1
|
Lucotte EA, Jay P, Rougemont Q, Boyer L, Cornille A, Snirc A, Labat A, Chahine E, Duhamel M, Namias A, Gendelman J, Ma WJ, Hayes RK, Baruri S, Ham JP, Perlin MH, Hood ME, Rodríguez de la Vega RC, Giraud T. Repeated loss of function at HD mating-type genes and of recombination in anther-smut fungi. Nat Commun 2025; 16:4962. [PMID: 40436846 PMCID: PMC12119880 DOI: 10.1038/s41467-025-60222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/14/2025] [Indexed: 06/01/2025] Open
Abstract
Basidiomycete fungi typically have two mating-type loci controlling mating compatibility, HD and PR, residing on different chromosomes. Loss-of-function in mating compatibility has been reported at the PR genes in a few heterothallic basidiomycetes, but not for the HD genes. In Microbotryum anther-smut fungi, there have been repeated linkage events between the HD and PR loci through chromosome fusions, leading to non-recombining regions. Here, we found that two sister Microbotryum species parasitizing Dianthus plants, M. superbum and M. shykoffianum, as well as the distantly related M. scorzonerae, have their HD and PR loci on different chromosomes, but with the PR chromosome fused with a part of the ancestral HD chromosome. In addition, recombination suppression has extended stepwise, generating evolutionary strata. In all three species, the HD genes lost their function in mating compatibility, natural diploid strains being often homozygous at the HD locus. Strains could be homozygous for a disrupted HD2 gene, that was hardly expressed during mating. Mating tests confirmed that a single genetic factor controlled mating compatibility and that haploid strains with identical HD alleles could mate and produce hyphae. This study shows that a unifactorial mating-type determinism can evolve, repeatedly, from a bifactorial system, by different mechanisms.
Collapse
Affiliation(s)
- Elise A Lucotte
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, Gif sur Yvette, France.
| | - Paul Jay
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, Gif sur Yvette, France
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Quentin Rougemont
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, Gif sur Yvette, France
| | - Loreleï Boyer
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, Gif sur Yvette, France
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, France
| | - Alodie Snirc
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, Gif sur Yvette, France
| | - Amandine Labat
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, Gif sur Yvette, France
| | - Elizabeth Chahine
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, Gif sur Yvette, France
| | - Marine Duhamel
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, Gif sur Yvette, France
| | - Alice Namias
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, Gif sur Yvette, France
| | | | - Wen-Juan Ma
- Department of Biology, Amherst College, Amherst, MA, USA
- Department of Biology, Research group of Ecology, Evolution and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Roxanne K Hayes
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Shikhi Baruri
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Joseph P Ham
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA, USA
| | | | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, Gif sur Yvette, France.
| |
Collapse
|
2
|
Bian Z, Xu Z, Peer A, Choi Y, Priest SJ, Akritidou K, Dasgupta A, Dahlmann TA, Kück U, Nowrousian M, Sachs MS, Sun S, Heitman J. Essential genes encoded by the mating-type locus of the human fungal pathogen Cryptococcus neoformans. mBio 2025; 16:e0022325. [PMID: 39998264 PMCID: PMC11980393 DOI: 10.1128/mbio.00223-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Fungal sexual reproduction is controlled by the mating-type (MAT) locus. In contrast to a majority of species in the phylum Basidiomycota that have tetrapolar mating-type systems, the opportunistic human pathogen Cryptococcus neoformans employs a bipolar mating-type system, with two mating types (a and α) determined by a single MAT locus that is unusually large (~120 kb) and contains more than 20 genes. While several MAT genes are associated with mating and sexual development, others control conserved cellular processes (e.g., cargo transport and protein synthesis), of which five (MYO2, PRT1, RPL22, RPL39, and RPO41) have been hypothesized to be essential. In this study, through genetic analysis involving sporulation of heterozygous diploid deletion mutants, as well as in some cases construction and analyses of conditional expression alleles of these genes, we confirmed that with the exception of MYO2, both alleles of the other four MAT genes are indeed essential for cell viability. We further showed that while MYO2 is not essential, its function is critical for infectious spore production, faithful cytokinesis, adaptation for growth at high temperature, and pathogenicity in vivo. Our results demonstrate the presence of essential genes in the MAT locus that are divergent between cells of opposite mating types. We discuss possible mechanisms to maintain functional alleles of these essential genes in a rapidly evolving genomic region in the context of fungal sexual reproduction and mating-type evolution.IMPORTANCESexual reproduction is essential for long-term evolutionary success. Fungal cell-type identity is governed by the MAT locus, which is typically rapidly evolving and highly divergent between different mating types. In this study, we show that the a and α alleles of four genes encoded in the MAT locus of the opportunistic human fungal pathogen C. neoformans are essential. We demonstrate that a fifth gene, MYO2, which had been predicted to be essential, is in fact dispensable for cell viability. However, a functional MYO2 allele is important for cytokinesis and fungal pathogenicity. Our study highlights the need for careful genetic analyses in determining essential genes, which is complementary to high-throughput approaches. Additionally, the presence of essential genes in the MAT locus of C. neoformans provides insights into the function, maintenance, and evolution of these fast-evolving genomic regions.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anushka Peer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yeseul Choi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Konstantina Akritidou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Tim A. Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Coelho MA, David-Palma M, Marincowitz S, Aylward J, Pham NQ, Yurkov AM, Wingfield BD, Wingfield MJ, Sun S, Heitman J. Tracing the evolution and genomic dynamics of mating-type loci in Cryptococcus pathogens and closely related species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637874. [PMID: 39990455 PMCID: PMC11844451 DOI: 10.1101/2025.02.12.637874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sexual reproduction in basidiomycete fungi is governed by MAT loci (P/R and HD), which exhibit remarkable evolutionary plasticity, characterized by expansions, rearrangements, and gene losses often associated with mating system transitions. The sister genera Cryptococcus and Kwoniella provide a powerful framework for studying MAT loci evolution owing to their diverse reproductive strategies and distinct architectures, spanning bipolar and tetrapolar systems with either linked or unlinked MAT loci. Building on recent large-scale comparative genomic analyses, we generated additional chromosome-level assemblies uncovering distinct evolutionary trajectories shaping MAT loci organization. Contrasting with the small-scale expansions and gene acquisitions observed in Kwoniella, our analyses revealed independent expansions of the P/R locus in tetrapolar Cryptococcus, possibly driven by pheromone gene duplications. Notably, these expansions coincided with an enrichment of AT-rich codons and a pronounced GC-content reduction, likely associated with recombination suppression and relaxed codon usage selection. Diverse modes of MAT locus linkage were also identified, including three previously unrecognized transitions: one resulting in a pseudobipolar arrangement and two leading to bipolarity. All the three transitions involved translocations. In the pseudobipolar configuration, the P/R and HD loci remained on the same chromosome but genetically unlinked, whereas the bipolar transitions additionally featured rearrangements that fused the two loci into a nonrecombining region. Mating assays confirmed a sexual cycle in C. decagattii, demonstrating its ability to undergo mating and sporulation. Progeny analysis in K. mangrovensis revealed substantial ploidy variation and aneuploidy, likely stemming from haploid-diploid mating, yet evidence of recombination and loss of heterozygosity indicates that meiotic exchange occurs despite irregular chromosome segregation. Our findings underscore the importance of continued diversity sampling and provides further evidence for convergent evolution of fused MAT loci in basidiomycetes, offering new insights into the genetic and chromosomal changes driving reproductive transitions.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Seonju Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Nam Q. Pham
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
4
|
Bian Z, Xu Z, Peer A, Choi Y, Priest SJ, Akritidou K, Dasgupta A, Dahlmann TA, Kück U, Nowrousian M, Sachs MS, Sun S, Heitman J. Essential genes encoded by the mating-type locus of the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626420. [PMID: 39677606 PMCID: PMC11642766 DOI: 10.1101/2024.12.02.626420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Fungal sexual reproduction is controlled by the mating-type (MAT) locus. In contrast to a majority of species in the phylum Basidiomycota that have tetrapolar mating-type systems, the opportunistic human pathogen Cryptococcus neoformans employs a bipolar mating-type system, with two mating types (a and α) determined by a single MAT locus that is unusually large (~120 kb) and contains more than 20 genes. While several MAT genes are associated with mating and sexual development, others control conserved cellular processes (e.g. cargo transport and protein synthesis), of which five (MYO2, PRT1, RPL22, RPL39, and RPO41) have been hypothesized to be essential. In this study, through genetic analysis involving sporulation of heterozygous diploid deletion mutants, as well as in some cases construction and analyses of conditional expression alleles of these genes, we confirmed that with the exception of MYO2, both alleles of the other four MAT genes are indeed essential for cell viability. We further showed that while MYO2 is not essential, its function is critical for infectious spore production, faithful cytokinesis, adaptation for growth at high temperature, and pathogenicity in vivo. Our results demonstrate the presence of essential genes in the MAT locus that are divergent between cells of opposite mating types. We discuss possible mechanisms to maintain functional alleles of these essential genes in a rapidly-evolving genomic region in the context of fungal sexual reproduction and mating-type evolution.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anushka Peer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yeseul Choi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Konstantina Akritidou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Tim A. Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Germany
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Al-Huthaifi AM, Radman BA, Al-Alawi AA, Mahmood F, Liu TB. Mechanisms and Virulence Factors of Cryptococcus neoformans Dissemination to the Central Nervous System. J Fungi (Basel) 2024; 10:586. [PMID: 39194911 DOI: 10.3390/jof10080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cryptococcosis is a prevalent fungal infection of the central nervous system (CNS) caused by Cryptococcus neoformans, a yeast with a polysaccharide capsule in the basidiomycete group. Normally, C. neoformans infects the respiratory tract and then breaches the blood-brain barrier (BBB), leading to meningitis or meningoencephalitis, which leads to hundreds of thousands of deaths each year. Although the mechanism by which C. neoformans infiltrates the BBB to invade the brain has yet to be fully understood, research has revealed that C. neoformans can cross the BBB using transcellular penetration, paracellular traversal, and infected phagocytes (the "Trojan horse" mechanism). The secretion of multiple virulence factors by C. neoformans is crucial in facilitating the spread of infection after breaching the BBB and causing brain infections. Extensive research has shown that various virulence factors play a significant role in the dissemination of infection beyond the lungs. This review explores the mechanisms of C. neoformans entering the CNS and explains how it bypasses the BBB. Additionally, it aims to understand the interplay between the regulatory mechanisms and virulence factors of C. neoformans.
