modified by the genetic manipulation of transcriptional regulatory proteins, such as histone deacetylases, and acetylases. Sirtuin SIR2 is essential for the formation of mat structures, a kind of biofilm that requires the expression of cell-wall protein FLO11 as its deletion reduces FLO11 expression, and adhesion of cells to themselves and to agar in a commercial wine strain. Deletion of acetyltransferase GCN5 leads to a similar phenotype. A naturally flocculant wine yeast strain called P2 was characterized. Its flocculation happens only during grape juice fermentation and is due to the presence of a highly transcribed version of flocculin FLO5, linked to the presence of a δ sequence in the promoter. Deletion of acetyltransferase SAS2 enhances this phenotype and maltose fermentation even more. Therefore, the manipulation of acetylation/deacetylation machinery members is a valid way to alter the interaction of industrial yeast to their environment.
Collapse
Affiliation(s)
- María E Rodriguez
- Laboratorio de MicrobiologÍa Enológica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | | | | | | | | |
Collapse
|
27
|
The Wsc1p cell wall signaling protein controls biofilm (Mat) formation independently of Flo11p in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2014; 4:199-207. [PMID: 24318926 PMCID: PMC3931555 DOI: 10.1534/g3.113.006361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Saccharomyces cerevisiae strains of the ∑1278b background generate biofilms, referred to as mats, on low-density agar (0.3%) plates made with rich media (YPD). Mat formation involves adhesion of yeast cells to the surface of the agar substrate and each other as the biofilm matures, resulting in elaborate water channels that create filigreed patterns of cells. The cell wall adhesion protein Flo11p is required for mat formation; however, genetic data indicate that other unknown effectors are also required. For example, mutations in vacuolar protein sorting genes that affect the multivesicular body pathway, such as vps27Δ, cause mat formation defects independently of Flo11p, presumably by affecting an unidentified signaling pathway. A cell wall signaling protein, Wsc1p, found at the plasma membrane is affected for localization and function by vps27Δ. We found that a wsc1 mutation disrupted mat formation in a Flo11p-independent manner. Wsc1p appears to impact mat formation through the Rom2p-Rho1p signaling module, by which Wsc1p also regulates the cell wall. The Bck1p, Mkk1/Mkk2, Mpk1p MAP kinase signaling cascade is known to regulate the cell wall downstream of Wsc1p-Rom2p-Rho1p but, surprisingly, these kinases do not affect mat formation. In contrast, Wsc1p may impact mat formation by affecting Skn7p instead. Skn7p can also receive signaling inputs from the Sln1p histidine kinase; however, mutational analysis of specific histidine kinase receiver residues in Skn7p indicate that Sln1p does not play an important role in mat formation, suggesting that Skn7p primarily acts downstream of Wsc1p to regulate mat formation.
Collapse
|
28
|
Cell aggregations in yeasts and their applications. Appl Microbiol Biotechnol 2013; 97:2305-18. [PMID: 23397484 DOI: 10.1007/s00253-013-4735-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 12/23/2022]
Abstract
Yeasts can display four types of cellular aggregation: sexual, flocculation, biofilm formation, and filamentous growth. These cell aggregations arise, in some yeast strains, as a response to environmental or physiological changes. Sexual aggregation is part of the yeast mating process, representing the first step of meiotic recombination. The flocculation phenomenon is a calcium-dependent asexual reversible cellular aggregation that allows the yeast to withstand adverse conditions. Biofilm formation consists of multicellular aggregates that adhere to solid surfaces and are embedded in a protein matrix; this gives the yeast strain either the ability to colonize new environments or to survive harsh environmental conditions. Finally, the filamentous growth is the ability of some yeast strains to grow in filament forms. Filamentous growth can be attained by two different means, with the formation of either hyphae or pseudohyphae. Both hyphae and pseudohyphae arise when the yeast strain is under nutrient starvation conditions and they represent a means for the microbial strain to spread over a wide area to survey for food sources, without increasing its biomass. Additionally, this filamentous growth is also responsible for the invasive growth of some yeast.
