1
|
Weng Q, Wan L, Straker GC, Deegan TD, Duncker BP, Neiman AM, Luk E, Hollingsworth NM. An acidic loop in the forkhead-associated domain of the yeast meiosis-specific kinase Mek1 interacts with a specific motif in a subset of Mek1 substrates. Genetics 2024; 228:iyae106. [PMID: 38979911 PMCID: PMC11373509 DOI: 10.1093/genetics/iyae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at double-strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover-specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a 5-amino acid sequence, RPSKR, located between the DNA-binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full-length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a noncanonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt 2-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint and, in certain circumstances, exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.
Collapse
Affiliation(s)
- Qixuan Weng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Lihong Wan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Geburah C Straker
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tom D Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Bernard P Duncker
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
2
|
Weng Q, Wan L, Straker GC, Deegan TD, Duncker BP, Neiman AM, Luk E, Hollingsworth NM. An acidic loop in the FHA domain of the yeast meiosis-specific kinase Mek1 interacts with a specific motif in a subset of Mek1 substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595751. [PMID: 38826409 PMCID: PMC11142242 DOI: 10.1101/2024.05.24.595751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at the double strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a five amino acid sequence, RPSKR, located between the DNA binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a non-canonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt two-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint, and in certain circumstances exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.
Collapse
Affiliation(s)
- Qixuan Weng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Lihong Wan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Geburah C. Straker
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Tom. D. Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK DD1 5EH, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Bernard P. Duncker
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
3
|
Gautam A, Beggs JD. Mutagenesis of Snu114 domain IV identifies a developmental role in meiotic splicing. RNA Biol 2019; 16:185-195. [PMID: 30672374 PMCID: PMC6380292 DOI: 10.1080/15476286.2018.1561145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 11/23/2022] Open
Abstract
Snu114, a component of the U5 snRNP, plays a key role in activation of the spliceosome. It controls the action of Brr2, an RNA-stimulated ATPase/RNA helicase that disrupts U4/U6 snRNA base-pairing prior to formation of the spliceosome's catalytic centre. Snu114 has a highly conserved domain structure that resembles that of the GTPase EF-2/EF-G in the ribosome. It has been suggested that the regulatory function of Snu114 in activation of the spliceosome is mediated by its C-terminal region, however, there has been only limited characterisation of the interactions of the C-terminal domains. We show a direct interaction between protein phosphatase PP1 and Snu114 domain 'IVa' and identify sequence 'YGVQYK' as a PP1 binding motif. Interestingly, this motif is also required for Cwc21 binding. We provide evidence for mutually exclusive interaction of Cwc21 and PP1 with Snu114 and show that the affinity of Cwc21 and PP1 for Snu114 is influenced by the different nucleotide-bound states of Snu114. Moreover, we identify a novel mutation in domain IVa that, while not affecting vegetative growth of yeast cells, causes a defect in splicing transcripts of the meiotic genes, SPO22, AMA1 and MER2, thereby inhibiting an early stage of meiosis.
Collapse
Affiliation(s)
- Amit Gautam
- a Wellcome Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Jean D Beggs
- a Wellcome Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
4
|
Hollingsworth NM, Gaglione R. The meiotic-specific Mek1 kinase in budding yeast regulates interhomolog recombination and coordinates meiotic progression with double-strand break repair. Curr Genet 2019; 65:631-641. [PMID: 30671596 DOI: 10.1007/s00294-019-00937-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Abstract
Recombination, along with sister chromatid cohesion, is used during meiosis to physically connect homologous chromosomes so that they can be segregated properly at the first meiotic division. Recombination is initiated by the introduction of programmed double strand breaks (DSBs) into the genome, a subset of which is processed into crossovers. In budding yeast, the regulation of meiotic DSB repair is controlled by a meiosis-specific kinase called Mek1. Mek1 kinase activity promotes recombination between homologs, rather than sister chromatids, as well as the processing of recombination intermediates along a pathway that results in synapsis of homologous chromosomes and the distribution of crossovers throughout the genome. In addition, Mek1 kinase activity provides a readout for the number of DSBs in the cell as part of the meiotic recombination checkpoint. This checkpoint delays entry into the first meiotic division until DSBs have been repaired by inhibiting the activity of the meiosis-specific transcription factor Ndt80, a site-specific DNA binding protein that activates transcription of over 300 target genes. Recent work has shown that Mek1 binds to Ndt80 and phosphorylates it on multiple sites, including the DNA binding domain, thereby preventing Ndt80 from activating transcription. As DSBs are repaired, Mek1 is removed from chromosomes and its activity decreases. Loss of the inhibitory Mek1 phosphates and phosphorylation of Ndt80 by the meiosis-specific kinase, Ime2, promote Ndt80 activity such that Ndt80 transcribes its own gene in a positive feedback loop, as well as genes required for the completion of recombination and entry into the meiotic divisions. Mek1 is therefore the key regulator of meiotic recombination in yeast.