Collapse
Affiliation(s)
| | - Bakeel A Radman
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | | | - Fawad Mahmood
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- Medical Research Institute, Southwest University, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Oliveira NK, Yoo K, Bhattacharya S, Gambhir R, Kirgizbaeva N, García PA, Prados IP, Fernandes CM, Del Poeta M, Fries BC. Distinct effect of calorie restriction between congenic mating types of Cryptococcus neoformans. Sci Rep 2024; 14:18187. [PMID: 39107496 PMCID: PMC11303771 DOI: 10.1038/s41598-024-69087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cryptococcus neoformans (Cn) is an opportunistic yeast that causes meningoencephalitis in immunocompromised individuals. Calorie restriction (CR) prolongs Cn replicative lifespan (RLS) and mimics low-glucose environments in which Cn resides during infection. The effects of CR-mediated stress can differ among strains and have only been studied in MATα cells. Cn replicates sexually, generating two mating types, MATα and MATa. MATα strains are more dominant in clinical and environmental isolates. We sought to compare the effects of CR stress and longevity regulation between congenic MATα and MATa. Although MATα and MATa cells extended their RLS in response to CR, they engaged different pathways. The sirtuins were upregulated in MATα cells under CR, but not in MATa cells. RLS extension was SIR2-dependent in KN99α, but not in KN99a. The TOR nutrient-sensing pathway was downregulated in MATa strains under CR, while MATα strains demonstrated no difference. Lower oxidative stress and higher ATP production were observed in KN99α cells, possibly due to higher SOD expression. SIR2 was important for mitochondrial morphology and function in both mating types. Increased ATP production during CR powered the upregulated ABC transporters, increasing efflux in MATα cells. This led to enhanced fluconazole tolerance, while MATa cells remained sensitive to fluconazole. Our investigation highlights differences in the response of the mating types to CR.
Collapse
Affiliation(s)
- Natalia Kronbauer Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kyungyoon Yoo
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Somanon Bhattacharya
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Rina Gambhir
- Stony Brook University, Stony Brook, NY, 11794, USA
| | | | | | | | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Veterans Administration Medical Center, Northport, NY, 11768, USA
| | - Bettina C Fries
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
- Veterans Administration Medical Center, Northport, NY, 11768, USA.
| |
Collapse
|
7
|
Shi R, Lin X. Illuminating the Cryptococcus neoformans species complex: unveiling intracellular structures with fluorescent-protein-based markers. Genetics 2024; 227:iyae059. [PMID: 38752295 PMCID: PMC11228865 DOI: 10.1093/genetics/iyae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/06/2024] [Indexed: 07/09/2024] Open
Abstract
Cryptococcus neoformans is a fungal pathogen of the top critical priority recognized by the World Health Organization. This clinically important fungus also serves as a eukaryotic model organism. A variety of resources have been generated to facilitate investigation of the C. neoformans species complex, including congenic pairs, well-annotated genomes, genetic editing tools, and gene deletion sets. Here, we generated a set of strains with all major organelles fluorescently marked. We tested short organelle-specific targeting sequences and successfully labeled the following organelles by fusing the targeting sequences with a fluorescence protein: the plasma membrane, the nucleus, the peroxisome, and the mitochondrion. We used native cryptococcal Golgi and late endosomal proteins fused with a fluorescent protein to label these two organelles. These fluorescence markers were verified via colocalization using organelle-specific dyes. All the constructs for the fluorescent protein tags were integrated in an intergenic safe haven region. These organelle-marked strains were examined for growth and various phenotypes. We demonstrated that these tagged strains could be employed to track cryptococcal interaction with the host in phagocytosis assays. These strains also allowed us to discover remarkable differences in the dynamics of proteins targeted to different organelles during sexual reproduction. Additionally, we revealed that "dormant" spores transcribed and synthesized their own proteins and trafficked the proteins to the appropriate subcellular compartments, demonstrating that spores are metabolically active. We anticipate that these newly generated fluorescent markers will greatly facilitate further investigation of cryptococcal biology and pathogenesis.
Collapse
Affiliation(s)
- Ran Shi
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Kaeoniwong N, Sotome K, Ichiyanagi T, Shimomura N, Aimi T. Life cycle and mating compatibility in the Japanese white jelly mushroom, Tremella yokohamensis. MYCOSCIENCE 2024; 65:208-215. [PMID: 39512597 PMCID: PMC11541174 DOI: 10.47371/mycosci.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 11/15/2024]
Abstract
In this study, white jelly mushrooms that were collected in Tottori Prefecture, Japan, were identified as Tremella yokohamensis by phylogenetic analysis of the rDNA-ITS region. Fluorescent microscopic analysis using 4',6-diamidino-2-phenylindole staining to visualize the nuclei in each cell revealed that basidiospores isolated from the fruiting body were monokaryotic. Furthermore, monokaryotic yeasts were germinated from these basidiospores and the resulting crossed mycelium was dikaryotic and bore clamp cells, suggesting a heterothallic lifecycle for this species. Crossing between compatible yeast strains, such as TUFC 101924 and TUFC 101925, that were isolated from the same fruiting body, successfully induced development of the filamentous stage bearing clamp connections after 7 d of incubation on Kagome vegetable juice agar medium. Mating compatibility tests employing 15 basidiospore isolates revealed that this fungus possess a bipolar mating system. The results indicated that T. yokohamensis is a heterothallic and bipolar mushroom.
Collapse
|
9
|
Loza L, Doering TL. A fungal protein organizes both glycogen and cell wall glucans. Proc Natl Acad Sci U S A 2024; 121:e2319707121. [PMID: 38743622 PMCID: PMC11126952 DOI: 10.1073/pnas.2319707121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Glycogen is a glucose storage molecule composed of branched α-1,4-glucan chains, best known as an energy reserve that can be broken down to fuel central metabolism. Because fungal cells have a specialized need for glucose in building cell wall glucans, we investigated whether glycogen is used for this process. For these studies, we focused on the pathogenic yeast Cryptococcus neoformans, which causes ~150,000 deaths per year worldwide. We identified two proteins that influence formation of both glycogen and the cell wall: glycogenin (Glg1), which initiates glycogen synthesis, and a protein that we call Glucan organizing enzyme 1 (Goe1). We found that cells missing Glg1 lack α-1,4-glucan in their walls, indicating that this material is derived from glycogen. Without Goe1, glycogen rosettes are mislocalized and β-1,3-glucan in the cell wall is reduced. Altogether, our results provide mechanisms for a close association between glycogen and cell wall.
Collapse
Affiliation(s)
- Liza Loza
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO63110
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO63110
| |
Collapse
|
10
|
Luo Z, McTaggart A, Schwessinger B. Genome biology and evolution of mating-type loci in four cereal rust fungi. PLoS Genet 2024; 20:e1011207. [PMID: 38498573 PMCID: PMC10977897 DOI: 10.1371/journal.pgen.1011207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/28/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.