Collapse
|
29
|
Rachfall N, Schmitt K, Bandau S, Smolinski N, Ehrenreich A, Valerius O, Braus GH. RACK1/Asc1p, a ribosomal node in cellular signaling. Mol Cell Proteomics 2012; 12:87-105. [PMID: 23071099 DOI: 10.1074/mcp.m112.017277] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RACK1/Asc1p and its essential orthologues in higher eukaryotes, such as RACK1 in metazoa, are involved in several distinct cellular signaling processes. The implications of a total deletion have never been assessed in a comprehensive manner. This study reveals the major cellular processes affected in a Saccharomyces cerevisiae Δasc1 deletion background via de novo proteome and transcriptome analysis, as well as subsequent phenotypical characterizations. The deletion of ASC1 reduces iron uptake and causes nitrosative stress, both known indicators for hypoxia, which manifests in a shift of energy metabolism from respiration to fermentation in the Δasc1 strain. Asc1p further impacts cellular metabolism through its regulative role in the MAP kinase signal transduction pathways of invasive/filamentous growth and cell wall integrity. In the Δasc1 mutant strain, aberrations from the expected cellular response, mediated by these pathways, can be observed and are linked to changes in protein abundances of pathway-targeted transcription factors. Evidence of the translational regulation of such transcription factors suggests that ribosomal Asc1p is involved in signal transduction pathways and controls the biosynthesis of the respective final transcriptional regulators.
Collapse
Affiliation(s)
- Nicole Rachfall
- Institute of Microbiology and Genetics, Georg-August Universität, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Bacterial and fungal species produce some of the best-characterized functional amyloids, that is, extracellular fibres that play key roles in mediating adhesion and biofilm formation. Yet, the molecular details underlying their mechanical strength remain poorly understood. Here, we use single-molecule atomic force microscopy to measure the mechanical properties of amyloids formed by Als cell adhesion proteins from the pathogen Candida albicans. We show that stretching Als proteins through their amyloid sequence yields characteristic force signatures corresponding to the mechanical unzipping of β-sheet interactions formed between surface-arrayed Als proteins. The unzipping probability increases with contact time, reflecting the time necessary for optimal inter β-strand associations. These results demonstrate that amyloid interactions provide cohesive strength to a major adhesion protein from a microbial pathogen, thereby strengthening cell adhesion. We suggest that such functional amyloids may represent a generic mechanism for providing mechanical strength to cell adhesion proteins. In nanotechnology, these single-molecule manipulation experiments provide new opportunities to understand the molecular mechanisms driving the cohesion of functional amyloid-based nanostructures.
Collapse
Affiliation(s)
- David Alsteens
- Universitê catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Caleen B. Ramsook
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, New York 11210, USA
| | - Peter N. Lipke
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, New York 11210, USA
- Corresponding authors: Yves Dufrêne: , Peter Lipke:
| | - Yves F. Dufrêne
- Universitê catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
- Corresponding authors: Yves Dufrêne: , Peter Lipke:
| |
Collapse
|
31
|
Voordeckers K, De Maeyer D, van der Zande E, Vinces MD, Meert W, Cloots L, Ryan O, Marchal K, Verstrepen KJ. Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology. Mol Microbiol 2012; 86:225-39. [PMID: 22882838 PMCID: PMC3470922 DOI: 10.1111/j.1365-2958.2012.08192.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 01/08/2023]
Abstract
When grown on solid substrates, different microorganisms often form colonies with very specific morphologies. Whereas the pioneers of microbiology often used colony morphology to discriminate between species and strains, the phenomenon has not received much attention recently. In this study, we use a genome-wide assay in the model yeast Saccharomyces cerevisiae to identify all genes that affect colony morphology. We show that several major signalling cascades, including the MAPK, TORC, SNF1 and RIM101 pathways play a role, indicating that morphological changes are a reaction to changing environments. Other genes that affect colony morphology are involved in protein sorting and epigenetic regulation. Interestingly, the screen reveals only few genes that are likely to play a direct role in establishing colony morphology, with one notable example being FLO11, a gene encoding a cell-surface adhesin that has already been implicated in colony morphology, biofilm formation, and invasive and pseudohyphal growth. Using a series of modified promoters for fine-tuning FLO11 expression, we confirm the central role of Flo11 and show that differences in FLO11 expression result in distinct colony morphologies. Together, our results provide a first comprehensive look at the complex genetic network that underlies the diversity in the morphologies of yeast colonies.