Collapse
Affiliation(s)
- Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Robert Gaglione
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
5
|
Chen X, Gaglione R, Leong T, Bednor L, de los Santos T, Luk E, Airola M, Hollingsworth NM. Mek1 coordinates meiotic progression with DNA break repair by directly phosphorylating and inhibiting the yeast pachytene exit regulator Ndt80. PLoS Genet 2018; 14:e1007832. [PMID: 30496175 PMCID: PMC6289461 DOI: 10.1371/journal.pgen.1007832] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/11/2018] [Accepted: 11/13/2018] [Indexed: 02/02/2023] Open
Abstract
Meiotic recombination plays a critical role in sexual reproduction by creating crossovers between homologous chromosomes. These crossovers, along with sister chromatid cohesion, connect homologs to enable proper segregation at Meiosis I. Recombination is initiated by programmed double strand breaks (DSBs) at particular regions of the genome. The meiotic recombination checkpoint uses meiosis-specific modifications to the DSB-induced DNA damage response to provide time to convert these breaks into interhomolog crossovers by delaying entry into Meiosis I until the DSBs have been repaired. The meiosis-specific kinase, Mek1, is a key regulator of meiotic recombination pathway choice, as well as being required for the meiotic recombination checkpoint. The major target of this checkpoint is the meiosis-specific transcription factor, Ndt80, which is essential to express genes necessary for completion of recombination and meiotic progression. The molecular mechanism by which cells monitor meiotic DSB repair to allow entry into Meiosis I with unbroken chromosomes was unknown. Using genetic and biochemical approaches, this work demonstrates that in the presence of DSBs, activated Mek1 binds to Ndt80 and phosphorylates the transcription factor, thus inhibiting DNA binding and preventing Ndt80's function as a transcriptional activator. Repair of DSBs by recombination reduces Mek1 activity, resulting in removal of the inhibitory Mek1 phosphates. Phosphorylation of Ndt80 by the meiosis-specific kinase, Ime2, then results in fully activated Ndt80. Ndt80 upregulates transcription of its own gene, as well as target genes, resulting in prophase exit and progression through meiosis.
Collapse
Affiliation(s)
- Xiangyu Chen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Robert Gaglione
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Trevor Leong
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Lauren Bednor
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Teresa de los Santos
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
6
|
Coordination of Double Strand Break Repair and Meiotic Progression in Yeast by a Mek1-Ndt80 Negative Feedback Loop. Genetics 2017; 206:497-512. [PMID: 28249986 DOI: 10.1534/genetics.117.199703] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/25/2017] [Indexed: 11/18/2022] Open
Abstract
During meiosis, homologous chromosomes are physically connected by crossovers and sister chromatid cohesion. Interhomolog crossovers are generated by the highly regulated repair of programmed double strand breaks (DSBs). The meiosis-specific kinase Mek1 is critical for this regulation. Mek1 downregulates the mitotic recombinase Rad51, indirectly promoting interhomolog strand invasion by the meiosis-specific recombinase Dmc1. Mek1 also promotes the formation of crossovers that are distributed throughout the genome by interference and is the effector kinase for a meiosis-specific checkpoint that delays entry into Meiosis I until DSBs have been repaired. The target of this checkpoint is a meiosis-specific transcription factor, Ndt80, which is necessary to express the polo-like kinase CDC5 and the cyclin CLB1 thereby allowing completion of recombination and meiotic progression. This work shows that Mek1 and Ndt80 negatively feedback on each other such that when DSB levels are high, Ndt80 is inactive due to high levels of Mek1 activity. As DSBs are repaired, chromosomes synapse and Mek1 activity is reduced below a threshold that allows activation of Ndt80. Ndt80 transcription of CDC5 results in degradation of Red1, a meiosis-specific protein required for Mek1 activation, thereby abolishing Mek1 activity completely. Elimination of Mek1 kinase activity allows Rad51-mediated repair of any remaining DSBs. In this way, cells do not enter Meiosis I until recombination is complete and all DSBs are repaired.
