1
|
Shi J, Shen L, Xiao Y, Wan C, Wang B, Zhou P, Zhang J, Han W, Yu F. Sub-inhibitory concentrations of tigecycline could attenuate the virulence of Staphylococcus aureus by inhibiting the product of α-toxin. Microbiol Spectr 2025; 13:e0134424. [PMID: 40105354 PMCID: PMC12053908 DOI: 10.1128/spectrum.01344-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Staphylococcus aureus (S. aureus) infection is a serious threat to global health. This study aimed to investigate the anti-virulence efficacy of tigecycline against S. aureus. We used highly virulent S. aureus strains SA75 and JP30 to evaluate the effect of tigecycline on virulence, both of them isolated from the clinic. The MIC value of tigecycline against SA75 was 0.125 µg/mL, and that against JP30 was 0.25 µg/mL. Tigecycline did not affect the growth ability of bacteria at 0.015 µg/mL. Thus, subsequent discussions will focus on the effect of antibiotics at the latter subinhibitory concentrations that did not affect growth. First, the sub-MICs of tigecycline not only enhanced the sensitivity of S. aureus to oxidants and human whole blood but also weakened the hemolytic activity and cell adhesion level of S. aureus. Second, it undermined the survival of S. aureus in RAW264.7 and attenuated the macrophage inflammatory response induced by S. aureus. On the contrary, tigecycline decreased the hemolytic activity, as well as the skin abscess formation and bacterial burden in mice. Most importantly, it significantly decreased the expression of hla, hlgB, hlgC, spa, sbi, saeR, sak, tst, and coa genes by RT-qPCR and the protein expression of α-toxin. Altogether, the sub-MICs of tigecycline might be a promising agent to attenuate the virulence of S. aureus and its host immune response by inhibiting the SaeRS two-component system and the product of α-toxin.IMPORTANCEIn this study, the sub-MICs of tigecycline decreased the resistance of S. aureus to oxidants and human whole blood. Moreover, tigecycline weakened the cell adhesion level of S. aureus and skin abscess formation in mice by reducing bacterial burden. Remarkably, tigecycline decreased the hemolytic activity and significantly downregulated the expression of various virulence genes and α-toxin. This research highlighted that the sub-MICs of tigecycline might be a promising agent to attenuate the virulence of S. aureus by inhibiting the product of α-toxin.
Collapse
Affiliation(s)
- Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cailing Wan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiyao Zhou
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Gu Q, Zhu X, Ma J, Jiang T, Pan Z, Yao H. Functional analysis of the type II toxin-antitoxin system ParDE in Streptococcus suis serotype 2. BMC Vet Res 2025; 21:30. [PMID: 39833840 PMCID: PMC11744833 DOI: 10.1186/s12917-024-04069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/08/2024] [Indexed: 01/22/2025] Open
Abstract
Streptococcus suis (S. suis) is a major pathogen in swine and poses a potential zoonotic threat, which may cause serious diseases. Many toxin-antitoxin (TA) systems have been discovered in S. suis, but their functions have not yet been fully elucidated. In this study, an auto-regulating type II TA system, ParDE, was identified in S. suis serotype 2 strain ZY05719. We constructed a mutant strain, ΔparDE, to explore its functions in bacterial virulence, various stress responses, and biofilm formation capabilities. The toxicity exerted by the toxin ParE can be neutralized by the antitoxin ParD. The β-galactosidase activity analysis indicated that ParDE has an autoregulatory function. An electrophoretic mobility shift assay (EMSA) confirmed that the antitoxin ParD bound to the promoter of ParDE as dimers. In the mouse infection model, the deletion of ParDE in ZY05719 significantly attenuated virulence. ΔparDE also exhibited a reduced anti-oxidative stress ability, and ΔparDE was more susceptible to phagocytosis and killing by macrophages. Moreover, the biofilm formation ability of the ΔparDE strain was significantly enhanced compared to ZY05719. Taken together, these findings indicate that the type II TA system ParDE plays a significant role in the pathogenesis of S. suis, providing new insights into its pathogenic mechanisms.
