1
|
Huang TY, Lee YY, Vidal-Diez de Ulzurrun G, Hsueh YP. Forward genetic screens identified mutants with defects in trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. G3-GENES GENOMES GENETICS 2021; 11:6055540. [PMID: 33585866 PMCID: PMC8022932 DOI: 10.1093/g3journal/jkaa022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 02/04/2023]
Abstract
Nematode-trapping fungi (NTF) are carnivorous fungi that prey on nematodes under nutrient-poor conditions via specialized hyphae that function as traps. The molecular mechanisms involved in the interactions between NTF and their nematode prey are largely unknown. In this study, we conducted forward genetic screens to identify potential genes and pathways that are involved in trap morphogenesis and predation in the NTF Arthrobotrys oligospora. Using Ethyl methanesulfonate and UV as the mutagens, we generated 5552 randomly mutagenized A. oligospora strains and identified 15 mutants with strong defects in trap morphogenesis. Whole-genome sequencing and bioinformatic analyses revealed mutations in genes with roles in signaling, transcription or membrane transport that may contribute to the defects of trap morphogenesis in these mutants. We further conducted functional analyses on a candidate gene, YBP-1, and demonstrate that mutation of that gene was causative of the phenotypes observed in one of the mutants. The methods established in this study might provide helpful insights for establishing forward genetic screening methods for other non-model fungal species.
Collapse
Affiliation(s)
- Tsung-Yu Huang
- Institute of Molecular Biology, Academia Sinica, Nangang, 128 Academia Road, Section 2, Nangang, Taipei, Taiwan.,Department of Biochemical Science and Technology, National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Yi-Yun Lee
- Institute of Molecular Biology, Academia Sinica, Nangang, 128 Academia Road, Section 2, Nangang, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
| | | | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, 128 Academia Road, Section 2, Nangang, Taipei, Taiwan.,Department of Biochemical Science and Technology, National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
2
|
Genome-wide characterization of ALDH Superfamily in Brassica rapa and enhancement of stress tolerance in heterologous hosts by BrALDH7B2 expression. Sci Rep 2019; 9:7012. [PMID: 31065035 PMCID: PMC6505040 DOI: 10.1038/s41598-019-43332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) carries out oxidation of toxic aldehydes using NAD+/NADP+ as cofactors. In the present study, we performed a genome-wide identification and expression analysis of genes in the ALDH gene family in Brassica rapa. A total of 23 ALDH genes in the superfamily have been identified according to the classification of ALDH Gene Nomenclature Committee (AGNC). They were distributed unevenly across all 10 chromosomes. All the 23 Brassica rapa ALDH (BrALDH) genes exhibited varied expression patterns during treatments with abiotic stress inducers and hormonal treatments. The relative expression profiles of ALDH genes in B. rapa showed that they are predominantly expressed in leaves and stem suggesting their function in the vegetative tissues. BrALDH7B2 showed a strong response to abiotic stress and hormonal treatments as compared to other ALDH genes; therefore, it was overexpressed in heterologous hosts, E. coli and yeast to study its possible function under abiotic stress conditions. Over-expression of BrALDH7B2 in heterologous systems, E. coli and yeast cells conferred significant tolerance to abiotic stress treatments. Results from this work demonstrate that BrALDH genes are a promising and untapped genetic resource for crop improvement and could be deployed further in the development of drought and salinity tolerance in B. rapa and other economically important crops.
Collapse
|
3
|
Mudalkar S, Sreeharsha RV, Reddy AR. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:39-49. [PMID: 26995646 DOI: 10.1016/j.jplph.2016.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance.