Collapse
|
7
|
Reichman R, Alleva B, Smolikove S. Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte. Results Probl Cell Differ 2017; 59:125-173. [PMID: 28247048 DOI: 10.1007/978-3-319-44820-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Formation of an oocyte involves a specialized cell division termed meiosis. In meiotic prophase I (the initial stage of meiosis), chromosomes undergo elaborate events to ensure the proper segregation of their chromosomes into gametes. These events include processes leading to the formation of a crossover that, along with sister chromatid cohesion, forms the physical link between homologous chromosomes. Crossovers are formed as an outcome of recombination. This process initiates with programmed double-strand breaks that are repaired through the use of homologous chromosomes as a repair template. The accurate repair to form crossovers takes place in the context of the synaptonemal complex, a protein complex that links homologous chromosomes in meiotic prophase I. To allow proper execution of meiotic prophase I events, signaling processes connect different steps in recombination and synapsis. The events occurring in meiotic prophase I are a prerequisite for proper chromosome segregation in the meiotic divisions. When these processes go awry, chromosomes missegregate. These meiotic errors are thought to increase with aging and may contribute to the increase in aneuploidy observed in advanced maternal age female oocytes.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Alleva
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
8
|
Zanders SE, Eickbush MT, Yu JS, Kang JW, Fowler KR, Smith GR, Malik HS. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast. eLife 2014; 3:e02630. [PMID: 24963140 PMCID: PMC4066438 DOI: 10.7554/elife.02630] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation. DOI:http://dx.doi.org/10.7554/eLife.02630.001 It is widely thought that all of the billions of species on Earth are descended from a common ancestor. New species are created via a process called speciation, and nature employs various ‘barriers’ to keep closely related species distinct from one another. One of these barriers is called hybrid sterility. Horses and donkeys, for example, can mate to produce hybrids called mules, but mules cannot produce offspring of their own because they are infertile. Hybrid sterility can occur for a number of reasons. Mules are infertile because they inherit 32 chromosomes from their horse parent, but only 31 chromosomes from their donkey parent—and so have an odd chromosome that they cannot pair-off when they make sperm or egg cells. However, even if a hybrid inherits the same number of chromosomes from each parent, if the chromosomes from the two parents have different structures, the hybrid may still be infertile. Zanders et al. have now looked at two species of fission yeast—S. pombe and S. kambucha—that share 99.5% of their DNA sequence. Although hybrids of these two species inherit three chromosomes from each parent, the majority of spores (the yeast equivalent of sperm) that these hybrids produce fail to develop into new yeast cells. Zanders et al. identified two causes of this infertility: one of these was chromosomal rearrangement; the other was due to three different sites in the DNA of S. kambucha that interfere with the development of the spores that inherit S. pombe chromosomes. Since these two yeast species are so closely related, the findings of Zanders et al. reveal how quickly multiple barriers to fertility can arise. In addition, these findings provide further support for models in which conflicts between different genes in genomes can drive the process of speciation. DOI:http://dx.doi.org/10.7554/eLife.02630.002
Collapse
Affiliation(s)
- Sarah E Zanders
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Michael T Eickbush
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jonathan S Yu
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Ji-Won Kang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States University of Washington, Seattle, United States
| | - Kyle R Fowler
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit Singh Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
9
|
Kogo H, Tsutsumi M, Inagaki H, Ohye T, Kiyonari H, Kurahashi H. HORMAD2 is essential for synapsis surveillance during meiotic prophase via the recruitment of ATR activity. Genes Cells 2012; 17:897-912. [DOI: 10.1111/gtc.12005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/21/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Hiroshi Kogo
- Division of Molecular Genetics; Institute for Comprehensive Medical Science; Fujita Health University; Toyoake; Aichi; 470-1192; Japan
| | - Makiko Tsutsumi
- Division of Molecular Genetics; Institute for Comprehensive Medical Science; Fujita Health University; Toyoake; Aichi; 470-1192; Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics; Institute for Comprehensive Medical Science; Fujita Health University; Toyoake; Aichi; 470-1192; Japan
| | - Tamae Ohye
- Division of Molecular Genetics; Institute for Comprehensive Medical Science; Fujita Health University; Toyoake; Aichi; 470-1192; Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering; RIKEN Center for Developmental Biology; Kobe; Hyogo; 650-0047; Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics; Institute for Comprehensive Medical Science; Fujita Health University; Toyoake; Aichi; 470-1192; Japan