Collapse
Affiliation(s)
- Zhenyan Luo
- Research Biology School, Australian National University, Canberra, ACT, Australia
| | - Alistair McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | | |
Collapse
|
11
|
Duhamel M, Hood ME, Rodríguez de la Vega RC, Giraud T. Dynamics of transposable element accumulation in the non-recombining regions of mating-type chromosomes in anther-smut fungi. Nat Commun 2023; 14:5692. [PMID: 37709766 PMCID: PMC10502011 DOI: 10.1038/s41467-023-41413-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
In the absence of recombination, the number of transposable elements (TEs) increases due to less efficient selection, but the dynamics of such TE accumulations are not well characterized. Leveraging a dataset of 21 independent events of recombination cessation of different ages in mating-type chromosomes of Microbotryum fungi, we show that TEs rapidly accumulated in regions lacking recombination, but that TE content reached a plateau at ca. 50% of occupied base pairs by 1.5 million years following recombination suppression. The same TE superfamilies have expanded in independently evolved non-recombining regions, in particular rolling-circle replication elements (Helitrons). Long-terminal repeat (LTR) retrotransposons of the Copia and Ty3 superfamilies also expanded, through transposition bursts (distinguished from gene conversion based on LTR divergence), with both non-recombining regions and autosomes affected, suggesting that non-recombining regions constitute TE reservoirs. This study improves our knowledge of genome evolution by showing that TEs can accumulate through bursts, following non-linear decelerating dynamics.
Collapse
Affiliation(s)
- Marine Duhamel
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France.
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| | - Michael E Hood
- Department of Biology, Amherst College, 01002-5000, Amherst, MA, USA
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Tshekiso K, Loeto D, Muzila M, Seetswane E, Kenosi K, Jongman M. Prevalence, molecular and phenotypic profiles of arboreal associated Cryptococcus neoformans in Botswana. Fungal Biol 2023; 127:1129-1135. [PMID: 37495303 DOI: 10.1016/j.funbio.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Mopane tree (Colophospermum mopane) is one of the main ecological niches of Cryptococcus neoformans, an opportunistic fungal pathogen that causes cryptococcosis primarily on immunocompromised hosts after inhalation of basidiospores from the environment. Hence, we investigated the prevalence, and phenotypically (antifungal resistance and biofilm formation capacity) and genotypically (mating type and genetic structure) characterized C. neoformans isolated from C. mopane, Acacia tortilis, Adansonia digitata and Ziziphus mucronata in Botswana. We report 7.1% and 2.9% prevalence of C. neoformans in C. mopane and other trees, respectively. All tested C. neoformans isolates were determined to be non-WT to fluconazole. Most isolates (65%) of C. neoformans isolates were biofilm producers. Mating type determination revealed a higher proportion of the globally rare MATa allele (53%) and a single MATα/MATa hybrid. The observed genotypeswere VNI (71%), VNB (23%) and VNB/VNB hybrids (6%). Native trees other than C. mopane are alternative ecological niches of antifungal resistant C. neoformans, and this represents a serious public health concern,and this represents a serious public health concern, especially for high-risk populations. Prevalence of C. neoformans on native trees and the observed emergence of hybrids (evidence of sexual recombination) highlight the need for increased surveillance and risk assessment within a One Health paradigm.
Collapse
Affiliation(s)
- Kgomotso Tshekiso
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Daniel Loeto
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mbaki Muzila
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Eunicah Seetswane
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Kebabonye Kenosi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mosimanegape Jongman
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana.
| |
Collapse
|
13
|
Heitman J. Lessons learned: from mentored to mentor. J Clin Invest 2023; 133:e167444. [PMID: 36647823 PMCID: PMC9843041 DOI: 10.1172/jci167444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This Viewpoint was written in association with the 25th anniversary of the American Society for Clinical Investigation's (ASCI's) Stanley J. Korsmeyer Award, which honors the highest standards of scientific excellence, meritorious research, intellectual integrity, and the mentoring of future life-science researchers. In 2018, the award recognized Joseph Heitman (Figure 1), for his key contributions to our understanding of how eukaryotic microbial pathogens evolve, cause disease, and develop drug resistance and his discovery of TOR and FKBP12 as targets of the immunosuppressive chemotherapeutic drug rapamycin. Dr. Heitman has mentored numerous undergraduates, medical students, graduate students, and postdoctoral and medical fellows, many of whom have developed independent careers in medicine and basic biomedical research.
Collapse
|
14
|
Regulatory basis for reproductive flexibility in a meningitis-causing fungal pathogen. Nat Commun 2022; 13:7938. [PMID: 36566249 PMCID: PMC9790007 DOI: 10.1038/s41467-022-35549-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.
Collapse
|
15
|
Passer AR, Clancey SA, Shea T, David-Palma M, Averette AF, Boekhout T, Porcel BM, Nowrousian M, Cuomo CA, Sun S, Heitman J, Coelho MA. Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex. eLife 2022; 11:e79114. [PMID: 35713948 PMCID: PMC9296135 DOI: 10.7554/elife.79114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Fungi are enigmatic organisms that flourish in soil, on decaying plants, or during infection of animals or plants. Growing in myriad forms, from single-celled yeast to multicellular molds and mushrooms, fungi have also evolved a variety of strategies to reproduce. Normally, fungi reproduce in one of two ways: either they reproduce asexually, with one individual producing a new individual identical to itself, or they reproduce sexually, with two individuals of different 'mating types' contributing to produce a new individual. However, individuals of some species exhibit 'homothallism' or self-fertility: these individuals can produce reproductive cells that are universally compatible, and therefore can reproduce sexually with themselves or with any other cell in the population. Homothallism has evolved multiple times throughout the fungal kingdom, suggesting it confers advantage when population numbers are low or mates are hard to find. Yet some homothallic fungi been overlooked compared to heterothallic species, whose mating types have been well characterised. Understanding the genetic basis of homothallism and how it evolved in different species can provide insights into pathogenic species that cause fungal disease. With that in mind, Passer, Clancey et al. explored the genetic basis of homothallism in Cryptococcus depauperatus, a close relative of C. neoformans, a species that causes fungal infections in humans. A combination of genetic sequencing techniques and experiments were applied to analyse, compare, and manipulate C. depauperatus' genome to see how this species evolved self-fertility. Passer, Clancey et al. showed that C. depauperatus evolved the ability to reproduce sexually by itself via a unique evolutionary pathway. The result is a form of homothallism never reported in fungi before. C. depauperatus lost some of the genes that control mating in other species of fungi, and acquired genes from the opposing mating types of a heterothallic ancestor to become self-fertile. Passer, Clancey et al. also found that, unlike other Cryptococcus species that switch between asexual and sexual reproduction, C. depauperatus grows only as long, branching filaments called hyphae, a sexual form. The species reproduces sexually with itself throughout its life cycle and is unable to produce a yeast (asexual) form, in contrast to other closely related species. This work offers new insights into how different modes of sexual reproduction have evolved in fungi. It also provides another interesting case of how genome plasticity and evolutionary pressures can produce similar outcomes, homothallism, via different evolutionary paths. Lastly, assembling the complete genome of C. depauperatus will foster comparative studies between pathogenic and non-pathogenic Cryptococcus species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Terrance Shea
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity InstituteUtrechtNetherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of AmsterdamAmsterdamNetherlands
| | - Betina M Porcel
- Génomique Métabolique, CNRS, University Evry, Université Paris-SaclayEvryFrance
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität BochumBochumGermany
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
16
|
Rathore SS, Sathiyamoorthy J, Lalitha C, Ramakrishnan J. A holistic review on Cryptococcus neoformans. Microb Pathog 2022; 166:105521. [DOI: 10.1016/j.micpath.2022.105521] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022]
|
17
|
Sun S, Roth C, Floyd Averette A, Magwene PM, Heitman J. Epistatic genetic interactions govern morphogenesis during sexual reproduction and infection in a global human fungal pathogen. Proc Natl Acad Sci U S A 2022; 119:e2122293119. [PMID: 35169080 PMCID: PMC8872808 DOI: 10.1073/pnas.2122293119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Cullen Roth
- Department of Biology, Duke University, Durham, NC 27708
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
18
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
19
|
Guerreiro MA, Ahrendt S, Pangilinan J, Chen C, Yan M, Lipzen A, Barry K, Grigoriev IV, Begerow D, Nowrousian M. Draft genome sequences of strains CBS6241 and CBS6242 of the basidiomycetous yeast Filobasidium floriforme. G3-GENES GENOMES GENETICS 2021; 12:6428540. [PMID: 34791213 PMCID: PMC9210288 DOI: 10.1093/g3journal/jkab398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022]
Abstract
The Tremellomycetes are a species-rich group within the basidiomycete fungi; however, most analyses of this group to date have focused on pathogenic Cryptococcus species within the order Tremellales. Recent genome-assisted studies of other Tremellomycetes have identified interesting features with respect to biotechnological applications as well as the evolution of genes involved in mating and sexual development. Here, we report genome sequences of two strains of Filobasidium floriforme, a species from the order Filobasidiales, which branches basally to the Tremellales, Trichosporonales, and Holtermanniales. The assembled genomes of strains CBS6241 and CBS6242 are 27.4 Mb and 26.4 Mb in size, respectively, with 8314 and 7695 predicted protein-coding genes. Overall sequence identity at nucleic acid level between the strains is 97%. Among the predicted genes are pheromone precursor and pheromone receptor genes as well as two genes encoding homedomain (HD) transcription factors, which are predicted to be part of the mating type (MAT) locus. Sequence analysis indicates that CBS6241 and CBS6242 carry different alleles for both the pheromone/receptor genes as well as the HD transcription factors. Orthology inference identified 1482 orthogroups exclusively found in F. floriforme, some of which were involved in carbohydrate transport and metabolism. Subsequent CAZyme repertoire characterization identified 267 and 247 enzymes for CBS6241 and CBS6242, respectively, the second highest number of CAZymes among the analyzed Tremellomycete species. In addition, F. floriforme contains five CAZymes absent in other species and several plant-cell-wall degrading CAZymes with the highest copy number in Tremellomycota, indicating the biotechnological potential of this species.
