1
|
Portaccio L, Vergine M, De Pascali M, De Bellis L, Luvisi A. Diffusible Signal Factors and Xylella fastidiosa: A Crucial Mechanism Yet to Be Revealed. BIOLOGY 2025; 14:303. [PMID: 40136559 PMCID: PMC11939919 DOI: 10.3390/biology14030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Xylella fastidiosa (Xf) is a xylem-limited Gram-negative phytopathogen responsible for severe plant diseases globally. Colonization and dissemination on host plants are regulated primarily by diffusible signal factors (DSFs) and quorum sensing (QS) molecules regulating biofilm formation, motility, and virulence factor synthesis. DSFs play a critical role in the transition of bacteria from adhesion to dispersal phases, influencing plant infection and transmission by vector. Because of Xf's host range (over 550 plant species), effective containment strategies are highly demanded. In this review, we discuss the molecular mechanism of DSF-mediated signalling in Xf, especially concerning its role in pathogenicity and adaptation. Moreover, we shed light on innovative approaches to manage Xf, including quorum-quenching (QQ) strategies and transgenic plants targeted to disrupt QS pathways. Improved knowledge of DSF interactions with host plants and bacterial communities could provide an entry point for novel, sustainable disease control strategies to decrease Xf's agricultural and ecological impact.
Collapse
Affiliation(s)
- Letizia Portaccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
| | - Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
| |
Collapse
|
2
|
Matsumoto H, Qian Y, Fan X, Chen S, Nie Y, Qiao K, Xiang D, Zhang X, Li M, Guo B, Shen P, Wang Q, Yu Y, Cernava T, Wang M. Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. FUNDAMENTAL RESEARCH 2022; 2:198-207. [PMID: 38933150 PMCID: PMC11197535 DOI: 10.1016/j.fmre.2021.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria equipped with virulence systems based on highly bioactive small molecules can circumvent their host's defense mechanisms. Pathogens employing this strategy are currently threatening global rice production. In the present study, variations in the virulence of the highly destructive Burkholderia plantarii were observed in different rice-producing regions. The environment-linked variation was not attributable to any known host-related or external factors. Co-occurrence analyses indicated a connection between reduced virulence and 5-Amino-1,3,4-thiadiazole-2-thiol (ATT), a non-bactericidal organic compound. ATT, which accumulates in rice plants during metabolization of specific agrochemicals, was found to reduce virulence factor secretion by B. plantarii up to 88.8% and inhibit pathogen virulence by hijacking an upstream signaling cascade. Detailed assessment of the newly discovered virulence inhibitor resulted in mechanistic insights into positive effects of ATT accumulation in plant tissues. Mechanisms of virulence alleviation were deciphered by integrating high-throughput data, gene knockout mutants, and molecular interaction assays. TroK, a histidine protein kinase in a two-component system that regulates virulence factor secretion, is likely the molecular target antagonized by ATT. Our findings provide novel insights into virulence modulation in an important plant-pathogen system that relies on the host's metabolic activity and subsequent signaling interference.
Collapse
Affiliation(s)
- Haruna Matsumoto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuan Qian
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Fan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanxia Nie
- Ecology and Environmental Sciences Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kun Qiao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Dandan Xiang
- Key laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Meng Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Bo Guo
- Shanghai International Studies University, Shanghai 200083, China
| | - Peilin Shen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Xiaoshan Agricultural Comprehensive Development Zone & Management Committee, Hangzhou 311200, China
| | - Qiangwei Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|