| |
Collapse
|
10
|
|
11
|
Kogo H, Tsutsumi M, Ohye T, Inagaki H, Abe T, Kurahashi H. HORMAD1-dependent checkpoint/surveillance mechanism eliminates asynaptic oocytes. Genes Cells 2012; 17:439-54. [PMID: 22530760 DOI: 10.1111/j.1365-2443.2012.01600.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Meiotic pachytene checkpoints monitor the failure of homologous recombination and synapsis to ensure faithful chromosome segregation during gamete formation. To date, the molecular basis of the mammalian pachytene checkpoints has remained largely unknown. We here report that mouse HORMAD1 is required for a meiotic prophase checkpoint that eliminates asynaptic oocytes. Hormad1-deficient mice are infertile and show an extensive failure of homologous pairing and synapsis, consistent with the evolutionarily conserved function of meiotic HORMA domain proteins. Unexpectedly, Hormad1-deficient ovaries contain a normal number of oocytes despite asynapsis and consequently produce aneuploid oocytes, indicating a checkpoint failure. By the analysis of Hormad1/Spo11 double mutants, the Hormad1 deficiency was found to abrogate the massive oocyte loss in the Spo11-deficient ovary. The Hormad1 deficiency also causes the eventual loss of pseudo sex body in the Spo11-deficient ovary and testis. These results suggest the involvement of HORMAD1 in the repressive chromatin domain formation that is proposed to be important in the meiotic prophase checkpoints. We also show the extensive phosphorylation of HORMAD1 in the Spo11-deficient testis and ovary, suggesting an involvement of novel DNA damage-independent phosphorylation signaling in the surveillance mechanism. Our present results provide clues to HORMAD1-dependent checkpoint in response to asynapsis in mammalian meiosis.
Collapse
Affiliation(s)
- Hiroshi Kogo
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Munding EM, Igel AH, Shiue L, Dorighi KM, Treviño LR, Ares M. Integration of a splicing regulatory network within the meiotic gene expression program of Saccharomyces cerevisiae. Genes Dev 2010; 24:2693-704. [PMID: 21123654 DOI: 10.1101/gad.1977410] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Splicing regulatory networks are essential components of eukaryotic gene expression programs, yet little is known about how they are integrated with transcriptional regulatory networks into coherent gene expression programs. Here we define the MER1 splicing regulatory network and examine its role in the gene expression program during meiosis in budding yeast. Mer1p splicing factor promotes splicing of just four pre-mRNAs. All four Mer1p-responsive genes also require Nam8p for splicing activation by Mer1p; however, other genes require Nam8p but not Mer1p, exposing an overlapping meiotic splicing network controlled by Nam8p. MER1 mRNA and three of the four Mer1p substrate pre-mRNAs are induced by the transcriptional regulator Ume6p. This unusual arrangement delays expression of Mer1p-responsive genes relative to other genes under Ume6p control. Products of Mer1p-responsive genes are required for initiating and completing recombination and for activation of Ndt80p, the activator of the transcriptional network required for subsequent steps in the program. Thus, the MER1 splicing regulatory network mediates the dependent relationship between the UME6 and NDT80 transcriptional regulatory networks in the meiotic gene expression program. This study reveals how splicing regulatory networks can be interlaced with transcriptional regulatory networks in eukaryotic gene expression programs.
Collapse
Affiliation(s)
- Elizabeth M Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, 95064, USA
| | | | | | | | | | | |
Collapse
|
13
|
Kim KP, Weiner BM, Zhang L, Jordan A, Dekker J, Kleckner N. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 2010; 143:924-37. [PMID: 21145459 PMCID: PMC3033573 DOI: 10.1016/j.cell.2010.11.015] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 11/19/2022]
Abstract
Meiotic double-strand break (DSB)-initiated recombination must occur between homologous maternal and paternal chromosomes ("homolog bias"), even though sister chromatids are present. Through physical recombination analyses, we show that sister cohesion, normally mediated by meiotic cohesin Rec8, promotes "sister bias"; that meiosis-specific axis components Red1/Mek1kinase counteract this effect, thereby satisfying an essential precondition for homolog bias; and that other components, probably recombinosome-related, directly ensure homolog partner selection. Later, Rec8 acts positively to ensure maintenance of bias. These complexities mirror opposing dictates for global sister cohesion versus local separation and differentiation of sisters at recombination sites. Our findings support DSB formation within axis-tethered recombinosomes containing both sisters and ensuing programmed sequential release of "first" and "second" DSB ends. First-end release would create a homology-searching "tentacle." Rec8 and Red1/Mek1 also independently license recombinational progression and abundantly localize to different domains. These domains could comprise complementary environments that integrate inputs from DSB repair and mitotic chromosome morphogenesis into the complete meiotic program.
