1
|
Russell RC, Sufan RI, Zhou B, Heir P, Bunda S, Sybingco SS, Greer SN, Roche O, Heathcote SA, Chow VW, Boba LM, Richmond TD, Hickey MM, Barber DL, Cheresh DA, Simon MC, Irwin MS, Kim WY, Ohh M. Loss of JAK2 regulation via a heterodimeric VHL-SOCS1 E3 ubiquitin ligase underlies Chuvash polycythemia. Nat Med 2011; 17:845-53. [PMID: 21685897 PMCID: PMC3221316 DOI: 10.1038/nm.2370] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/04/2011] [Indexed: 01/22/2023]
Abstract
Chuvash polycythemia is a rare congenital form of polycythemia caused by homozygous R200W and H191D mutations in the VHL (von Hippel-Lindau) gene, whose gene product is the principal negative regulator of hypoxia-inducible factor. However, the molecular mechanisms underlying some of the hallmark abnormalities of Chuvash polycythemia, such as hypersensitivity to erythropoietin, are unclear. Here we show that VHL directly binds suppressor of cytokine signaling 1 (SOCS1) to form a heterodimeric E3 ligase that targets phosphorylated JAK2 (pJAK2) for ubiquitin-mediated destruction. In contrast, Chuvash polycythemia-associated VHL mutants have altered affinity for SOCS1 and do not engage with and degrade pJAK2. Systemic administration of a highly selective JAK2 inhibitor, TG101209, reversed the disease phenotype in Vhl(R200W/R200W) knock-in mice, an experimental model that recapitulates human Chuvash polycythemia. These results show that VHL is a SOCS1-cooperative negative regulator of JAK2 and provide biochemical and preclinical support for JAK2-targeted therapy in individuals with Chuvash polycythemia.
Collapse
Affiliation(s)
- Ryan C. Russell
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8
| | - Roxana I. Sufan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8
| | - Bing Zhou
- Department of Haematology Oncology, The Lineberger Comprehensive Cancer Centre, 102 Mason Farm Road, CB7295, University of North Carolina, Chapel Hill, NC 27599
| | - Pardeep Heir
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8
| | - Severa Bunda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8
| | - Stephanie S. Sybingco
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8
| | - Samantha N. Greer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8
| | - Olga Roche
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8
| | - Samuel A. Heathcote
- Department of Haematology Oncology, The Lineberger Comprehensive Cancer Centre, 102 Mason Farm Road, CB7295, University of North Carolina, Chapel Hill, NC 27599
| | - Vinca W.K. Chow
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8
| | - Lukasz M. Boba
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8
| | - Terri D. Richmond
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9
| | - Michele M. Hickey
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 456 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160
| | - Dwayne L. Barber
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9
| | - David A. Cheresh
- University of California, San Diego, Moores Cancer Center, Room 2344, 3855 Health Sciences Drive #0803, La Jolla, CA 92093-0803
| | - M. Celeste Simon
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 456 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160
- Howard Hughes Medical Institute
| | - Meredith S. Irwin
- Department of Paediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8
| | - William Y. Kim
- Department of Haematology Oncology, The Lineberger Comprehensive Cancer Centre, 102 Mason Farm Road, CB7295, University of North Carolina, Chapel Hill, NC 27599
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8
| |
Collapse
|
2
|
Villeneuve NF, Lau A, Zhang DD. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal 2010; 13:1699-712. [PMID: 20486766 PMCID: PMC2966484 DOI: 10.1089/ars.2010.3211] [Citation(s) in RCA: 335] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nrf2 is a transcription factor that has emerged as the cell's main defense mechanism against many harmful environmental toxicants and carcinogens. Nrf2 is negatively regulated by Keap1, a substrate adaptor protein for the Cullin3 (Cul3)-containing E3-ligase complex, which targets Nrf2 for ubiquitination and degradation by the ubiquitin proteasome system (UPS). Recent evidence suggests that constitutive activation of Nrf2, due to mutations in Keap1 or Nrf2, is prominent in many cancer types and contributes to chemoresistance. Regulation of Nrf2 by the Cul3-Keap1-E3 ligase provides strong evidence that tight regulation of Cullin-ring ligases (CRLs) is imperative to maintain cellular homeostasis. There are seven known Cullin proteins that form various CRL complexes. They are regulated by neddylation/deneddylation, ubiquitination/deubiquitination, CAND1-assisted complex assembly/disassembly, and subunit dimerization. In this review, we will discuss the regulation of each CRL using the Cul3-Keap1-E3 ligase complex as the primary focus. The substrates of CRLs are involved in many signaling pathways. Therefore, deregulation of CRLs affects several cellular processes, including cell cycle arrest, DNA repair, cell proliferation, senescence, and death, which may lead to many human diseases, including cancer. This makes CRLs a promising target for novel cancer drug therapies.