Collapse
Affiliation(s)
- Karin Voordeckers
- Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, B-3001, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Goossens KV, Willaert RG. The N-terminal domain of the Flo11 protein from Saccharomyces cerevisiae is an adhesin without mannose-binding activity. FEMS Yeast Res 2011; 12:78-87. [DOI: 10.1111/j.1567-1364.2011.00766.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Katty V.Y. Goossens
- Laboratory of Structural Biology; Department of Bioengineering Sciences; Vrije Universiteit Brussel; Brussels; Belgium
| | - Ronnie G. Willaert
- Laboratory of Structural Biology; Department of Bioengineering Sciences; Vrije Universiteit Brussel; Brussels; Belgium
| |
Collapse
|
33
|
Vacuolar protein sorting genes regulate mat formation in Saccharomyces cerevisiae by Flo11p-dependent and -independent mechanisms. EUKARYOTIC CELL 2011; 10:1516-26. [PMID: 21908597 DOI: 10.1128/ec.05078-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae generates complex biofilms called mats on low-density (0.3%) agar plates. The mats can be morphologically divided into two regions: (i) hub, the interior region characterized by the presence of wrinkles and channels, and (ii) rim, the smooth periphery. Formation of mats depends on the adhesin Flo11p, which is also required for invasive growth, a phenotype in which the S. cerevisiae yeasts grow as chains of cells that dig into standard-density (2%) agar plates. Although both invasive growth and mat formation depend on Flo11p, mutations that perturb the multivesicular body (MVB) protein sorting pathway inhibit mat formation in a FLO11-independent manner. These mutants, represented by vps27Δ, disrupt mat formation but do not affect invasive growth, FLO11 gene or protein expression, or Flo11p localization. In contrast, an overlapping subset of MVB mutants (represented by ESCRT [endosomal sorting complex required for transport] complex genes such as VPS25) interrupt the Rim101p signal transduction cascade, which is required for FLO11 expression, and thus block both invasive growth and mat formation. In addition, this report shows that mature Flo11p is covalently associated with the cell wall and shed into the extracellular matrix of the growing mat.
Collapse
|
34
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
35
|
Cell signals, cell contacts, and the organization of yeast communities. EUKARYOTIC CELL 2011; 10:466-73. [PMID: 21296916 DOI: 10.1128/ec.00313-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Even relatively simple species have evolved mechanisms to organize individual organisms into communities, such that the fitness of the group is greater than the fitness of isolated individuals. Within the fungal kingdom, the ability of many yeast species to organize into communities is crucial for their growth and survival, and this property has important impacts both on the economy and on human health. Over the last few years, studies of Saccharomyces cerevisiae have revealed several fundamental properties of yeast communities. First, strain-to-strain variation in the structures of these groups is attributable in part to variability in the expression and functions of adhesin proteins. Second, the extracellular matrix surrounding these communities can protect them from environmental stress and may also be important in cell signaling. Finally, diffusible signals between cells contribute to community organization so that different regions of a community express different genes and adopt different cell fates. These findings provide an arena in which to view fundamental mechanisms by which contacts and signals between individual organisms allow them to assemble into functional communities.
Collapse
|
36
|
Van Mulders SE, Stassen C, Daenen L, Devreese B, Siewers V, van Eijsden RGE, Nielsen J, Delvaux FR, Willaert R. The influence of microgravity on invasive growth in Saccharomyces cerevisiae. ASTROBIOLOGY 2011; 11:45-55. [PMID: 21345087 DOI: 10.1089/ast.2010.0518] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Σ1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Σ1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Σ1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium.
Collapse
|
37
|
Zhou J, Liu L, Chen J. Improved ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production. J Appl Microbiol 2010; 110:44-53. [PMID: 20880146 DOI: 10.1111/j.1365-2672.2010.04865.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS A major problem in industrial fermentation of organic acids with micro-organisms is to ensure a suitable pH in the culture broth. To circumvent this problem, we investigated the effect of citrate, which is a widely used auxiliary energy co-substrate, on cell growth, organic acid production and pH homeostasis among extracellular environment, cytoplasm and vacuole, in the pyruvic acid production by Candida glabrata CCTCC M202019 under different pH conditions. METHODS AND RESULTS Analysis of intracellular ATP regeneration, cytoplasmic and vacuolar pH values under different culture conditions points towards a relief of stress when C. glabrata is exposed to lower pH, if citrate is added. When 50 mmol l(-1) citrate was added to the culture medium, the intracellular ATP concentrations increased by 20·5% (pH 5·5), 20·4% (pH 5·0) and 39·3% (pH 4·5), and higher pH gradients among the culture broth, cell cytoplasm and vacuoles resulted. As a consequence, the cell growth and pyruvic acid production of C. glabrata CCTCC M202019 were significantly improved under pH 5·0 and 4·5. CONCLUSIONS The acid tolerance of yeast can be improved by enhancing the ATP supply, which helps to maintain higher pH gradients in the system. SIGNIFICANCE AND IMPACT OF THE STUDY The results presented here expand our understanding of the physiological characteristics in eukaryotic micro-organisms under low pH conditions and provide a potential route for the further improvement of organic acids production process by process optimization or metabolic engineering.