Collapse
Affiliation(s)
- Keun P. Kim
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
| | - Beth M. Weiner
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
| | - Liangran Zhang
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
| | - Amy Jordan
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
| | - Job Dekker
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01655 USA
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
| |
Collapse
|
14
|
Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis. PLoS Biol 2010; 8:e1000520. [PMID: 20976044 PMCID: PMC2957403 DOI: 10.1371/journal.pbio.1000520] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/02/2010] [Indexed: 01/07/2023] Open
Abstract
Studies of DNA double-strand break repair during meiosis reveal that a substantial fraction of recombination occurs between sister chromatids. Recombination between homologous chromosomes of different parental origin (homologs) is necessary for their accurate segregation during meiosis. It has been suggested that meiotic inter-homolog recombination is promoted by a barrier to inter-sister-chromatid recombination, imposed by meiosis-specific components of the chromosome axis. Consistent with this, measures of Holliday junction–containing recombination intermediates (joint molecules [JMs]) show a strong bias towards inter-homolog and against inter-sister JMs. However, recombination between sister chromatids also has an important role in meiosis. The genomes of diploid organisms in natural populations are highly polymorphic for insertions and deletions, and meiotic double-strand breaks (DSBs) that form within such polymorphic regions must be repaired by inter-sister recombination. Efforts to study inter-sister recombination during meiosis, in particular to determine recombination frequencies and mechanisms, have been constrained by the inability to monitor the products of inter-sister recombination. We present here molecular-level studies of inter-sister recombination during budding yeast meiosis. We examined events initiated by DSBs in regions that lack corresponding sequences on the homolog, and show that these DSBs are efficiently repaired by inter-sister recombination. This occurs with the same timing as inter-homolog recombination, but with reduced (2- to 3-fold) yields of JMs. Loss of the meiotic-chromosome-axis-associated kinase Mek1 accelerates inter-sister DSB repair and markedly increases inter-sister JM frequencies. Furthermore, inter-sister JMs formed in mek1Δ mutants are preferentially lost, while inter-homolog JMs are maintained. These findings indicate that inter-sister recombination occurs frequently during budding yeast meiosis, with the possibility that up to one-third of all recombination events occur between sister chromatids. We suggest that a Mek1-dependent reduction in the rate of inter-sister repair, combined with the destabilization of inter-sister JMs, promotes inter-homolog recombination while retaining the capacity for inter-sister recombination when inter-homolog recombination is not possible. In diploid organisms, which contain two parental sets of chromosomes, double-stranded breaks in DNA can be repaired by recombination, either with a copy of the chromosome produced by replication (the sister chromatid), or with either chromatid of the other parental chromosome (the homolog). During meiosis, recombination with the homolog ensures faithful segregation of chromosomes to gametes (sperm or egg). It has been suggested that use of the spatially distant homolog, as opposed to the nearby sister chromatid, results from a meiosis-specific barrier to recombination between sister chromatids. However, there are situations where meiotic recombination must occur between sister chromatids, such as when recombination initiates in sequences that are absent from the homolog. By studying such a situation, we show that meiotic recombination with the sister chromatid occurs with similar timing and efficiency as recombination with the homolog. Further analysis indicates that inter-sister recombination is more common than was previously thought, although still far less prevalent than in somatic cells, where inter-sister recombination predominates. We suggest that meiosis-specific factors act to roughly equalize repair from the sister and homolog, which both allows the establishment of physical connections between homologs and ensures timely repair of breaks incurred in regions lacking corresponding sequences on the homolog.