Collapse
Affiliation(s)
| | - Steven Ahrendt
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Dominik Begerow
- Lehrstuhl für Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
20
|
Benites LF, Bucchini F, Sanchez-Brosseau S, Grimsley N, Vandepoele K, Piganeau G. Evolutionary Genomics of Sex-Related Chromosomes at the Base of the Green Lineage. Genome Biol Evol 2021; 13:6380139. [PMID: 34599324 PMCID: PMC8557840 DOI: 10.1093/gbe/evab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although sex is now accepted as a ubiquitous and ancestral feature of eukaryotes, direct observation of sex is still lacking in most unicellular eukaryotic lineages. Evidence of sex is frequently indirect and inferred from the identification of genes involved in meiosis from whole genome data and/or the detection of recombination signatures from genetic diversity in natural populations. In haploid unicellular eukaryotes, sex-related chromosomes are named mating-type (MTs) chromosomes and generally carry large genomic regions where recombination is suppressed. These regions have been characterized in Fungi and Chlorophyta and determine gamete compatibility and fusion. Two candidate MT+ and MT− alleles, spanning 450–650 kb, have recently been described in Ostreococcus tauri, a marine phytoplanktonic alga from the Mamiellophyceae class, an early diverging branch in the green lineage. Here, we investigate the architecture and evolution of these candidate MT+ and MT− alleles. We analyzed the phylogenetic profile and GC content of MT gene families in eight different genomes whose divergence has been previously estimated at up to 640 Myr, and found evidence that the divergence of the two MT alleles predates speciation in the Ostreococcus genus. Phylogenetic profiles of MT trans-specific polymorphisms in gametologs disclosed candidate MTs in two additional species, and possibly a third. These Mamiellales MT candidates are likely to be the oldest mating-type loci described to date, which makes them fascinating models to investigate the evolutionary mechanisms of haploid sex determination in eukaryotes.
Collapse
Affiliation(s)
- Luis Felipe Benites
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Sophie Sanchez-Brosseau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Gwenaël Piganeau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| |
Collapse
|
21
|
Hartmann FE, Rodríguez de la Vega RC, Gladieux P, Ma WJ, Hood ME, Giraud T. Higher Gene Flow in Sex-Related Chromosomes than in Autosomes during Fungal Divergence. Mol Biol Evol 2020; 37:668-682. [PMID: 31651949 PMCID: PMC7038665 DOI: 10.1093/molbev/msz252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonrecombining sex chromosomes are widely found to be more differentiated than autosomes among closely related species, due to smaller effective population size and/or to a disproportionally large-X effect in reproductive isolation. Although fungal mating-type chromosomes can also display large nonrecombining regions, their levels of differentiation compared with autosomes have been little studied. Anther-smut fungi from the Microbotryum genus are castrating pathogens of Caryophyllaceae plants with largely nonrecombining mating-type chromosomes. Using whole genome sequences of 40 fungal strains, we quantified genetic differentiation among strains isolated from the geographically overlapping North American species and subspecies of Silene virginica and S. caroliniana. We inferred that gene flow likely occurred at the early stages of divergence and then completely stopped. We identified large autosomal genomic regions with chromosomal inversions, with higher genetic divergence than the rest of the genomes and highly enriched in selective sweeps, supporting a role of rearrangements in preventing gene flow in genomic regions involved in ecological divergence. Unexpectedly, the nonrecombining mating-type chromosomes showed lower divergence than autosomes due to higher gene flow, which may be promoted by adaptive introgressions of less degenerated mating-type chromosomes. The fact that both mating-type chromosomes are always heterozygous and nonrecombining may explain such patterns that oppose to those found for XY or ZW sex chromosomes. The specific features of mating-type chromosomes may also apply to the UV sex chromosomes determining sexes at the haploid stage in algae and bryophytes and may help test general hypotheses on the evolutionary specificities of sex-related chromosomes.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Pierre Gladieux
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Wen-Juan Ma
- Biology Department, Science Centre, Amherst College, Amherst, MA
| | - Michael E Hood
- Biology Department, Science Centre, Amherst College, Amherst, MA
| | - Tatiana Giraud
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
22
|
Mitochondrial Inheritance in Phytopathogenic Fungi-Everything Is Known, or Is It? Int J Mol Sci 2020; 21:ijms21113883. [PMID: 32485941 PMCID: PMC7312866 DOI: 10.3390/ijms21113883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are important organelles in eukaryotes that provide energy for cellular processes. Their function is highly conserved and depends on the expression of nuclear encoded genes and genes encoded in the organellar genome. Mitochondrial DNA replication is independent of the replication control of nuclear DNA and as such, mitochondria may behave as selfish elements, so they need to be controlled, maintained and reliably inherited to progeny. Phytopathogenic fungi meet with special environmental challenges within the plant host that might depend on and influence mitochondrial functions and services. We find that this topic is basically unexplored in the literature, so this review largely depends on work published in other systems. In trying to answer elemental questions on mitochondrial functioning, we aim to introduce the aspect of mitochondrial functions and services to the study of plant-microbe-interactions and stimulate phytopathologists to consider research on this important organelle in their future projects.
Collapse
|
23
|
Centromere scission drives chromosome shuffling and reproductive isolation. Proc Natl Acad Sci U S A 2020; 117:7917-7928. [PMID: 32193338 DOI: 10.1073/pnas.1918659117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A fundamental characteristic of eukaryotic organisms is the generation of genetic variation via sexual reproduction. Conversely, significant large-scale genome structure variations could hamper sexual reproduction, causing reproductive isolation and promoting speciation. The underlying processes behind large-scale genome rearrangements are not well understood and include chromosome translocations involving centromeres. Recent genomic studies in the Cryptococcus species complex revealed that chromosome translocations generated via centromere recombination have reshaped the genomes of different species. In this study, multiple DNA double-strand breaks (DSBs) were generated via the CRISPR/Cas9 system at centromere-specific retrotransposons in the human fungal pathogen Cryptococcus neoformans The resulting DSBs were repaired in a complex manner, leading to the formation of multiple interchromosomal rearrangements and new telomeres, similar to chromothripsis-like events. The newly generated strains harboring chromosome translocations exhibited normal vegetative growth but failed to undergo successful sexual reproduction with the parental wild-type strain. One of these strains failed to produce any spores, while another produced ∼3% viable progeny. The germinated progeny exhibited aneuploidy for multiple chromosomes and showed improved fertility with both parents. All chromosome translocation events were accompanied without any detectable change in gene sequences and thus suggest that chromosomal translocations alone may play an underappreciated role in the onset of reproductive isolation and speciation.