Collapse
Affiliation(s)
- J Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | | |
Collapse
|
38
|
Goossens K, Willaert R. Flocculation protein structure and cell–cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol Lett 2010; 32:1571-85. [DOI: 10.1007/s10529-010-0352-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/02/2010] [Indexed: 01/08/2023]
|
39
|
Martineau CN, Melki R, Kabani M. Swa2p-dependent clathrin dynamics is critical for Flo11p processing and ‘Mat’ formation in the yeastSaccharomyces cerevisiae. FEBS Lett 2010; 584:1149-55. [DOI: 10.1016/j.febslet.2010.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/26/2010] [Accepted: 02/02/2010] [Indexed: 11/26/2022]
|
40
|
Granek JA, Magwene PM. Environmental and genetic determinants of colony morphology in yeast. PLoS Genet 2010; 6:e1000823. [PMID: 20107600 PMCID: PMC2809765 DOI: 10.1371/journal.pgen.1000823] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 12/21/2009] [Indexed: 12/30/2022] Open
Abstract
Nutrient stresses trigger a variety of developmental switches in the budding yeast Saccharomyces cerevisiae. One of the least understood of such responses is the development of complex colony morphology, characterized by intricate, organized, and strain-specific patterns of colony growth and architecture. The genetic bases of this phenotype and the key environmental signals involved in its induction have heretofore remained poorly understood. By surveying multiple strain backgrounds and a large number of growth conditions, we show that limitation for fermentable carbon sources coupled with a rich nitrogen source is the primary trigger for the colony morphology response in budding yeast. Using knockout mutants and transposon-mediated mutagenesis, we demonstrate that two key signaling networks regulating this response are the filamentous growth MAP kinase cascade and the Ras-cAMP-PKA pathway. We further show synergistic epistasis between Rim15, a kinase involved in integration of nutrient signals, and other genes in these pathways. Ploidy, mating-type, and genotype-by-environment interactions also appear to play a role in the controlling colony morphology. Our study highlights the high degree of network reuse in this model eukaryote; yeast use the same core signaling pathways in multiple contexts to integrate information about environmental and physiological states and generate diverse developmental outputs.
Collapse
Affiliation(s)
- Joshua A. Granek
- Department of Biology and Center for Systems Biology, Duke University, Durham, North Carolina, United States of America
| | - Paul M. Magwene
- Department of Biology and Center for Systems Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
Multicellular organisms utilize cell-to-cell signals to build patterns of cell types within embryos, but the ability of fungi to form organized communities has been largely unexplored. Here we report that colonies of the yeast Saccharomyces cerevisiae formed sharply divided layers of sporulating and nonsporulating cells. Sporulation initiated in the colony's interior, and this region expanded upward as the colony matured. Two key activators of sporulation, IME1 and IME2, were initially transcribed in overlapping regions of the colony, and this overlap corresponded to the initial sporulation region. The development of colony sporulation patterns depended on cell-to-cell signals, as demonstrated by chimeric colonies, which contain a mixture of two strains. One such signal is alkaline pH, mediated through the Rim101p/PacC pathway. Meiotic-arrest mutants that increased alkali production stimulated expression of an early meiotic gene in neighboring cells, whereas a mutant that decreased alkali production (cit1Delta) decreased this expression. Addition of alkali to colonies accelerated the expansion of the interior region of sporulation, whereas inactivation of the Rim101p pathway inhibited this expansion. Thus, the Rim101 pathway mediates colony patterning by responding to cell-to-cell pH signals. Cell-to-cell signals coupled with nutrient gradients may allow efficient spore formation and spore dispersal in natural environments.
Collapse
|
42
|
The tRNA modification complex elongator regulates the Cdc42-dependent mitogen-activated protein kinase pathway that controls filamentous growth in yeast. EUKARYOTIC CELL 2009; 8:1362-72. [PMID: 19633267 DOI: 10.1128/ec.00015-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal transduction pathways control multiple aspects of cellular behavior, including global changes to the cell cycle, cell polarity, and gene expression, which can result in the formation of a new cell type. In the budding yeast Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth induces a dimorphic foraging response under nutrient-limiting conditions. How nutritional cues feed into MAPK activation remains an open question. Here we report a functional connection between the elongator tRNA modification complex (ELP genes) and activity of the filamentous growth pathway. Elongator was required for filamentous growth pathway signaling, and elp mutants were defective for invasive growth, cell polarization, and MAPK-dependent mat formation. Genetic suppression analysis showed that elongator functions at the level of Msb2p, the signaling mucin that operates at the head of the pathway, which led to the finding that elongator regulates the starvation-dependent expression of the MSB2 gene. The Elp complex was not required for activation of related pathways (pheromone response or high osmolarity glycerol response) that share components with the filamentous growth pathway. Because protein translation provides a rough metric of cellular nutritional status, elongator may convey nutritional information to the filamentous growth pathway at the level of MSB2 expression.