Collapse
|
15
|
Doll E, Molnar M, Cuanoud G, Octobre G, Latypov V, Ludin K, Kohli J. Cohesin and recombination proteins influence the G1-to-S transition in azygotic meiosis in Schizosaccharomyces pombe. Genetics 2008; 180:727-40. [PMID: 18780734 PMCID: PMC2567376 DOI: 10.1534/genetics.108.092619] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/05/2008] [Indexed: 11/18/2022] Open
Abstract
To determine whether recombination and/or sister-chromatid cohesion affect the timing of meiotic prophase events, the horsetail stage and S phase were analyzed in Schizosaccharomyces pombe strains carrying mutations in the cohesin genes rec8 or rec11, the linear element gene rec10, the pairing gene meu13, the double-strand-break formation genes rec6, rec7, rec12, rec14, rec15, and mde2, and the recombination gene dmc1. The double-mutant strains rec8 rec11 and rec8 rec12 were also assayed. Most of the single and both double mutants showed advancement of bulk DNA synthesis, start of nuclear movement (horsetail stage), and meiotic divisions by up to 2 hr. Only mde2 and dmc1 deletion strains showed wild-type timing. Contrasting behavior was observed for rec8 deletions (delayed by 1 hr) compared to a rec8 point mutation (advanced by 1 hr). An hypothesis for the role of cohesin and recombination proteins in the control of the G(1)-to-S transition is proposed. Finally, differences between azygotic meiosis and two other types of fission yeast meiosis (zygotic and pat1-114 meiosis) are discussed with respect to possible control steps in meiotic G(1).
Collapse
Affiliation(s)
- Eveline Doll
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
16
|
Lo HC, Wan L, Rosebrock A, Futcher B, Hollingsworth NM. Cdc7-Dbf4 regulates NDT80 transcription as well as reductional segregation during budding yeast meiosis. Mol Biol Cell 2008; 19:4956-67. [PMID: 18768747 DOI: 10.1091/mbc.e08-07-0755] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In budding yeast, as in other eukaryotes, the Cdc7 protein kinase is important for initiation of DNA synthesis in vegetative cells. In addition, Cdc7 has crucial meiotic functions: it facilitates premeiotic DNA replication, and it is essential for the initiation of recombination. This work uses a chemical genetic approach to demonstrate that Cdc7 kinase has additional roles in meiosis. First, Cdc7 allows expression of NDT80, a meiosis-specific transcriptional activator required for the induction of genes involved in exit from pachytene, meiotic progression, and spore formation. Second, Cdc7 is necessary for recruitment of monopolin to sister kinetochores, and it is necessary for the reductional segregation occurring at meiosis I. The use of the same kinase to regulate several distinct meiosis-specific processes may be important for the coordination of these processes during meiosis.
Collapse
Affiliation(s)
- Hsiao-Chi Lo
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
17
|
Kugou K, Sasanuma H, Matsumoto K, Shirahige K, Ohta K. Mre11 mediates gene regulation in yeast spore development. Genes Genet Syst 2007; 82:21-33. [PMID: 17396017 DOI: 10.1266/ggs.82.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mre11, together with Rad50 and Xrs2/NBS, plays pivotal roles in homologous recombination, repair of DNA double strand breaks (DSBs), activation of damage-induced checkpoint, and telomere maintenance. Here we demonstrate that the absence of Mre11 in yeast causes specific effects on regulation of a class of meiotic genes for spore development. Using DNA microarray assays to analyze yeast mutants defective for meiotic DSB formation, we revealed that the meiotic expression profile in the mre11Delta cells was generally unaffected when compared to the one in the wild-type strain, although the activation of about 90 meiotic genes were severely and specifically impaired in early meiosis. These defects were confirmed by northern and lacZ reporter gene assays. Interestingly, a substantial portion of the severely affected genes includes genes responsible for spore wall biogenesis, the defects of which may account for the fragile spore wall phenotype of the mre11Delta strain. The transcriptional deficiency was not observed in other DSB mutants such as rad50Delta, xrs2Delta, spo11Delta, and spo11Y135F, suggesting the transcriptional defect in mre11Delta is due to neither lack of meiotic DSB formation, nor disintegrity of Mre11-Rad50-Xrs2 complex. In addition, the deficiency of mre11Delta in gene activation was not alleviated by the deletion of RAD24. Therefore, it is unlikely that DNA damage checkpoint activation by mre11Delta caused transcriptional deficiency. We also found that a C-terminus DNA binding domain truncation mutant (mre11DeltaC49), which has meiosis-specific defects, exhibited transcriptional defects as observed in mre11Delta, whereas an N-terminal phosphoesterase mutant (mre11D16A) does not. Taken together, we propose that Mre11 is involved in the regulation of a specific class of genes during spore development through its C-terminus domain.