Collapse
|
24
|
Ianiri G, Fang YF, Dahlmann TA, Clancey SA, Janbon G, Kück U, Heitman J. Mating-Type-Specific Ribosomal Proteins Control Aspects of Sexual Reproduction in Cryptococcus neoformans. Genetics 2020; 214:635-649. [PMID: 31882399 PMCID: PMC7054023 DOI: 10.1534/genetics.119.302740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/21/2019] [Indexed: 12/31/2022] Open
Abstract
The MAT locus of Cryptococcus neoformans has a bipolar organization characterized by an unusually large structure, spanning over 100 kb. MAT genes have been characterized by functional genetics as being involved in sexual reproduction and virulence. However, classical gene replacement failed to achieve mutants for five MAT genes (RPL22, RPO41, MYO2, PRT1, and RPL39), indicating that they are likely essential. In the present study, targeted gene replacement was performed in a diploid strain for both the α and a alleles of the ribosomal genes RPL22 and RPL39 Mendelian analysis of the progeny confirmed that both RPL22 and RPL39 are essential for viability. Ectopic integration of the RPL22 allele of opposite MAT identity in the heterozygous RPL22a/rpl22αΔ or RPL22α/rpl22aΔ mutant strains failed to complement their essential phenotype. Evidence suggests that this is due to differential expression of the RPL22 genes, and an RNAi-dependent mechanism that contributes to control RPL22a expression. Furthermore, via CRISPR/Cas9 technology, the RPL22 alleles were exchanged in haploid MATα and MATa strains of C. neoformans These RPL22 exchange strains displayed morphological and genetic defects during bilateral mating. These results contribute to elucidating functions of C. neoformans essential mating type genes that may constitute a type of imprinting system to promote inheritance of nuclei of both mating types.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yufeng Francis Fang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Tim A Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, 75015 Paris, France
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
25
|
Li YH, Liu TB. Zinc Finger Proteins in the Human Fungal Pathogen Cryptococcus neoformans. Int J Mol Sci 2020; 21:ijms21041361. [PMID: 32085473 PMCID: PMC7072944 DOI: 10.3390/ijms21041361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc is one of the essential trace elements in eukaryotes and it is a critical structural component of a large number of proteins. Zinc finger proteins (ZNFs) are zinc-finger domain-containing proteins stabilized by bound zinc ions and they form the most abundant proteins, serving extraordinarily diverse biological functions. In recent years, many ZNFs have been identified and characterized in the human fungal pathogen Cryptococcus neoformans, a fungal pathogen causing fatal meningitis mainly in immunocompromised individuals. It has been shown that ZNFs play important roles in the morphological development, differentiation, and virulence of C. neoformans. In this review, we, first, briefly introduce the ZNFs and their classification. Then, we explain the identification and classification of the ZNFs in C. neoformans. Next, we focus on the biological role of the ZNFs functionally characterized so far in the sexual reproduction, virulence factor production, ion homeostasis, pathogenesis, and stress resistance in C. neoformans. We also discuss the perspectives on future function studies of ZNFs in C. neoformans.
Collapse
Affiliation(s)
- Yuan-Hong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-1088
| |
Collapse
|
26
|
Sun S, Coelho MA, David-Palma M, Priest SJ, Heitman J. The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi. Annu Rev Genet 2019; 53:417-444. [PMID: 31537103 PMCID: PMC7025156 DOI: 10.1146/annurev-genet-120116-024755] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cryptococcus species utilize a variety of sexual reproduction mechanisms, which generate genetic diversity, purge deleterious mutations, and contribute to their ability to occupy myriad environmental niches and exhibit a range of pathogenic potential. The bisexual and unisexual cycles of pathogenic Cryptococcus species are stimulated by properties associated with their environmental niches and proceed through well-characterized signaling pathways and corresponding morphological changes. Genes governing mating are encoded by the mating-type (MAT) loci and influence pathogenesis, population dynamics, and lineage divergence in Cryptococcus. MAT has undergone significant evolutionary changes within the Cryptococcus genus, including transition from the ancestral tetrapolar state in nonpathogenic species to a bipolar mating system in pathogenic species, as well as several internal reconfigurations. Owing to the variety of established sexual reproduction mechanisms and the robust characterization of the evolution of mating and MAT in this genus, Cryptococcus species provide key insights into the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| |
Collapse
|
27
|
Usher J. The Mechanisms of Mating in Pathogenic Fungi-A Plastic Trait. Genes (Basel) 2019; 10:E831. [PMID: 31640207 PMCID: PMC6826560 DOI: 10.3390/genes10100831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 01/20/2023] Open
Abstract
The impact of fungi on human and plant health is an ever-increasing issue. Recent studies have estimated that human fungal infections result in an excess of one million deaths per year and plant fungal infections resulting in the loss of crop yields worth approximately 200 million per annum. Sexual reproduction in these economically important fungi has evolved in response to the environmental stresses encountered by the pathogens as a method to target DNA damage. Meiosis is integral to this process, through increasing diversity through recombination. Mating and meiosis have been extensively studied in the model yeast Saccharomyces cerevisiae, highlighting that these mechanisms have diverged even between apparently closely related species. To further examine this, this review will inspect these mechanisms in emerging important fungal pathogens, such as Candida, Aspergillus, and Cryptococcus. It shows that both sexual and asexual reproduction in these fungi demonstrate a high degree of plasticity.
Collapse
Affiliation(s)
- Jane Usher
- Medical Research Council Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK.
| |
Collapse
|
28
|
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus and an opportunistic pathogen that causes fatal cryptococcal meningitis. Advances in genomics, genetics, and cellular and molecular biology of C. neoformans have dramatically improved our understanding of this important pathogen, rendering it a model organism to study eukaryotic biology and microbial pathogenesis. In light of recent progress, we describe in this review the life cycle of C. neoformans with a special emphasis on the regulation of the yeast-to-hypha transition and different modes of sexual reproduction, in addition to the impacts of the life cycle on cryptococcal populations and pathogenesis.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| |
Collapse
|
29
|
Heitman J. E Pluribus Unum: The Fungal Kingdom as a Rosetta Stone for Biology and Medicine. Genetics 2019; 213:1-7. [PMID: 31488591 PMCID: PMC6727799 DOI: 10.1534/genetics.119.302537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
THE Genetics Society of America's (GSA's) Edward Novitski Prize recognizes a single experimental accomplishment or a body of work in which an exceptional level of creativity, and intellectual ingenuity, has been used to design and execute scientific experiments to solve a difficult problem in genetics. The 2019 recipient is Joseph Heitman, who is recognized for his work on fungal pathogens of humans and for ingenious experiments using yeast to identify the molecular targets of widely used immunosuppressive drugs. The latter work, part of Heitman's postdoctoral research, proved to be a seminal contribution to the discovery of the conserved Target of Rapamycin (TOR) pathway. In his own research group, a recurring theme has been the linking of fundamental insights in fungal biology to medically important problems. His studies have included defining fungal mating-type loci, including their evolution and links to virulence, and illustrating convergent transitions from outcrossing to inbreeding in fungal pathogens of plants and animals. He has led efforts to establish new genetic and genomic methods for studying pathogenesis in Cryptococcus species. Heitman's group also discovered unisexual reproduction, a novel mode of fungal reproduction with implications for pathogen evolution and the origins of sexual reproduction.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
30
|
Sun S, Coelho MA, Heitman J, Nowrousian M. Convergent evolution of linked mating-type loci in basidiomycete fungi. PLoS Genet 2019; 15:e1008365. [PMID: 31490920 PMCID: PMC6730849 DOI: 10.1371/journal.pgen.1008365] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Sexual development is a key evolutionary innovation of eukaryotes. In many species, mating involves interaction between compatible mating partners that can undergo cell and nuclear fusion and subsequent steps of development including meiosis. Mating compatibility in fungi is governed by the mating type (MAT) loci. In basidiomycetes, the ancestral state is hypothesized to be tetrapolar, with two genetically unlinked MAT loci containing homeodomain transcription factor genes (HD locus) and pheromone and pheromone receptor genes (P/R locus), respectively. Alleles at both loci must differ between mating partners for completion of sexual development. However, there are also basidiomycetes with bipolar mating systems, which can arise through genomic linkage of the HD and P/R loci. In the order Tremellales, bipolarity is found only in the pathogenic Cryptococcus species. Here, we describe the analysis of MAT loci from 24 species of the Trichosporonales, a sister order to the Tremellales. In all of the species analyzed, the MAT loci are fused and a single HD gene is present in each mating type, similar to the organization in the pathogenic Cryptococci. However, the HD and P/R allele combinations in the Trichosporonales are different from those in the pathogenic Cryptococci. This and the existence of tetrapolar species in the Tremellales suggest that fusion of the HD and P/R loci occurred independently in the Trichosporonales and pathogenic Cryptococci, supporting the hypothesis of convergent evolution towards fused MAT regions, similar to previous findings in other fungal groups. Unlike the fused MAT loci in several other basidiomycete lineages though, the gene content and gene order within the fused MAT loci are highly conserved in the Trichosporonales, and there is no apparent suppression of recombination extending from the MAT loci to adjacent chromosomal regions, suggesting different mechanisms for the evolution of physically linked MAT loci in these groups.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
31
|
Hua W, Vogan A, Xu J. Genotypic and Phenotypic Analyses of Two “Isogenic” Strains of the Human Fungal Pathogen Cryptococcus neoformans var. neoformans. Mycopathologia 2019; 184:195-212. [DOI: 10.1007/s11046-019-00328-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/09/2019] [Indexed: 12/21/2022]
|
32
|
Samarasinghe H, Xu J. Hybrids and hybridization in the Cryptococcus neoformans and Cryptococcus gattii species complexes. INFECTION GENETICS AND EVOLUTION 2018; 66:245-255. [PMID: 30342094 DOI: 10.1016/j.meegid.2018.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022]
Abstract
The basidiomycetous yeasts of the Cryptococcus neoformans and Cryptococcus gattii species complexes (CNSC and CGSC respectively) are the causative agents of cryptococcosis, a set of life-threatening diseases affecting the central nervous system, lungs, skin, and other body sites of humans and other mammals. Both the CNSC and CGSC can be subdivided into varieties, serotypes, molecular types, and lineages based on structural variations, molecular characteristics and genetic sequences. Hybridization between the haploid lineages within and between the two species complexes is known to occur in natural and clinical settings, giving rise to intraspecific and interspecific diploid/aneuploid hybrid strains. Since their initial discovery in 1977, cryptococcal hybrids have been increasingly discovered in both clinical and environmental settings with over 30% of all cryptococcal infections in some regions of Europe being caused by hybrid strains. This review summarizes the major findings to date on cryptococcal hybrids, including their possible origins, prevalence, genomic profiles and phenotypic characteristics. Our analyses suggest that CNSC and CGSC can be an excellent model system for studying fungal hybridization.