Collapse
Affiliation(s)
- Nicole F Villeneuve
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, 85721, USA
| | | | | |
Collapse
|
3
|
Yoshida S, Imoto J, Minato T, Oouchi R, Kamada Y, Tomita M, Soga T, Yoshimoto H. A novel mechanism regulates H2S and SO2 production in Saccharomyces cerevisiae. Yeast 2010; 28:109-21. [DOI: 10.1002/yea.1823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/27/2010] [Indexed: 11/06/2022] Open
|
4
|
Zimmerman ES, Schulman BA, Zheng N. Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 2010; 20:714-21. [PMID: 20880695 DOI: 10.1016/j.sbi.2010.08.010] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
Abstract
The cullin-RING ubiquitin ligases (CRLs) are the largest family of multi-subunit E3 ligases in eukaryotes, which ubiquitinate protein substrates in numerous cellular pathways. CRLs share a common arched scaffold and a RING domain catalytic subunit, but use different adaptors and substrate receptors to assemble unique E3 machineries. In comparison to the first CRL structure, recent findings have revealed increased complexity in the overall architecture and assembly mode of CRLs, including multi-domain organization, inter-domain flexibility, and subunit dimerization. These features highlight the capacity of CRLs to catalyze protein ubiquitination under distinct cellular contexts and in response to diverse signals. As the first installment of a two-review series, this article will focus on recent advances in our understanding of CRL assembly mechanisms.
Collapse
Affiliation(s)
- Erik S Zimmerman
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
5
|
Li Y, Hao B. Structural basis of dimerization-dependent ubiquitination by the SCF(Fbx4) ubiquitin ligase. J Biol Chem 2010; 285:13896-906. [PMID: 20181953 PMCID: PMC2859552 DOI: 10.1074/jbc.m110.111518] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 02/17/2010] [Indexed: 01/17/2023] Open
Abstract
The F-box proteins are the substrate recognition subunits of the SCF (Skp1-Cul1-Rbx1-F- box protein) ubiquitin ligase complexes that control the stability of numerous regulators in eukaryotic cells. Here we show that dimerization of the F-box protein Fbx4 is essential for SCF(Fbx4) (the superscript denotes the F-box protein) ubiquitination activity toward the telomere regulator Pin2 (also known as TRF1). The crystal structure of Fbx4 in complex with an adaptor protein Skp1 reveals an antiparallel dimer configuration in which the linker domain of Fbx4 interacts with the C-terminal substrate-binding domain of the other protomer, whereas the C-terminal domain of the protein adopts a compact alpha/beta fold distinct from those of known F-box proteins. Biochemical studies indicate that both the N-terminal domain and a loop connecting the linker and C-terminal domain of Fbx4 are critical for the dimerization and activation of the protein. Our findings provide a framework for understanding the role of F-box dimerization in the SCF-mediated ubiquitination reaction.