Collapse
Affiliation(s)
- Kazuto Kugou
- Genetic System Regulation Laboratory, RIKEN, Discovery Research Institute, Wako, Saitama, Japan
| | | | | | | | | |
Collapse
|
18
|
Olsson I, Berrez JM, Leipus A, Ostlund C, Mutvei A. The arginine methyltransferase Rmt2 is enriched in the nucleus and co-purifies with the nuclear porins Nup49, Nup57 and Nup100. Exp Cell Res 2007; 313:1778-89. [PMID: 17448464 DOI: 10.1016/j.yexcr.2007.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
Arginine methylation is a post-translational modification of proteins implicated in RNA processing, protein compartmentalization, signal transduction, transcriptional regulation and DNA repair. In a screen for proteins associated with the nuclear envelope in the yeast Saccharomyces cerevisiae, we have identified the arginine methyltransferase Rmt2, previously shown to methylate the ribosomal protein L12. By indirect immunofluorescence and subcellular fractionations we demonstrate here that Rmt2 has nuclear and cytoplasmic localizations. Biochemical analysis of a fraction enriched in nuclei reveals that nuclear Rmt2 is resistant to extractions with salt and detergent, indicating an association with structural components. This was supported by affinity purification experiments with TAP-tagged Rmt2. Rmt2 was found to co-purify with the nucleoporins Nup49, Nup57 and Nup100, revealing a novel link between arginine methyltransferases and the nuclear pore complex. In addition, a genome-wide transcription study of the rmt2Delta mutant shows significant downregulation of the transcription of MYO1, encoding the Type II myosin heavy chain required for cytokinesis and cell separation.
Collapse
Affiliation(s)
- Ida Olsson
- School of Life Sciences, Södertörns Högskola, SE-141 89 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
19
|
Wu HY, Burgess SM. Two distinct surveillance mechanisms monitor meiotic chromosome metabolism in budding yeast. Curr Biol 2007; 16:2473-9. [PMID: 17174924 PMCID: PMC1876825 DOI: 10.1016/j.cub.2006.10.069] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Revised: 10/26/2006] [Accepted: 10/31/2006] [Indexed: 11/28/2022]
Abstract
Meiotic recombination is initiated by Spo11-generated DNA double-strand breaks (DSBs) . A fraction of total DSBs is processed into crossovers (CRs) between homologous chromosomes, which promote their accurate segregation at meiosis I (MI) . The coordination of recombination-associated events and MI progression is governed by the "pachytene checkpoint", which in budding yeast requires Rad17, a component of a PCNA clamp-like complex, and Pch2, a putative AAA-ATPase . We show that two genetically separable pathways monitor the presence of distinct meiotic recombination-associated lesions: First, delayed MI progression in the presence of DNA repair intermediates is suppressed when RAD17 or SAE2, encoding a DSB-end processing factor , is deleted. Second, delayed MI progression in the presence of aberrant synaptonemal complex (SC) is suppressed when PCH2 is deleted. Importantly, ZIP1, encoding the central element of the SC , is required for PCH2-dependent checkpoint activation. Analysis of the rad17Deltapch2Delta double mutant revealed a redundant function regulating interhomolog CR formation. These findings suggest a link between the surveillance of distinct recombination-associated lesions, control of CR formation kinetics, and regulation of MI timing. A PCH2-ZIP1-dependent checkpoint in meiosis is likely conserved among synaptic organisms from yeast to human .
Collapse
Affiliation(s)
- Hsin-Yen Wu
- Section of Molecular and Cellular Biology, Genetics Graduate Group, University of California, Davis, Davis, California 95616, USA
| | | |
Collapse
|
20
|
Wan L, Zhang C, Shokat KM, Hollingsworth NM. Chemical inactivation of cdc7 kinase in budding yeast results in a reversible arrest that allows efficient cell synchronization prior to meiotic recombination. Genetics 2006; 174:1767-74. [PMID: 17057233 PMCID: PMC1698632 DOI: 10.1534/genetics.106.064303] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic studies in budding yeast have provided many fundamental insights into the specialized cell division of meiosis, including the identification of evolutionarily conserved meiosis-specific genes and an understanding of the molecular basis for recombination. Biochemical studies have lagged behind, however, due to the difficulty in obtaining highly synchronized populations of yeast cells. A chemical genetic approach was used to create a novel conditional allele of the highly conserved protein kinase Cdc7 (cdc7-as3) that enables cells to be synchronized immediately prior to recombination. When Cdc7-as3 is inactivated by addition of inhibitor to sporulation medium, cells undergo a delayed premeiotic S phase, then arrest in prophase before double-strand break (DSB) formation. The arrest is easily reversed by removal of the inhibitor, after which cells rapidly and synchronously proceed through recombination and meiosis I. Using the synchrony resulting from the cdc7-as3 system, DSB-dependent phosphorylation of the meiosis-specific chromosomal core protein, Hop1, was shown to occur after DSBs. The cdc7-as3 mutant therefore provides a valuable tool not only for understanding the role of Cdc7 in meiosis, but also for facilitating biochemical and cytological studies of recombination.