Collapse
Affiliation(s)
- Himeshi Samarasinghe
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
33
|
Abstract
Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system.
Collapse
Affiliation(s)
- Melissa A Wilson Sayres
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University
| |
Collapse
|
34
|
Simpson MC, Coetzee MPA, van der Nest MA, Wingfield MJ, Wingfield BD. Ceratocystidaceae exhibit high levels of recombination at the mating-type (MAT) locus. Fungal Biol 2018; 122:1184-1191. [PMID: 30449356 DOI: 10.1016/j.funbio.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/11/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
Abstract
Mating is central to many fungal life cycles and is controlled by genes at the mating-type (MAT) locus. These genes determine whether the fungus will be self-sterile (heterothallic) or self-fertile (homothallic). Species in the ascomycete family Ceratocystidaceae have different mating strategies, making them interesting to consider with regards to their MAT loci. The aim of this study was to compare the composition of the MAT locus flanking regions in 11 species of Ceratocystidaceae representing four genera. Genome assemblies for each species were examined to identify the MAT locus and determine the structure of the flanking regions. Large contigs containing the MAT locus were then functionally annotated and analysed for the presence of transposable elements. Genes typically flanking the MAT locus in sordariomycetes were found to be highly conserved in the Ceratocystidaceae. The different genera in the Ceratocystidaceae displayed little synteny outside of the immediate MAT locus flanking genes. Even though species ofCeratocystis did not show much synteny outside of the immediate MAT locus flanking genes, species of Huntiella and Endoconidiophora were comparatively syntenic. Due to the high number of transposable elements present in Ceratocystis MAT flanking regions, we hypothesise that Ceratocystis species may have undergone recombination in this region.
Collapse
Affiliation(s)
- Melissa C Simpson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
35
|
|
36
|
Ye Z, Pan Y, Zhang Y, Cui H, Jin G, McHardy AC, Fan L, Yu X. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Res 2018; 24:635-648. [PMID: 28992048 PMCID: PMC5726479 DOI: 10.1093/dnares/dsx031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Ustilago esculenta, infects Zizania latifolia, and induced host stem swollen to be a popular vegetable called Jiaobai in China. It is the long-standing artificial selection that maximizes the occurrence of favourable Jiaobai, and thus maintaining the plant-fungi interaction and modulating the fungus evolving from plant pathogen to entophyte. In this study, whole genome of U. esculenta was sequenced and transcriptomes of the fungi and its host were analysed. The 20.2 Mb U. esculenta draft genome of 6,654 predicted genes including mating, primary metabolism, secreted proteins, shared a high similarity to related Smut fungi. But U. esculenta prefers RNA silencing not repeat-induced point in defence and has more introns per gene, indicating relatively slow evolution rate. The fungus also lacks some genes in amino acid biosynthesis pathway which were filled by up-regulated host genes and developed distinct amino acid response mechanism to balance the infection-resistance interaction. Besides, U. esculenta lost some surface sensors, important virulence factors and host range-related effectors to maintain the economic endophytic life. The elucidation of the U. esculenta genomic information as well as expression profiles can not only contribute to more comprehensive insights into the molecular mechanism underlying artificial selection but also into smut fungi-host interactions.
Collapse
Affiliation(s)
- Zihong Ye
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Yao Pan
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Yafen Zhang
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Gulei Jin
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Longjiang Fan
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Xiaoping Yu
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
37
|
Serrato-Capuchina A, Matute DR. The Role of Transposable Elements in Speciation. Genes (Basel) 2018; 9:E254. [PMID: 29762547 PMCID: PMC5977194 DOI: 10.3390/genes9050254] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
38
|
Plant Homeodomain Genes Play Important Roles in Cryptococcal Yeast-Hypha Transition. Appl Environ Microbiol 2018; 84:AEM.01732-17. [PMID: 29500261 DOI: 10.1128/aem.01732-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 02/19/2018] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans is a major opportunistic fungal pathogen. Like many dimorphic fungal pathogens, C. neoformans can undergo morphological transition from the yeast form to the hypha form, and its morphotype is tightly linked to its virulence. Although some genetic factors controlling morphogenesis have been identified, little is known about the epigenetic regulation in this process. Proteins with the plant homeodomain (PHD) finger, a structurally conserved domain in eukaryotes, were first identified in plants and are known to be involved in reading and effecting chromatin modification. Here, we investigated the role of the PHD finger family genes in Cryptococcus mating and yeast-hypha transition. We found 16 PHD finger domains distributed among 15 genes in the Cryptococcus genome, with two genes, ZNF1α and RUM1α, located in the mating type locus. We deleted these 15 PHD genes and examined the impact of their disruption on cryptococcal morphogenesis. The deletion of five PHD finger genes dramatically affected filamentation. The rum1αΔ and znf1αΔ mutants showed enhanced ability to initiate filamentation but impaired ability to maintain filamentous growth. The bye1Δ and the phd11Δ mutants exhibited enhanced filamentation, while the set302Δ mutants displayed reduced filamentation. Ectopic overexpression of these five genes in the corresponding null mutants partially or completely restored the defect in filamentation. Furthermore, we demonstrated that Phd11, a suppressor of filamentation, regulates the yeast-hypha transition through the known master regulator Znf2. The findings indicate the importance of epigenetic regulation in controlling dimorphic transition in C. neoformansIMPORTANCE Morphotype is known to have a profound impact on cryptococcal interaction with various hosts, including mammalian hosts. The yeast form of Cryptococcus neoformans is considered the virulent form, while its hyphal form is attenuated in mammalian models of cryptococcosis. Although some genetic regulators critical for cryptococcal morphogenesis have been identified, little is known about epigenetic regulation in this process. Given that plant homeodomain (PHD) finger proteins are involved in reading and effecting chromatin modification and their functions are unexplored in C. neoformans, we investigated the roles of the 15 PHD finger genes in Cryptococcus mating and yeast-hypha transition. Five of them profoundly affect filamentation as either a suppressor or an activator. Phd11, a suppressor of filamentation, regulates this process via Znf2, a known master regulator of morphogenesis. Thus, epigenetic regulation, coupled with genetic regulation, controls this yeast-hypha transition event.
Collapse
|
39
|
A High-Resolution Map of Meiotic Recombination in Cryptococcus deneoformans Demonstrates Decreased Recombination in Unisexual Reproduction. Genetics 2018; 209:567-578. [PMID: 29625994 PMCID: PMC5972427 DOI: 10.1534/genetics.118.300996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Multiple species within the basidiomycete genus Cryptococcus cause cryptococcal disease. These species are estimated to affect nearly a quarter of a million people leading to ∼180,000 mortalities, annually. Sexual reproduction, which can occur between haploid yeasts of the same or opposite mating type, is a potentially important contributor to pathogenesis as recombination can generate novel genotypes and transgressive phenotypes. However, our quantitative understanding of recombination in this clinically important yeast is limited. Here, we describe genome-wide estimates of recombination rates in Cryptococcus deneoformans and compare recombination between progeny from α-α unisexual and a-α bisexual crosses. We find that offspring from bisexual crosses have modestly higher average rates of recombination than those derived from unisexual crosses. Recombination hot and cold spots across the C. deneoformans genome are also identified and are associated with increased GC content. Finally, we observed regions genome-wide with allele frequencies deviating from the expected parental ratio. These findings and observations advance our quantitative understanding of the genetic events that occur during sexual reproduction in C. deneoformans, and the impact that different forms of sexual reproduction are likely to have on genetic diversity in this important fungal pathogen.