Collapse
Affiliation(s)
- Shalini Mudalkar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
4
|
Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance. Fungal Genet Biol 2014; 74:1-9. [PMID: 25445311 DOI: 10.1016/j.fgb.2014.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans is a pathogen that is the most common cause of fungal meningitis. As with most fungal pathogens, the most prevalent clinical antifungal used to treat Cryptococcosis is orally administered fluconazole. Resistance to this antifungal is an increasing concern in treatment of fungal disease in general. Our knowledge of the specific determinants involved in fluconazole resistance in Cryptococcus is limited. Here we report the identification of an important genetic determinant of fluconazole resistance in C. neoformans that encodes a basic region-leucine zipper transcription factor homologous to Saccharomyces cerevisiae Yap1. Expression of a codon-optimized form of the Cn YAP1 cDNA in S. cerevisiae complemented defects caused by loss of the endogenous S. cerevisiae YAP1 gene and activated transcription from a reporter gene construct. Mutant strains of C. neoformans lacking YAP1 were hypersensitive to a range of oxidative stress agents but importantly also to fluconazole. Loss of Yap1 homologues from other fungal pathogens like Candida albicans or Aspergillus fumigatus was previously found to cause oxidant hypersensitivity but had no detectable effect on fluconazole resistance. Our data provide evidence for a unique biological role of Yap1 in wild-type fluconazole resistance in C. neoformans.
Collapse
|
5
|
Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2014; 2:535-62. [PMID: 24634836 PMCID: PMC3953959 DOI: 10.1016/j.redox.2014.02.006] [Citation(s) in RCA: 630] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment. Complexity of redox regulation increases along the phylogenetic tree. Complex regulatory networks allow for a high degree of H2O2 biological plasticity. H2O2 modulates gene expression at all steps from transcription to protein synthesis. Fast response (s) is mediated by sensors with high H2O2 reactivity. Low reactivity H2O2 sensors may mediate slow (h) or localized H2O2 responses.
Collapse
Affiliation(s)
- H. Susana Marinho
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Carla Real
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Cyrne
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, IPL, Lisboa, Portugal
| | - Fernando Antunes
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Corresponding author.
| |
Collapse
|
6
|
Patterson MJ, McKenzie CG, Smith DA, da Silva Dantas A, Sherston S, Veal EA, Morgan BA, MacCallum DM, Erwig LP, Quinn J. Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape. Antioxid Redox Signal 2013; 19:2244-60. [PMID: 23706023 PMCID: PMC3869436 DOI: 10.1089/ars.2013.5199] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS As Candida albicans is the major fungal pathogen of humans, there is an urgent need to understand how this pathogen evades toxic reactive oxygen species (ROS) generated by the host immune system. A key regulator of antioxidant gene expression, and thus ROS resistance, in C. albicans is the AP-1-like transcription factor Cap1. Despite this, little is known regarding the intracellular signaling mechanisms that underlie the oxidation and activation of Cap1. Therefore, the aims of this study were; (i) to identify the regulatory proteins that govern Cap1 oxidation, and (ii) to investigate the importance of Cap1 oxidation in C. albicans pathogenesis. RESULTS In response to hydrogen peroxide (H2O2), but not glutathione-depleting/modifying oxidants, Cap1 oxidation, nuclear accumulation, phosphorylation, and Cap1-dependent gene expression, is mediated by a glutathione peroxidase-like enzyme, which we name Gpx3, and an orthologue of the Saccharomyces cerevisiae Yap1 binding protein, Ybp1. In addition, Ybp1 also functions to stabilise Cap1 and this novel function is conserved in S. cerevisiae. C. albicans cells lacking Cap1, Ybp1, or Gpx3, are unable to filament and thus, escape from murine macrophages after phagocytosis, and also display defective virulence in the Galleria mellonella infection model. INNOVATION Ybp1 is required to promote the stability of fungal AP-1-like transcription factors, and Ybp1 and Gpx3 mediated Cap1-dependent oxidative stress responses are essential for the effective killing of macrophages by C. albicans. CONCLUSION Activation of Cap1, specifically by H2O2, is a prerequisite for the subsequent filamentation and escape of this fungal pathogen from the macrophage.