Collapse
Affiliation(s)
- Yunfeng Li
- From the Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Bing Hao
- From the Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
6
|
Liu Y, Mimura S, Kishi T, Kamura T. A longevity protein, Lag2, interacts with SCF complex and regulates SCF function. EMBO J 2009; 28:3366-77. [PMID: 19763088 DOI: 10.1038/emboj.2009.268] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/13/2009] [Indexed: 11/09/2022] Open
Abstract
SCF-type E3-ubiquitin ligases control numerous cellular processes through the ubiquitin-proteasome pathway. However, the regulation of SCF function remains largely uncharacterized. Here, we report a novel SCF complex-interacting protein, Lag2, in Saccharomyces cerevisiae. Lag2 interacts with the SCF complex under physiological conditions. Lag2 negatively controls the ubiquitylation activities of SCF E3 ligase by interrupting the association of Cdc34 to SCF complex. Overexpression of Lag2 increases unrubylated Cdc53, whereas deletion of lag2, together with the deletions of dcn1 and jab1, results in the accumulation of Rub1-modified Cdc53. In vitro rubylation assays show that Lag2 inhibits the conjugation of Rub1 to Cdc53 in competition with Dcn1, which suggest that Lag2 down-regulates the rubylation of Cdc53 rather than promoting derubylation. Furthermore, Dcn1 hinders the association of Lag2 to Cdc53 in vivo. Finally, the deletion of lag2 combined with the deletion of either dcn1 or rub1 suppresses the growth of yeast cells. These observations thus indicate that Lag2 has a significant function in regulating the SCF complex by controlling its ubiquitin ligase activities and its rubylation cycle.
Collapse
Affiliation(s)
- Yuan Liu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
| | | | | | | |
Collapse
|
7
|
Bosu DR, Kipreos ET. Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div 2008; 3:7. [PMID: 18282298 PMCID: PMC2266742 DOI: 10.1186/1747-1028-3-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 02/18/2008] [Indexed: 11/29/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) comprise the largest known category of ubiquitin ligases. CRLs regulate an extensive number of dynamic cellular processes, including multiple aspects of the cell cycle, transcription, signal transduction, and development. CRLs are multisubunit complexes composed of a cullin, RING H2 finger protein, a variable substrate-recognition subunit (SRS), and for most CRLs, an adaptor that links the SRS to the complex. Eukaryotic species contain multiple cullins, with five major types in metazoa. Each cullin forms a distinct class of CRL complex, with distinct adaptors and/or substrate-recognition subunits. Despite this diversity, each of the classes of CRL complexes is subject to similar regulatory mechanisms. This review focuses on the global regulation of CRL complexes, encompassing: neddylation, deneddylation by the COP9 Signalosome (CSN), inhibitory binding by CAND1, and the dimerization of CRL complexes. We also address the role of cycles of activation and inactivation in regulating CRL activity and switching between substrate-recognition subunits.
Collapse
Affiliation(s)
- Dimple R Bosu
- Department of Cellular Biology, University of Georgia, 724 Biological Sciences Bldg,, Athens, GA 30602-2607, USA.
| | | |
Collapse
|
8
|
Tang X, Orlicky S, Lin Z, Willems A, Neculai D, Ceccarelli D, Mercurio F, Shilton BH, Sicheri F, Tyers M. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 2007; 129:1165-76. [PMID: 17574027 DOI: 10.1016/j.cell.2007.04.042] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 02/16/2007] [Accepted: 04/26/2007] [Indexed: 11/17/2022]
Abstract
SCF ubiquitin ligases recruit substrates for degradation via F box protein adaptor subunits. WD40 repeat F box proteins, such as Cdc4 and beta-TrCP, contain a conserved dimerization motif called the D domain. Here, we report that the D domain protomers of yeast Cdc4 and human beta-TrCP form a superhelical homotypic dimer. Disruption of the D domain compromises the activity of yeast SCF(Cdc4) toward the CDK inhibitor Sic1 and other substrates. SCF(Cdc4) dimerization has little effect on the affinity for Sic1 but markedly stimulates ubiquitin conjugation. A model of the dimeric holo-SCF(Cdc4) complex based on small-angle X-ray scatter measurements reveals a suprafacial configuration, in which substrate-binding sites and E2 catalytic sites lie in the same plane with a separation of 64 A within and 102 A between each SCF monomer. This spatial variability may accommodate diverse acceptor lysine geometries in both substrates and the elongating ubiquitin chain and thereby increase catalytic efficiency.