Collapse
|
40
|
Fan Y, Lin X. Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the Cryptococcus neoformans Species Complex. Genetics 2018; 208:1357-1372. [PMID: 29444806 PMCID: PMC5887135 DOI: 10.1534/genetics.117.300656] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that claims hundreds of thousands of lives annually. Targeted genetic manipulation through biolistic transformation in C. neoformans drove the investigation of this clinically important pathogen at the molecular level. Although costly and inefficient, biolistic transformation remains the major method for editing the Cryptococcus genome as foreign DNAs introduced by other methods such as electroporation are predominantly not integrated into the genome. Although the majority of DNAs introduced by biolistic transformation are stably inherited, the transformation efficiency and the homologous integration rate (∼1-10%) are low. Here, we developed a Transient CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 coupled with Electroporation (TRACE) system for targeted genetic manipulations in the C. neoformans species complex. This method took advantages of efficient genome integration due to double-strand breaks created at specific sites by the transient CRISPR-Cas9 system and the high transformation efficiency of electroporation. We demonstrated that TRACE can efficiently generate precise single-gene deletion mutants using the ADE2 locus as an example. This system can also effectively delete multiple genes in a single transformation, as evident by the successful generation of quadruple mfα1Δ2Δ3Δ4Δ mutants. In addition to generating gene deletion mutants, we complemented the ade2Δ mutant by integrating a wild-type ADE2 allele at the "safe haven" region (SH2) via homologous recombination using TRACE. Interestingly, introduced DNAs can be inserted at a designated genetic site without any homologous sequences, opening up numerous other applications. We expect that TRACE, an efficient, versatile, and cost-effective gene editing approach, will greatly accelerate research in this field.
Collapse
Affiliation(s)
- Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
41
|
Desjardins CA, Giamberardino C, Sykes SM, Yu CH, Tenor JL, Chen Y, Yang T, Jones AM, Sun S, Haverkamp MR, Heitman J, Litvintseva AP, Perfect JR, Cuomo CA. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res 2018; 27:1207-1219. [PMID: 28611159 PMCID: PMC5495072 DOI: 10.1101/gr.218727.116] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/01/2017] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes approximately 625,000 deaths per year from nervous system infections. Here, we leveraged a unique, genetically diverse population of C. neoformans from sub-Saharan Africa, commonly isolated from mopane trees, to determine how selective pressures in the environment coincidentally adapted C. neoformans for human virulence. Genome sequencing and phylogenetic analysis of 387 isolates, representing the global VNI and African VNB lineages, highlighted a deep, nonrecombining split in VNB (herein, VNBI and VNBII). VNBII was enriched for clinical samples relative to VNBI, while phenotypic profiling of 183 isolates demonstrated that VNBI isolates were significantly more resistant to oxidative stress and more heavily melanized than VNBII isolates. Lack of melanization in both lineages was associated with loss-of-function mutations in the BZP4 transcription factor. A genome-wide association study across all VNB isolates revealed sequence differences between clinical and environmental isolates in virulence factors and stress response genes. Inositol transporters and catabolism genes, which process sugars present in plants and the human nervous system, were identified as targets of selection in all three lineages. Further phylogenetic and population genomic analyses revealed extensive loss of genetic diversity in VNBI, suggestive of a history of population bottlenecks, along with unique evolutionary trajectories for mating type loci. These data highlight the complex evolutionary interplay between adaptation to natural environments and opportunistic infections, and that selection on specific pathways may predispose isolates to human virulence.
Collapse
Affiliation(s)
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sean M Sykes
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Timothy Yang
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alexander M Jones
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Miriam R Haverkamp
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Anastasia P Litvintseva
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Christina A Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
42
|
Wallen RM, Perlin MH. An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi. Front Microbiol 2018; 9:503. [PMID: 29619017 PMCID: PMC5871698 DOI: 10.3389/fmicb.2018.00503] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction likely evolved as protection from environmental stresses, specifically, to repair DNA damage, often via homologous recombination. In higher eukaryotes, meiosis and the production of gametes with allelic combinations different from parental type provides the side effect of increased genetic variation. In fungi it appears that while the maintenance of meiosis is paramount for success, outcrossing is not a driving force. In the subkingdom Dikarya, fungal members are characterized by existence of a dikaryon for extended stages within the life cycle. Such fungi possess functional or, in some cases, relictual, loci that govern sexual reproduction between members of their own species. All mating systems identified so far in the Dikarya employ a pheromone/receptor system for haploid organisms to recognize a compatible mating partner, although the paradigm in the Ascomycota, e.g., Saccharomyces cerevisiae, is that genes for the pheromone precursor and receptor are not found in the mating-type locus but rather are regulated by its products. Similarly, the mating systems in the Ascomycota are bipolar, with two non-allelic idiomorphs expressed in cells of opposite mating type. In contrast, for the Basidiomycota, both bipolar and tetrapolar mating systems have been well characterized; further, at least one locus directly encodes the pheromone precursor and the receptor for the pheromone of a different mating type, while a separate locus encodes proteins that may regulate the first locus and/or additional genes required for downstream events. Heterozygosity at both of two unlinked loci is required for cells to productively mate in tetrapolar systems, whereas in bipolar systems the two loci are tightly linked. Finally, a trade-off exists in wild fungal populations between sexual reproduction and the associated costs, with adverse conditions leading to mating. For fungal mammal pathogens, the products of sexual reproduction can be targets for the host immune system. The opposite appears true for phytopathogenic fungi, where mating and pathogenicity are inextricably linked. Here, we explore, compare, and contrast different strategies used among the Dikarya, both saprophytic and pathogenic fungi, and highlight differences between pathogens of mammals and pathogens of plants, providing context for selective pressures acting on this interesting group of fungi.
Collapse
Affiliation(s)
| | - Michael H. Perlin
- Department of Biology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
43
|
Monteiro MC, Garcia-Rubio R, Alcazar-Fuoli L, Peláez T, Mellado E. Could the determination of Aspergillus fumigatus mating type have prognostic value in invasive aspergillosis? Mycoses 2017; 61:172-178. [PMID: 29082564 DOI: 10.1111/myc.12720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 11/30/2022]
Abstract
A clear link between mating type and virulence has been demonstrated for some fungal pathogens, but not for Aspergillus fumigatus as of yet. An association between mating type and invasiveness has recently been established. The mating type proportion (MAT1-1:MAT1-2) of 213 A. fumigatus strains was determined (48.5%:51.5%) and results were in agreement with previous studies. However, these percentages changed when the strain collection was divided into azole-susceptible and -resistant strains. The 163 susceptible strains kept these proportions, but among the 50 azole-resistant strains 60.0% MAT1-1 and 40% MAT1-2 were found. Moreover, looking at the clinical outcome associated to 27 azole-resistant strains, we found that MAT1-1 was linked to a high mortality rate (64%), whereas the rate associated to MAT1-2 genotype was markedly lower (15%). The pathogenicity linked to the Mat type was tested in a Galleria mellonella model of infection, showing that MAT1-1 strains were consistently more pathogenic than MAT1-2, independently of their susceptibility phenotype. This data would suggest that A. fumigatus mating type determination at the time of diagnosis could have a prognostic value in invasive aspergillosis.
Collapse
Affiliation(s)
- Maria Candida Monteiro
- Mycology Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Rocio Garcia-Rubio
- Mycology Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Peláez
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañon, Instituto de Investigacion Biomedica, Madrid, Spain.,Faculty of Medicine, Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
44
|
Boral H, Metin B, Döğen A, Seyedmousavi S, Ilkit M. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet Biol 2017; 111:92-107. [PMID: 29102684 DOI: 10.1016/j.fgb.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
The incidence of fungal diseases has been increasing since 1980, and is associated with excessive morbidity and mortality, particularly among immunosuppressed patients. Of the known 625 pathogenic fungal species, infections caused by the genera Aspergillus, Candida, Cryptococcus, and Trichophyton are responsible for more than 300 million estimated episodes of acute or chronic infections worldwide. In addition, a rather neglected group of opportunistic fungi known as black yeasts and their filamentous relatives cause a wide variety of recalcitrant infections in both immunocompetent and immunosuppressed hosts. This article provides an overview of selected virulence factors that are known to suppress host immunity and enhance the infectivity of these fungi.
Collapse
Affiliation(s)
- Hazal Boral
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Center of Excellence for Infection Biology and Antimicrobial Pharmacology, Tehran, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey.
| |
Collapse
|
45
|
The influence of the mating type on virulence of Mucor irregularis. Sci Rep 2017; 7:10629. [PMID: 28878325 PMCID: PMC5587739 DOI: 10.1038/s41598-017-10954-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Mucor irregularis is an emerging fungal pathogen that cause cutaneous infection and could cause death. However, little is known about its mechanism of pathogenesis. There is evidence suggesting virulence vary with mating types in fungi, including the Mucorales. Here, we characterized the mating type locus of M. irregularis and the mating type ratio of 17 clinical isolates in China. Genomic data indicated M. irregularis is heterothallic having two mating types – bearing either SexP or SexM allele. Also, we employed a mice model to study the inflammation and pathological effects of different mating types. The comparison of the inflammatory response, cytokine profiles and Th-1, Th-2 and Th-17 cells numbers in each mating type treated mice showed that the severity and disease progress were enhanced in (+) mating type treated mice. One (+/0) mutant strain, with multiple mutations at the mating locus, had defects in sexual mating ability but appeared to be more virulent than the (−) mating type. Although (+) mating type appeared to be more virulent, most of our clinical isolates presented belonged to (−) mating type. Our findings support the involvement of MAT genes in sexual fertility, and the influence of mating type on the severity of cutaneous infection.