Collapse
Affiliation(s)
- Miranda J. Patterson
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Deborah A. Smith
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alessandra da Silva Dantas
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sam Sherston
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizabeth A. Veal
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Brian A. Morgan
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lars-Peter Erwig
- Division of Applied Medicine, University of Aberdeen, Aberdeen, United Kingdom
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Janet Quinn
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Nuclear FKBPs, Fpr3 and Fpr4 affect genome-wide genes transcription. Mol Genet Genomics 2013; 289:125-36. [DOI: 10.1007/s00438-013-0794-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
|
8
|
Suppressors of ipl1-2 in components of a Glc7 phosphatase complex, Cdc48 AAA ATPase, TORC1, and the kinetochore. G3-GENES GENOMES GENETICS 2012; 2:1687-701. [PMID: 23275890 PMCID: PMC3516489 DOI: 10.1534/g3.112.003814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/24/2012] [Indexed: 01/26/2023]
Abstract
Ipl1/Aurora B is the catalytic subunit of a protein kinase complex required for chromosome segregation and nuclear division. Before anaphase, Ipl1 is required to establish proper kinetochore-microtubule associations and to regulate the spindle assembly checkpoint (SAC). The phosphatase Glc7/PP1 opposes Ipl1 for these activities. To investigate Ipl1 and Glc7 regulation in more detail, we isolated and characterized mutations in the yeast Saccharomyces cerevisiae that raise the restrictive temperature of the ipl-2 mutant. These suppressors include three intragenic, second-site revertants in IPL1; 17 mutations in Glc7 phosphatase components (GLC7, SDS22, YPI1); two mutations in SHP1, encoding a regulator of the AAA ATPase Cdc48; and a mutation in TCO89, encoding a subunit of the TOR Complex 1. Two revertants contain missense mutations in microtubule binding components of the kinetochore. rev76 contains the missense mutation duo1-S115F, which alters an essential component of the DAM1/DASH complex. The mutant is cold sensitive and arrests in G2/M due to activation of the SAC. rev8 contains the missense mutation ndc80-K204E. K204 of Ndc80 corresponds to K166 of human Ndc80 and the human Ndc80 K166E variant was previously shown to be defective for microtubule binding in vitro. In a wild-type IPL1 background, ndc80-K204E cells grow slowly and the SAC is activated. The slow growth and cell cycle delay of ndc80-K204E cells are partially alleviated by the ipl1-2 mutation. These data provide biological confirmation of a biochemically based model for the effect of phosphorylation on Ndc80 function.
Collapse
|
9
|
Sengupta D, Mudalkar S, Reddy AR. Detoxification potential and expression analysis of eutypine reducing aldehyde reductase (VrALR) during progressive drought and recovery in Vigna radiata (L.) Wilczek roots. PLANTA 2012; 236:1339-1349. [PMID: 22837052 DOI: 10.1007/s00425-012-1716-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
Generation of reactive oxygen species (ROS) in plants is an inevitable consequence of adverse environmental cues and the ability to detoxify deleterious by-products of ROS-mediated oxidation reactions reflect an important defence strategy to combat abiotic stress. Here, we have cloned the eutypine reducing aldehyde reductase gene (VrALR) from Vigna radiata (L.) Wilczek roots. We have expressed and purified the VrALR protein and analyzed its enzyme kinetic parameters and catalytic efficiency with three different substrates to confirm its identity. The functional characterization of this enzyme was unravelled through heterologous expression of the gene in Escherichia coli BL21 and an oxidative stress-sensitive Saccharomyces cerevisiae mutant strain, W3O3-1-A. Finally, the endogenous VrALR enzyme activity and the mRNA expression patterns of the VrALR gene in the roots of V. radiata in response to progressive drought stress in vivo was studied to correlate the ROS-detoxifying role of this important enzyme under the influence of progressive drought stress. Our results, for the first time, demonstrate that eutypine reducing VrALR provides varying degree of stress tolerance in bacteria, yeast systems and also plays a promising protective role against oxidative stress in V. radiata roots during gradual water deprivation. The present study provides an unequivocal evidence to understand the crucial role of aldehyde reductase ROS-detoxifying system which is highly essential for developing stress tolerance in economically important crop plants.