Collapse
Affiliation(s)
- Xiaojing Tang
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada M5G 1X5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chew EH, Poobalasingam T, Hawkey CJ, Hagen T. Characterization of cullin-based E3 ubiquitin ligases in intact mammalian cells — Evidence for cullin dimerization. Cell Signal 2007; 19:1071-80. [PMID: 17254749 DOI: 10.1016/j.cellsig.2006.12.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 12/04/2006] [Accepted: 12/04/2006] [Indexed: 11/22/2022]
Abstract
Cullin-based E3 ligases are a large family of ubiquitin ligases with diverse cellular functions. They are composed of one of six mammalian cullin homologues, the Ring finger containing protein Roc1/Rbx1 and cullin homologue-specific adapter and substrate recognition subunits. To be active, cullin-based ligases require the covalent modification of a conserved lysine residue in the cullin protein with the ubiquitin-like protein Nedd8. To characterize this family of E3 ligases in intact cells, we generated a cell line with tetracycline-inducible expression of a dominant-negative mutant of the Nedd8-conjugating enzyme Ubc12, a reported inhibitor of cullin neddylation. Using this cell line, we demonstrate that the substrate recognition subunit Skp2 and the adaptor protein Skp1 are subject to Ubc12-dependent autoubiquitination and degradation. In contrast, cullin protein stability is not regulated by neddylation in mammalian cells. We also provide evidence that Cul1 and Cul3, as well as their associated substrate recognition subunits Skp2 and Keap1, respectively, homooligomerize in intact cells, suggesting that cullin-based ligases are dimeric. Cul3, but not Cul1 homooligomerization is dependent on substrate recognition subunit dimer formation. As shown for other E3 ubiquitin ligases, dimerization may play a role in regulating the activity of cullin-based E3 ligases.
Collapse
Affiliation(s)
- Eng-Hui Chew
- Wolfson Digestive Diseases Centre, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
10
|
Chandrasekaran S, Deffenbaugh AE, Ford DA, Bailly E, Mathias N, Skowyra D. Destabilization of binding to cofactors and SCFMet30 is the rate-limiting regulatory step in degradation of polyubiquitinated Met4. Mol Cell 2007; 24:689-699. [PMID: 17157252 DOI: 10.1016/j.molcel.2006.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 07/07/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
The Met4 transcriptional activator of methionine biosynthesis is negatively regulated by the SCFMet30 ubiquitin ligase in response to accumulation of methionine. This mechanism requires polyubiquitination, but not proteolysis. We report that a previously unappreciated mechanism involving growth control regulates Met4. Unless methionine is present in the growth medium, polyubiquitinated Met4 is stabilized in late exponential cultures, correlating with transcriptional repression. Polyubiquitinated Met4 becomes destabilized in a proteasome-dependent manner upon reentry into exponential growth, correlating with transcriptional activation. Met4 stabilization is regulated at the level of SCFMet30 binding and requires transcriptional cofactors. These lock Met4 and SCFMet30 into a tight complex active in ubiquitination but incapable of binding the proteasome. Release of polyubiquitinated Met4 from SCFMet30 is sufficient for degradation, and specific sulfur amino acids can promote the degradation by destabilizing Met4 binding to cofactors and SCFMet30. Thus, destabilization of cofactors and SCFMet30 binding is the rate-limiting regulatory step in Met4 proteolysis.