Collapse
|
46
|
Taylor JW, Branco S, Gao C, Hann-Soden C, Montoya L, Sylvain I, Gladieux P. Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0057-2016. [PMID: 28936945 PMCID: PMC11687547 DOI: 10.1128/microbiolspec.funk-0057-2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
The first eukaryotic genome to be sequenced was fungal, and there continue to be more sequenced genomes in the kingdom Fungi than in any other eukaryotic kingdom. Comparison of these genomes reveals many sources of genetic variation, from single nucleotide polymorphisms to horizontal gene transfer and on to changes in the arrangement and number of chromosomes, not to mention endofungal bacteria and viruses. Population genomics shows that all sources generate variation all the time and implicate natural selection as the force maintaining genome stability. Variation in wild populations is a rich resource for associating genetic variation with phenotypic variation, whether through quantitative trait locus mapping, genome-wide association studies, or reverse ecology. Subjects of studies associating genetic and phenotypic variation include model fungi, e.g., Saccharomyces and Neurospora, but pioneering studies have also been made with fungi pathogenic to plants, e.g., Pyricularia (= Magnaporthe), Zymoseptoria, and Fusarium, and to humans, e.g., Coccidioides, Cryptococcus, and Candida.
Collapse
Affiliation(s)
- John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102
| | - Sara Branco
- Département Génétique et Ecologie Evolutives Laboratoire Ecologie, Systématique et Evolution, CNRS-UPS-AgroParisTech, Université de Paris-Sud, 91405 Orsay, France, and Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717
| | - Cheng Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Chris Hann-Soden
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Liliam Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Iman Sylvain
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Pierre Gladieux
- INRA, UMR BGPI, Campus International de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
47
|
Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination. PLoS Biol 2017; 15:e2002527. [PMID: 28800596 PMCID: PMC5568439 DOI: 10.1371/journal.pbio.2002527] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/23/2017] [Accepted: 07/25/2017] [Indexed: 01/14/2023] Open
Abstract
Species within the human pathogenic Cryptococcus species complex are major threats to public health, causing approximately 1 million annual infections globally. Cryptococcus amylolentus is the most closely known related species of the pathogenic Cryptococcus species complex, and it is non-pathogenic. Additionally, while pathogenic Cryptococcus species have bipolar mating systems with a single large mating type (MAT) locus that represents a derived state in Basidiomycetes, C. amylolentus has a tetrapolar mating system with 2 MAT loci (P/R and HD) located on different chromosomes. Thus, studying C. amylolentus will shed light on the transition from tetrapolar to bipolar mating systems in the pathogenic Cryptococcus species, as well as its possible link with the origin and evolution of pathogenesis. In this study, we sequenced, assembled, and annotated the genomes of 2 C. amylolentus isolates, CBS6039 and CBS6273, which are sexual and interfertile. Genome comparison between the 2 C. amylolentus isolates identified the boundaries and the complete gene contents of the P/R and HD MAT loci. Bioinformatic and chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed that, similar to those of the pathogenic Cryptococcus species, C. amylolentus has regional centromeres (CENs) that are enriched with species-specific transposable and repetitive DNA elements. Additionally, we found that while neither the P/R nor the HD locus is physically closely linked to its centromere in C. amylolentus, and the regions between the MAT loci and their respective centromeres show overall synteny between the 2 genomes, both MAT loci exhibit genetic linkage to their respective centromere during meiosis, suggesting the presence of recombinational suppressors and/or epistatic gene interactions in the MAT-CEN intervening regions. Furthermore, genomic comparisons between C. amylolentus and related pathogenic Cryptococcus species provide evidence that multiple chromosomal rearrangements mediated by intercentromeric recombination have occurred during descent of the 2 lineages from their common ancestor. Taken together, our findings support a model in which the evolution of the bipolar mating system was initiated by an ectopic recombination event mediated by similar repetitive centromeric DNA elements shared between chromosomes. This translocation brought the P/R and HD loci onto the same chromosome, and further chromosomal rearrangements then resulted in the 2 MAT loci becoming physically linked and eventually fusing to form the single contiguous MAT locus that is now extant in the pathogenic Cryptococcus species. This manuscript explores the evolution of the genomic regions encoding the mating type loci of basidiomycetous fungi. Typically, the mating system is tetrapolar, meaning that it is composed of 2 unlinked mating type (MAT) loci (P/R and HD) that are located on different chromosomes. However, species with bipolar mating systems, in which the P/R and HD loci are located on the same chromosome, have also been identified. Tetrapolar and bipolar species are often closely related, suggesting the transition between these 2 mating systems might occur frequently. For example, the species within the human fungal pathogenic Cryptococcus species complex have bipolar mating systems, with 1 large MAT locus that appears to be a fusion product of the P/R and HD loci. On the other hand, the species that is the closest outgroup to these pathogenic species, Cryptococcus amylolentus, appears to have a classic tetrapolar mating system. Interestingly, the 2 MAT loci of C. amylolentus exhibit centromeric linkage during meiosis, and as a consequence, their resulting meiotic segregation pattern differs from other regions of the genome. Additionally, both pathogenic and non-pathogenic species are found to have large regional centromeres enriched with transposable and repetitive elements. Our genome comparison analyses indicated that these regional centromeres underwent ectopic recombination during the evolution of these 2 lineages. Based on these observations, we propose a model for the transition from the tetrapolar mating system in non-pathogenic C. amylolentus to the bipolar mating system in its related pathogenic species that is initiated by intercentromeric ectopic recombination, followed by chromosomal rearrangements. These events moved the 2 MAT loci closer to each other and eventually fused them to form a single MAT locus. This model is also consistent with recent findings on the organization of MAT loci in other basidiomycetous species.
Collapse
|
48
|
Zhu Y, Engström PG, Tellgren-Roth C, Baudo CD, Kennell JC, Sun S, Billmyre RB, Schröder MS, Andersson A, Holm T, Sigurgeirsson B, Wu G, Sankaranarayanan SR, Siddharthan R, Sanyal K, Lundeberg J, Nystedt B, Boekhout T, Dawson TL, Heitman J, Scheynius A, Lehtiö J. Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis. Nucleic Acids Res 2017; 45:2629-2643. [PMID: 28100699 PMCID: PMC5389616 DOI: 10.1093/nar/gkx006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/16/2017] [Indexed: 11/23/2022] Open
Abstract
Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies.
Collapse
Affiliation(s)
- Yafeng Zhu
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121 Solna, Sweden
| | - Pär G Engström
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| | - Christian Tellgren-Roth
- National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden
| | - Charles D Baudo
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - John C Kennell
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Markus S Schröder
- School of Biomedical and Biomolecular Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna Andersson
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet and University Hospital, 17177 Stockholm, Sweden
| | - Tina Holm
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet and University Hospital, 17177 Stockholm, Sweden
| | - Benjamin Sigurgeirsson
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, 17121 Solna, Sweden
| | - Guangxi Wu
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 138672, Singapore
| | - Sundar Ram Sankaranarayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| | - Rahul Siddharthan
- The Institute of Mathematical Sciences/HBNI, Taramani, Chennai 600 113, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| | - Joakim Lundeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, 17121 Solna, Sweden
| | - Björn Nystedt
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Teun Boekhout
- CBS-Fungal Biodiversity Centre, Utrecht, 3508, The Netherlands and Institute for Biodiversity and ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Thomas L Dawson
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Annika Scheynius
- Science for Life Laboratory, Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121 Solna, Sweden
| |
Collapse
|
49
|
Abstract
Although at the level of resolution of genes and molecules most information about mating in fungi is from a single lineage, the Dikarya, many fundamental discoveries about mating in fungi have been made in the earlier branches of the fungi. These are nonmonophyletic groups that were once classified into the chytrids and zygomycetes. Few species in these lineages offer the potential of genetic tractability, thereby hampering the ability to identify the genes that underlie those fundamental insights. Research performed during the past decade has now established the genes required for mating type determination and pheromone synthesis in some species in the phylum Mucoromycota, especially in the order Mucorales. These findings provide striking parallels with the evolution of mating systems in the Dikarya fungi. Other discoveries in the Mucorales provide the first examples of sex-cell type identity being driven directly by a gene that confers mating type, a trait considered more of relevance to animal sex determination but difficult to investigate in animals. Despite these discoveries, there remains much to be gleaned about mating systems from these fungi.
Collapse
Affiliation(s)
- Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville 3010 VIC, Australia
| |
Collapse
|
50
|
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Timothy Y. James
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|