Collapse
Affiliation(s)
- Qibing Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Xiayu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Tao Jiang
- Department of Stomatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| |
Collapse
|
3
|
Kato F, Bandou R, Yamaguchi Y, Inouye K, Inouye M. Characterization of a membrane toxin-antitoxin system, tsaAT, from Staphylococcus aureus. FEBS J 2024; 291:5015-5036. [PMID: 39356479 DOI: 10.1111/febs.17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Bacterial toxin-antitoxin (TA) systems consist of a toxin that inhibits essential cellular processes, such as DNA replication, transcription, translation, or ATP synthesis, and an antitoxin neutralizing their cognate toxin. These systems have roles in programmed cell death, defense against phage, and the formation of persister cells. Here, we characterized the previously identified Staphylococcus aureus TA system, tsaAT, which consists of two putative membrane proteins: TsaT and TsaA. Expression of the TsaT toxin caused cell death and disrupted membrane integrity, whereas TsaA did not show any toxicity and neutralized the toxicity of TsaT. Furthermore, subcellular fractionation analysis demonstrated that both TsaA and TsaT localized to the cytoplasmic membrane of S. aureus expressing either or both 3xFLAG-tagged TsaA and 3xFLAG-tagged TsaT. Taken together, these results demonstrate that the TsaAT TA system consists of two membrane proteins, TsaA and TsaT, where TsaT disrupts membrane integrity, ultimately leading to cell death. Although sequence analyses showed that the tsaA and tsaT genes were conserved among Staphylococcus species, amino acid substitutions between TsaT orthologs highlighted the critical role of the 6th residue for its toxicity. Further amino acid substitutions indicated that the glutamic acid residue at position 63 in the TsaA antitoxin and the cluster of five lysine residues in the TsaT toxin are involved in TsaA's neutralization reaction. This study is the first to describe a bacterial TA system wherein both toxin and antitoxin are membrane proteins. These findings contribute to our understanding of S. aureus TA systems and, more generally, give new insight into highly diverse bacterial TA systems.
Collapse
Affiliation(s)
- Fuminori Kato
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Risa Bandou
- Faculty of Dentistry, Hiroshima University, Japan
| | - Yoshihiro Yamaguchi
- Department of Biology, Graduate School of Sciences, Osaka Metropolitan University, Japan
| | - Keiko Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Masayori Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
4
|
Gosain TP, Chugh S, Rizvi ZA, Chauhan NK, Kidwai S, Thakur KG, Awasthi A, Singh R. Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs. Nat Commun 2024; 15:5467. [PMID: 38937463 PMCID: PMC11211403 DOI: 10.1038/s41467-024-49246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
The genome of Mycobacterium tuberculosis encodes for a large repertoire of toxin-antitoxin systems. In the present study, MenT3 and MenT4 toxins belonging to MenAT subfamily of TA systems have been functionally characterized. We demonstrate that ectopic expression of these toxins inhibits bacterial growth and this is rescued upon co-expression of their cognate antitoxins. Here, we show that simultaneous deletion of menT3 and menT4 results in enhanced susceptibility of M. tuberculosis upon exposure to oxidative stress and attenuated growth in guinea pigs and mice. We observed reduced expression of transcripts encoding for proteins that are essential or required for intracellular growth in mid-log phase cultures of ΔmenT4ΔT3 compared to parental strain. Further, the transcript levels of proteins involved in efficient bacterial clearance were increased in lung tissues of ΔmenT4ΔT3 infected mice relative to parental strain infected mice. We show that immunization of mice and guinea pigs with ΔmenT4ΔT3 confers significant protection against M. tuberculosis infection. Remarkably, immunization of mice with ΔmenT4ΔT3 results in increased antigen-specific TH1 bias and activated memory T cell response. We conclude that MenT3 and MenT4 are important for M. tuberculosis pathogenicity and strains lacking menT3 and menT4 have the potential to be explored further as vaccine candidates.