Collapse
Affiliation(s)
- Srikripa Chandrasekaran
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104; Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, Shreveport, Louisiana 71130
| | - Andrew E Deffenbaugh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | | | - Neal Mathias
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, Shreveport, Louisiana 71130
| | - Dorota Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104.
| |
Collapse
|
11
|
Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN. Heat Shock Prevents Alpha-synuclein-induced Apoptosis in a Yeast Model of Parkinson's Disease. J Mol Biol 2005; 351:1081-100. [PMID: 16051265 DOI: 10.1016/j.jmb.2005.06.060] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 05/14/2005] [Accepted: 06/27/2005] [Indexed: 01/15/2023]
Abstract
We show that human wild-type alpha synuclein (WT alpha-syn), and the inherited mutants A53T or A30P, when expressed in the yeast Saccharomyces cerevisiae triggers events that are diagnostic of apoptosis: loss of membrane asymmetry due to the externalization of phosphatidylserine, accumulation of reactive oxygen species (ROS), and the release of cytochrome c from mitochondria. A brief heat shock was strikingly protective in that alpha-syn-expressing cells receiving a heat shock exhibited none of these apoptotic markers. Because the heat shock did not decrease the expression level of alpha-syn, a protective protein or proteins, induced by the heat shock, must be responsible for inhibition of alpha-syn-induced apoptosis. Using ROS accumulation as a marker of apoptosis, the role of various genes and various drugs in controlling alpha-syn-induced apoptosis was investigated. Treatment with geldanamycin or glutathione, overexpression of Ssa3 (Hsp70), or deletion of the yeast metacaspase gene YCA1 abolishes the ability of alpha-syn to induce ROS accumulation. Deletion of YCA1 also promotes vigorous growth of alpha-syn-expressing cells compared to cells that contain a functional copy of YCA1. These findings indicate that alpha-syn-induced ROS generation is mediated by the caspase, according to alpha-syn-->caspase-->ROS-->apoptosis. It is shown by co-immunoprecipitation that Ssa3 binds to alpha-syn in a nucleotide-dependent manner. Thus, we propose that Hsp70 chaperones inhibit this sequence of events by binding and sequestering alpha-syn.
Collapse
Affiliation(s)
- Todd R Flower
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
12
|
Brunson LE, Dixon C, LeFebvre A, Sun L, Mathias N. Identification of residues in the WD-40 repeat motif of the F-box protein Met30p required for interaction with its substrate Met4p. Mol Genet Genomics 2005; 273:361-70. [PMID: 15883825 DOI: 10.1007/s00438-005-1137-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
The SCF family of ubiquitin-ligases consists of a common core machinery, namelySkp1p, Cdc53p, Hrt1p, and a variable component, the F-box protein that is responsible for substrate recognition. The F-box motif, which consists of approximately 40 amino acids, connects the F-box protein to the core ubiquitin-ligase machinery. Distinct SCF complexes, defined by distinct F-box proteins, target different substrate proteins for proteasome-dependent degradation. As part of the SCF(Met30p) complex, the F-box protein Met30p selects the substrate Met4p, a transcriptional activator for MET biosynthetic genes that mediate sulfur uptake and biosynthesis of sulfur containing compounds. When cells are grown in the absence of methionine, Met4p evades degradation by the SCF(Met30p) complex and activates the MET biosynthetic pathway. However, overproduction of Met30p represses MET gene expression and induces methionine auxotrophy in an otherwise methionine prototrophic strain. Here we demonstrate that overproduction of the C-terminal portion of Met30p, which is composed almost entirely of seven WD-40 repeat motifs, is necessary and sufficient to induce methionine auxotrophy and complement the temperature sensitive (ts) met30-6 mutation. Furthermore, we show that this region of Met30p is important for binding Met4p and that mutations that disrupt this interaction prevent both the induction of methionine auxotrophy and complementation of the met30-6 mutation. These assays have been exploited to identify residues that are important for the interaction of Met30p with its substrate. Since the C-terminal domain of Met30p lacks the F-box and cannot support the ubiquitination of Met4p, our results indicate that the recruitment of Met4p to the SCF(Met30p) complex itself results in inactivation of Met4p, independently of its ubiquitination.
Collapse
Affiliation(s)
- Lee Ellen Brunson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Cullin-RING complexes comprise the largest known class of ubiquitin ligases. Owing to the great diversity of their substrate-receptor subunits, it is possible that there are hundreds of distinct cullin-RING ubiquitin ligases in eukaryotic cells, which establishes these enzymes as key mediators of post-translational protein regulation. In this review, we focus on the composition, regulation and function of cullin-RING ligases, and describe how these enzymes can be characterized by a set of general principles.