Collapse
Affiliation(s)
- Debashree Sengupta
- Photosynthesis and Plant Stress Biology Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
10
|
Gulshan K, Thommandru B, Moye-Rowley WS. Proteolytic degradation of the Yap1 transcription factor is regulated by subcellular localization and the E3 ubiquitin ligase Not4. J Biol Chem 2012; 287:26796-805. [PMID: 22707721 DOI: 10.1074/jbc.m112.384719] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Yap1 is a transcriptional regulatory protein that serves as a central determinant of oxidative stress tolerance. Activity of this factor is regulated in large part by control of its subcellular location. In the absence of oxidants, Yap1 is primarily located in the cytoplasm. Upon oxidant challenge, Yap1 accumulates rapidly in the nucleus where it activates expression of genes required for oxidative stress tolerance such as the thioredoxin TRX2. Here, we demonstrate that Yap1 degradation is accelerated in response to oxidative stress. Yap1 is folded differently depending on the oxidant used to induce its nuclear localization but is degraded similarly, irrespective of its folded status. Mutant forms of Yap1 that are constitutively trapped in the nucleus are degraded in the absence of an oxidant signal. Degradation requires the ability of the protein to bind DNA and a domain in the amino-terminal region of the factor. Inhibition of the proteasome prevents Yap1 turnover. Screening a variety of mutants involved in ubiquitin-mediated proteolysis demonstrated an important role for the nuclear ubiquitin ligase Not4 in Yap1 degradation. Not4 was found to bind to Yap1 in an oxidant-stimulated fashion. The Candida albicans Yap1 homologue (Cap1) also was degraded after oxidant challenge. These data uncover a new, conserved pathway for regulation of the oxidative stress response that serves to temporally limit the duration of Yap1-dependent transcriptional activation.
Collapse
Affiliation(s)
- Kailash Gulshan
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
11
|
North M, Steffen J, Loguinov AV, Zimmerman GR, Vulpe CD, Eide DJ. Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet 2012; 8:e1002699. [PMID: 22685415 PMCID: PMC3369956 DOI: 10.1371/journal.pgen.1002699] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/23/2012] [Indexed: 12/22/2022] Open
Abstract
Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ∼4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency. Zinc is needed for the growth of all organisms because it acts as a required cofactor for many different proteins. Zinc deficiency is a common problem faced by free-living microbes, as well as plants and animals including humans. Among bacterial and fungal pathogens, zinc deficiency is also a key problem they can encounter during pathogenesis. To identify genes and processes that are important for growth when zinc is scarce, we used genome-wide functional profiling. In this approach, a collection of ∼4,600 mutant yeast strains, each lacking the function of a different gene, was tested to determine which genes are needed for optimal growth in low zinc. More than 400 genes were identified as being important. The identity of these genes implicates a large number of different processes as critical for low zinc growth. These included genes that are targets of the zinc-regulated Zap1 transcription factor as well as genes involved in secretory pathway function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. As a result, we now know of many processes that might be good targets for the development of new antifungal drugs.
Collapse
Affiliation(s)
- Matthew North
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California, United States of America
| | - Janet Steffen
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alex V. Loguinov
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California, United States of America
| | - Ginelle R. Zimmerman
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Chris D. Vulpe
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California, United States of America
| | - David J. Eide
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function–hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology) and the association of individual genes or proteins with these concepts (e.g., GO terms), our method will assign a Hierarchical Modularity Score (HMS) to each node in the hierarchy of functional modules; the HMS score and its value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of “enriched” functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our method using Saccharomyces cerevisiae data from KEGG and MIPS databases and several other computationally derived and curated datasets. The code and additional supplemental files can be obtained from http://code.google.com/p/functional-annotation-of-hierarchical-modularity/ (Accessed 2012 March 13).