Collapse
|
43
|
Role of the cell wall integrity and filamentous growth mitogen-activated protein kinase pathways in cell wall remodeling during filamentous growth. EUKARYOTIC CELL 2009; 8:1118-33. [PMID: 19502582 DOI: 10.1128/ec.00006-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many fungal species including pathogens exhibit filamentous growth (FG) as a means of foraging for nutrients. Genetic screens were performed to identify genes required for FG in the budding yeast Saccharomyces cerevisiae. Genes encoding proteins with established functions in transcriptional activation (MCM1, MATalpha2, PHD1, MSN2, SIR4, and HMS2), cell wall integrity (MPT5, WSC2, and MID2), and cell polarity (BUD5) were identified as potential regulators of FG. The transcription factors MCM1 and MATalpha2 induced invasive growth by promoting diploid-specific bipolar budding in haploid cells. Components of the cell wall integrity pathway including the cell surface proteins Slg1p/Wsc1p, Wsc2p, Mid2p, and the mitogen-activated protein kinase (MAPK) Slt2p/Mpk1p contributed to multiple aspects of the FG response including cell elongation, cell-cell adherence, and agar invasion. Mid2p and Wsc2p stimulated the FG MAPK pathway through the signaling mucin Msb2p and components of the MAPK cascade. The FG pathway contributed to cell wall integrity in parallel with the cell wall integrity pathway and in opposition with the high osmolarity glycerol response pathway. Mass spectrometry approaches identified components of the filamentous cell wall including the mucin-like proteins Msb2p, Flo11p, and subtelomeric (silenced) mucin Flo10p. Secretion of Msb2p, which occurs as part of the maturation of the protein, was inhibited by the ss-1,3-glucan layer of the cell wall, which highlights a new regulatory aspect to cell wall remodeling in this organism. Disruption of ss-1,3-glucan linkages induced mucin shedding and resulted in defects in cell-cell adhesion and invasion of cells into the agar matrix.
Collapse
|
44
|
Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR. Phenotypic diversity of Flo protein family-mediated adhesion inSaccharomyces cerevisiae. FEMS Yeast Res 2009; 9:178-90. [DOI: 10.1111/j.1567-1364.2008.00462.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Kortmann H, Blank LM, Schmid A. Single cell analysis reveals unexpected growth phenotype ofS. cerevisiae. Cytometry A 2009; 75:130-9. [DOI: 10.1002/cyto.a.20684] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Abstract
Yeasts are found in natural biofilms, where many microorganisms colonize surfaces. In artificial environments, such as surfaces of man-made objects, biofilms can reduce industrial productivity, destroy structures, and threaten human life. 1-3 On the other hand, harnessing the power of biofilms can help clean the environment and generate sustainable energy. 4-8 The ability of S. cerevisiae to colonize surfaces and participate in complex biofilms was mostly ignored until the rediscovery of the differentiation programs triggered by various signaling pathways and environmental cues in this organism. 9, 10 The continuing interest in using S. cerevisiae as a model organism to understand the interaction and convergence of signaling pathways, such as the Ras-PKA, Kss1 MAPK, and Hog1 osmolarity pathways, quickly placed S. cerevisiae in the junction of biofilm biology and signal transduction research. 11-20 To this end, differentiation of yeast cells into long, adhesive, pseudohyphal filaments became a convenient readout for the activation of signal transduction pathways upon various environmental changes. However, filamentation is a complex collection of phenotypes, which makes assaying for it as if it were a simple phenotype misleading. In the past decade, several assays were successfully adopted from bacterial biofilm studies to yeast research, such as MAT formation assays to measure colony spread on soft agar and crystal violet staining to quantitatively measure cell-surface adherence. 12, 21 However, there has been some confusion in assays developed to qualitatively assess the adhesive and invasive phenotypes of yeast in agar. Here, we present a simple and reliable method for assessing the adhesive and invasive quality of yeast strains with easy-to-understand steps to isolate the adhesion assessment from invasion assessment. Our method, adopted from previous studies, 10, 16 involves growing cells in liquid media and plating on differential nutrient conditions for growth of large spots, which we then wash with water to assess adhesion and rub cells completely off the agar surface to assess invasion into the agar. We eliminate the need for streaking cells onto agar, which affects the invasion of cells into the agar. In general, we observed that haploid strains that invade agar are always adhesive, yet not all adhesive strains can invade agar medium. Our approach can be used in conjunction with other assays to carefully dissect the differentiation steps and requirements of yeast signal transduction, differentiation, quorum sensing, and biofilm formation.
Collapse
|
47
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|