Collapse
Affiliation(s)
- Matthew D Petroski
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA.
| | | |
Collapse
|
14
|
Dixon C, Mathias N, Zweig RM, Davis DA, Gross DS. Alpha-synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics 2005; 170:47-59. [PMID: 15744056 PMCID: PMC1449710 DOI: 10.1534/genetics.104.035493] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A pathological feature of Parkinson's disease is the presence of Lewy bodies within selectively vulnerable neurons. These are ubiquitinated cytoplasmic inclusions containing alpha-synuclein, an abundant protein normally associated with presynaptic terminals. Point mutations in the alpha-synuclein gene (A30P and A53T), as well as triplication of the wild-type (WT) locus, have been linked to autosomal dominant Parkinson's. How these alterations might contribute to disease progression is unclear. Using the genetically tractable yeast Saccharomyces cerevisiae as a model system, we find that both the WT and the A53T isoforms of alpha-synuclein initially localize to the plasma membrane, to which they are delivered via the classical secretory pathway. In contrast, the A30P mutant protein disperses within the cytoplasm and does not associate with the plasma membrane, and its intracellular distribution is unaffected by mutations in the secretory pathway. When their expression is elevated, WT and A53T, but not A30P, are toxic to cells. At moderate levels of expression, WT and A53T induce the cellular stress (heat-shock) response and are toxic to cells bearing mutations in the 20S proteasome. Our results reveal a link between plasma membrane targeting of alpha-synuclein and its toxicity in yeast and suggest a role for the quality control (QC) system in the cell's effort to deal with this natively unfolded protein.
Collapse
Affiliation(s)
- Cheryl Dixon
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, Shreveport, 71130-3932, USA
| | | | | | | | | |
Collapse
|
15
|
Willems AR, Schwab M, Tyers M. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:133-70. [PMID: 15571813 DOI: 10.1016/j.bbamcr.2004.09.027] [Citation(s) in RCA: 375] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The SCF (Skp1-Cullin-F-box) E3 ubiquitin ligase family was discovered through genetic requirements for cell cycle progression in budding yeast. In these multisubunit enzymes, an invariant core complex, composed of the Skp1 linker protein, the Cdc53/Cul1 scaffold protein and the Rbx1/Roc1/Hrt1 RING domain protein, engages one of a suite of substrate adaptors called F-box proteins that in turn recruit substrates for ubiquitination by an associated E2 enzyme. The cullin-RING domain-adaptor architecture has diversified through evolution, such that in total many hundreds of distinct SCF and SCF-like complexes enable degradation of myriad substrates. Substrate recognition by adaptors often depends on posttranslational modification of the substrate, which thus places substrate stability under dynamic regulation by intracellular signaling events. SCF complexes control cell proliferation through degradation of critical regulators such as cyclins, CDK inhibitors and transcription factors. A plethora of other processes in development and disease are controlled by other SCF-like complexes, including those based on Cul2-SOCS-box adaptor protein and Cul3-BTB domain adaptor protein combinations. Recent structural insights into SCF-like complexes have begun to illuminate aspects of substrate recognition and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Andrew R Willems
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Canada, M5G 1X5
| | | | | |
Collapse
|
16
|
Han L, Mason M, Risseeuw EP, Crosby WL, Somers DE. Formation of an SCF(ZTL) complex is required for proper regulation of circadian timing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:291-301. [PMID: 15447654 DOI: 10.1111/j.1365-313x.2004.02207.