Collapse
|
13
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
14
|
Gulshan K, Lee SS, Moye-Rowley WS. Differential oxidant tolerance determined by the key transcription factor Yap1 is controlled by levels of the Yap1-binding protein, Ybp1. J Biol Chem 2011; 286:34071-81. [PMID: 21844193 PMCID: PMC3190762 DOI: 10.1074/jbc.m111.251298] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/11/2011] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae transcription factor Yap1 is a central determinant of oxidative stress tolerance. This protein is found primarily in the cytoplasm in the absence of oxidative stress but, upon exposure to oxidants, rapidly translocates to the nucleus and activates expression of target genes. Although both diamide and H(2)O(2) have been used to impose oxidative stress on cells, these different oxidants trigger Yap1 nuclear localization in distinctly different ways. Diamide appears to oxidize particular cysteine residues on Yap1, leading to inhibition of association of Yap1 with the nuclear exportin Crm1. Crm1 would normally transport Yap1 out of the nucleus. H(2)O(2) activation of Yap1 nuclear localization requires the participation of the glutathione peroxidase Gpx3 and the Yap1-binding protein Ybp1. H(2)O(2) exposure triggers formation of a dual disulfide bonded Yap1 that is catalyzed by the presence of Gpx3 and Ybp1. In the current study, we have determined that two distinct pools of Yap1 exist in the cell. These pools are designated by the level of Ybp1. Ybp1 interacts directly with Yap1 and these proteins form a stable complex in vivo. Genetic and biochemical experiments indicate that Ybp1 is rate-limiting for Yap1 oxidative folding during H(2)O(2) stress. The fungal pathogen Candida glabrata expresses a protein homologous to Ybp1 called CgYbp1. Overproduction of CgYbp1 elevated H(2)O(2) tolerance in this pathogen indicating that the determinative role of Ybp1 in setting the level of H(2)O(2) resistance has been evolutionarily conserved.
Collapse
Affiliation(s)
- Kailash Gulshan
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, 52242
| | | | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, 52242
| |
Collapse
|
15
|
Wysocki R, Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 2011; 34:925-51. [PMID: 20374295 DOI: 10.1111/j.1574-6976.2010.00217.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.
Collapse
Affiliation(s)
- Robert Wysocki
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
16
|
Abstract
The mechanisms of production and elimination of reactive oxygen species in the cells of the budding yeast Saccharomyces cerevisiae are analyzed. Coordinative role of special regulatory proteins including Yap1p, Msn2/4p, and Skn7p (Pos9p) in regulation of defense mechanisms in S. cerevisiae is described. A special section is devoted to two other well-studied species from the point of view of oxidative stress -- Schizosaccharomyces pombe and Candida albicans. Some examples demonstrating the use of yeast for investigation of apoptosis, aging, and some human diseases are given in the conclusion part.
Collapse
Affiliation(s)
- V I Lushchak
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, Ukraine.
| |
Collapse
|
17
|
Deshpande GP, Hayles J, Hoe KL, Kim DU, Park HO, Hartsuiker E. Screening a genome-wide S. pombe deletion library identifies novel genes and pathways involved in genome stability maintenance. DNA Repair (Amst) 2009; 8:672-9. [PMID: 19264558 PMCID: PMC2675035 DOI: 10.1016/j.dnarep.2009.01.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 11/27/2022]
Abstract
The maintenance of genome stability is essential for an organism to avoid cell death and cancer. Based on screens for mutant sensitivity against DNA damaging agents a large number of DNA repair and DNA damage checkpoint genes have previously been identified in genetically amenable model organisms. These screens have however not been exhaustive and various genes have been, and remain to be, identified by other means. We therefore screened a genome-wide Schizosaccharomyces pombe deletion library for mutants sensitive against various DNA damaging agents. Screening the library on different concentrations of these genotoxins allowed us to assign a semi-quantitative score to each mutant expressing the degree of sensitivity. We isolated a total of 229 mutants which show sensitivity to one or more of the DNA damaging agents used. This set of mutants was significantly enriched for processes involved in DNA replication, DNA repair, DNA damage checkpoint, response to UV, mating type switching, telomere length maintenance and meiosis, and also for processes involved in the establishment and maintenance of chromatin architecture (notably members of the SAGA complex), transcription (members of the CCR4-Not complex) and microtubule related processes (members of the DASH complex). We also identified 23 sensitive mutants which had previously been classified as "sequence orphan" or as "conserved hypothetical". Among these, we identified genes showing extensive homology to CtIP, Stra13, Ybp1/Ybp2, Human Fragile X mental retardation interacting protein NUFIP1, and Aprataxin. The identification of these homologues will provide a basis for the further characterisation of the role of these conserved proteins in the genetically amenable model organism S. pombe.