Collapse
Affiliation(s)
- Lihong Wan
- Department of Biochemistry and Cell Biology, SUNY, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
21
|
Malmanche N, Maia A, Sunkel CE. The spindle assembly checkpoint: Preventing chromosome mis-segregation during mitosis and meiosis. FEBS Lett 2006; 580:2888-95. [PMID: 16631173 DOI: 10.1016/j.febslet.2006.03.081] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 03/16/2006] [Accepted: 03/22/2006] [Indexed: 11/17/2022]
Abstract
Aneuploidy is a common feature of many cancers, suggesting that genomic stability is essential to prevent tumorigenesis. Also, during meiosis, chromosome non-disjunction produces gamete imbalance and when fertilized result in developmental arrest or severe birth defects. The spindle assembly checkpoint prevents chromosome mis-segregation during both mitosis and meiosis. In mitosis, this control system monitors kinetochore-microtubule attachment while in meiosis its role is still unclear. Interestingly, recent data suggest that defects in the spindle assembly checkpoint are unlikely to cause cancer development but might facilitate tumour progression. However, in meiosis a weakened checkpoint could contribute to age-related aneuploidy found in humans.
Collapse
Affiliation(s)
- Nicolas Malmanche
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
22
|
Abstract
Numerous DNA double-strand breaks (DSBs) are introduced into the genome in the course of meiotic recombination. This poses a significant hazard to the genomic integrity of the cell. Studies in a number of organisms have unveiled the existence of surveillance mechanisms or checkpoints that couple the formation and repair of DSBs to cell cycle progression. Through these mechanisms, aberrant meiocytes are delayed in their meiotic progression, thereby facilitating repair of meiotic DSBs, or are culled through programmed cell death, thereby protecting the germline from aneuploidies that could lead to spontaneous abortions, birth defects and cancer predisposition in the offspring. Here we summarize recent progress in our understanding of these checkpoints. This review focuses on the surveillance mechanisms of the budding yeast S. cerevisiae, where the molecular details are best understood, but will frequently compare and contrast these mechanisms with observations in other organisms.
Collapse
Affiliation(s)
- Andreas Hochwagen
- Center for Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge Massachusetts 02139, USA
| | | |
Collapse
|
23
|
McDonald CM, Cooper KF, Winter E. The Ama1-directed anaphase-promoting complex regulates the Smk1 mitogen-activated protein kinase during meiosis in yeast. Genetics 2005; 171:901-11. [PMID: 16079231 PMCID: PMC1456836 DOI: 10.1534/genetics.105.045567] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Smk1 is a meiosis-specific MAPK homolog in Saccharomyces cerevisiae that regulates the postmeiotic program of spore formation. Similar to other MAPKs, it is activated via phosphorylation of the T-X-Y motif in its regulatory loop, but the signals controlling Smk1 activation have not been defined. Here we show that Ama1, a meiosis-specific activator of the anaphase-promoting complex/cyclosome (APC/C), promotes Smk1 activation during meiosis. A weakened allele of CDC28 suppresses the sporulation defect of an ama1 null strain and increases the activation state of Smk1. The function of Ama1 in regulating Smk1 is independent of the FEAR network, which promotes exit from mitosis and exit from meiosis I through the Cdc14 phosphatase. The data indicate that Cdc28 and Ama1 function in a pathway to trigger Smk1-dependent steps in spore morphogenesis. We propose that this novel mechanism for controlling MAPK activation plays a role in coupling the completion of meiosis II to gamete formation.
Collapse
Affiliation(s)
- Christine M McDonald
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | |
Collapse
|