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The circadian timing system involves an autoregulatory transcription/translation feedback loop that incorporates a diverse array of factors to maintain a 24-h periodicity. In Arabidopsis a novel F-box protein, ZEITLUPE (ZTL), plays an important role in the control of the free-running period of the circadian clock. As a class, F-box proteins are well-established components of the Skp/Cullin/F-box (SCF) class of E3 ubiquitin ligases that link the target substrates to the core ubiquitinating activity of the ligase complex via direct association with the Skp protein. Here we identify and characterize the SCFZTL complex in detail. Yeast two-hybrid tests demonstrate the sufficiency and necessity of the F-box domain for Arabidopsis Skp-like protein (ASK) interactions and the dispensability of the unique N-terminal LOV domain in this association. Co-immunoprecipitation of full-length (FL) ZTL with the three known core components of SCF complexes (ASK1, AtCUL1 and AtRBX1) demonstrates that ZTL can assemble into an SCF complex in vivo. F-box-containing truncated versions of ZTL (LOV-F and F-kelch) can complex with SCF components in vivo, whereas stably expressed LOV or kelch domains alone cannot. Stable expression of F-box-mutated FL ZTL eliminates the shortened period caused by mild ZTL overexpression and also abolishes ASK1 interaction in vivo. Reduced levels of the core SCF component AtRBX1 phenocopy the long period phenotype of ztl loss-of-function mutations, demonstrating the functional significance of the SCFZTL complex. Taken together, our data establish SCFZTL as an essential SCF class E3 ligase controlling circadian period in plants.
Collapse
Affiliation(s)
- Linqu Han
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
17
|
Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:626-34. [PMID: 14756772 DOI: 10.1111/j.1365-313x.2003.01990.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The phytohormone gibberellin (GA) controls growth and development in plants. Previously, we identified a rice F-box protein, gibberellin-insensitive dwarf2 (GID2), which is essential for GA-mediated DELLA protein degradation. In this study, we analyzed the biological and molecular biological properties of GID2. Expression of GID2 preferentially occurred in rice organs actively synthesizing GA. Domain analysis of GID2 revealed that the C-terminal regions were essential for the GID2 function, but not the N-terminal region. Yeast two-hybrid assay and immunoprecipitation experiments demonstrated that GID2 is a component of the SCF complex through an interaction with a rice ASK1 homolog, OsSkp15. Furthermore, an in vitro pull-down assay revealed that GID2 specifically interacted with the phosphorylated Slender Rice 1 (SLR1). Taken these results together, we conclude that the phosphorylated SLR1 is caught by the SCFGID2 complex through an interacting affinity between GID2 and phosphorylated SLR1, triggering the ubiquitin-mediated degradation of SLR1.
Collapse
Affiliation(s)
- Kenji Gomi
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Brunson LE, Dixon C, Kozubowski L, Mathias N. The Amino-terminal Portion of the F-box Protein Met30p Mediates Its Nuclear Import and Assimilation into an SCF Complex. J Biol Chem 2004; 279:6674-82. [PMID: 14660673 DOI: 10.1074/jbc.m308875200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SCF complexes are a conserved family of ubiquitin ligases composed of a common core of components and a variable component called an F-box protein that defines substrate specificity. The F-box motif links the F-box protein to the core components via its interaction with Skp1p. In yeast, the SCFMet30p complex contains the Met30p F-box protein and regulates Met4p, a transcription factor that mediates sulfur fixation and methionine biosynthesis. Although a nuclear protein, Met30p lacks a definable nuclear localization sequence. Here we show that the entire amino-terminal half of Met30p is required for its proper nuclear localization. Mutations in the F-box, but not mutations in Skp1p, affect Met30p nuclear localization, indicating that the F-box motif plays an important role in Met30p trafficking independent of its interaction with Skp1p binding. Met30p mutants that poorly localize to the nucleus display increased nuclear to cytoplasmic exchange, indicating that the amino terminus mediates nuclear retention in addition to nuclear import. The Met30p F-box motif, residues 180-225, is necessary and sufficient to bind Skp1p; however, mutations upstream of the Met30p F-box inhibit Skp1p binding. We propose that additional factors bind the amino-terminal region of Met30p and mediate its nuclear localization and assimilation into an SCF complex.
Collapse
Affiliation(s)
- Lee Ellen Brunson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | |
Collapse
|