Collapse
Affiliation(s)
| | - Jacqueline Hayles
- Cell Cycle Laboratory, Cancer Research UK, London Research Institute, London WC21 3PX, UK
| | - Kwang-Lae Hoe
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Republic of Korea
| | - Dong-Uk Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Republic of Korea
| | - Han-Oh Park
- Bioneer Corporation, Daedeok-gu, Daejeon 306-220, Republic of Korea
| | - Edgar Hartsuiker
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
18
|
Ybp2 associates with the central kinetochore of Saccharomyces cerevisiae and mediates proper mitotic progression. PLoS One 2008; 3:e1617. [PMID: 18286174 PMCID: PMC2238814 DOI: 10.1371/journal.pone.0001617] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 01/16/2008] [Indexed: 12/23/2022] Open
Abstract
The spindle checkpoint ensures the accurate segregation of chromosomes by monitoring the status of kinetochore attachment to microtubules. Simultaneous mutations in one of several kinetochore and cohesion genes and a spindle checkpoint gene cause a synthetic-lethal or synthetic-sick phenotype. A synthetic genetic array (SGA) analysis using a mad2Delta query mutant strain of yeast identified YBP2, a gene whose product shares sequence similarity with the product of YBP1, which is required for H(2)O(2)-induced oxidation of the transcription factor Yap1. ybp2Delta was sensitive to benomyl and accumulated at the mitotic stage of the cell cycle. Ybp2 physically associates with proteins of the COMA complex (Ctf19, Okp1, Mcm21, and Ame1) and 3 components of the Ndc80 complex (Ndc80, Nuf2, and Spc25 but not Spc24) in the central kinetochore and with Cse4 (the centromeric histone and CENP-A homolog). Chromatin-immunoprecipitation analyses revealed that Ybp2 associates specifically with CEN DNA. Furthermore, ybp2Delta showed synthetic-sick interactions with mutants of the genes that encode the COMA complex components. Ybp2 seems to be part of a macromolecular kinetochore complex and appears to contribute to the proper associations among the central kinetochore subcomplexes and the kinetochore-specific nucleosome.
Collapse
|
19
|
Rodrigues-Pousada C, Nevitt T, Menezes R. The yeast stress response. Role of the Yap family of b-ZIP transcription factors. The PABMB Lecture delivered on 30 June 2004 at the 29th FEBS Congress in Warsaw. FEBS J 2005; 272:2639-47. [PMID: 15943799 DOI: 10.1111/j.1742-4658.2005.04695.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The budding yeast Saccharomyces cerevisiae possesses a very flexible and complex programme of gene expression when exposed to a plethora of environmental insults. Therefore, yeast cell homeostasis control is achieved through a highly coordinated mechanism of transcription regulation involving several factors, each performing specific functions. Here, we present our current knowledge of the function of the yeast activator protein family, formed by eight basic-leucine zipper trans-activators, which have been shown to play an important role in stress response.
Collapse
Affiliation(s)
- Claudina Rodrigues-Pousada
- Genomics and Stress Laboratory, Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | |
Collapse
|
20
|
|
21
|
Current awareness on yeast. Yeast 2004; 21:1133-40. [PMID: 15529464 DOI: 10.1002/yea.1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|