Collapse
Affiliation(s)
- Tannu Priya Gosain
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saurabh Chugh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Zaigham Abbas Rizvi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Neeraj Kumar Chauhan
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saqib Kidwai
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| |
Collapse
|
5
|
Tang Z, Feng J, Rowthu SR, Zou C, Peng H, Huang C, He Y. Uncovering the anti-biofilm activity of Ilicicolin B against Staphylococcus aureus. Biochem Biophys Res Commun 2023; 684:149138. [PMID: 37897909 DOI: 10.1016/j.bbrc.2023.149138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
The formation of bacterial biofilms reduces the entry of antibiotics into bacteria and helps bacteria tolerate otherwise lethal concentrations of antimicrobials, leading to antibiotic resistance. Therefore, clearing bacterial biofilm is an effective strategy to tackle drug resistance. Currently, there are no approved antibiotics for inhibiting bacterial biofilm formation. We found that Ilicicolin B had excellent antibacterial activity against MRSA without obvious hemolytic activity. More importantly, Ilicicolin B effectively inhibited the biofilm formation in a concentration-dependent manner by crystal violet colorimetric assay and fluorescence microscopy analysis. Exposure of Staphylococcus aureus to Ilicicolin B for 24 h reduced the protein and polysaccharide components in EPS, suggesting that Ilicicolin B disintegrated the biofilms by dissociating the EPS in a matrix. In addition, Ilicicolin B demonstrated strong antibacterial effects in a murine abscess model of S. aureus. Our findings suggest that Ilicicolin B has the potential to treat S. aureus infection by inhibiting biofilm formation.
Collapse
Affiliation(s)
- Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jizhou Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Sankara Rao Rowthu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Cheng Zou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Haibo Peng
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China; BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
6
|
Shang W, Hu Z, Li M, Wang Y, Rao Y, Tan L, Chen J, Huang X, Liu L, Liu H, Guo Z, Peng H, Yang Y, Hu Q, Li S, Hu X, Zou J, Rao X. Optimizing a high-sensitivity NanoLuc-based bioluminescence system for in vivo evaluation of antimicrobial treatment. MLIFE 2023; 2:462-478. [PMID: 38818266 PMCID: PMC10989145 DOI: 10.1002/mlf2.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 06/01/2024]
Abstract
Focal and systemic infections are serious threats to human health. Preclinical models enable the development of new drugs and therapeutic regimens. In vivo, animal bioluminescence (BL) imaging has been used with bacterial reporter strains to evaluate antimicrobial treatment effects. However, high-sensitivity bioluminescent systems are required because of the limited tissue penetration and low brightness of the BL signals of existing approaches. Here, we report that NanoLuc (Nluc) showed better performance than LuxCDABE in bacteria. However, the retention rate of plasmid constructs in bacteria was low. To construct stable Staphylococcus aureus reporter strains, a partner protein enolase (Eno) was identified by screening of S. aureus strain USA300 for fusion expression of Nluc-based luciferases, including Nluc, Teluc, and Antares2. Different substrates, such as hydrofurimazine (HFZ), furimazine (FUR), and diphenylterazine (DTZ), were used to optimize a stable reporter strain/substrate pair for BL imaging. S. aureus USA300/Eno-Antares2/HFZ produced the highest number of photons of orange-red light in vitro and enabled sensitive BL tracking of S. aureus in vivo, with sensitivities of approximately 10 CFU from mouse skin and 750 CFU from mouse kidneys. USA300/Eno-Antares2/HFZ was a powerful combination based on the longitudinal evaluation of the therapeutic efficacy of antibiotics. The optimized S. aureus Eno-Antares2/HFZ pair provides a technological advancement for the in vivo evaluation of antimicrobial treatment.
Collapse
Affiliation(s)
- Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Mengyang Li
- Department of Microbiology, School of MedicineChongqing UniversityChongqingChina
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yifan Rao
- Department of Emergency Medicine, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Juan Chen
- Department of Pharmacy, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Lu Liu
- Department of Microbiology, School of MedicineChongqing UniversityChongqingChina
| | - He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zuwen Guo
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jiao Zou
- Department of Military Cognitive Psychology, School of PsychologyArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
7
|
Gómez LA, Molina RE, Soto RI, Flores MR, Coloma-Rivero RF, Montero DA, Oñate ÁA. Unraveling the Role of the Zinc-Dependent Metalloproteinase/HTH-Xre Toxin/Antitoxin (TA) System of Brucella abortus in the Oxidative Stress Response: Insights into the Stress Response and Virulence. Toxins (Basel) 2023; 15:536. [PMID: 37755962 PMCID: PMC10538038 DOI: 10.3390/toxins15090536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Toxin/antitoxin (TA) systems have been scarcely studied in Brucella abortus, the causative agent of brucellosis, which is one of the most prevalent zoonotic diseases worldwide. In this study, the roles of a putative type II TA system composed by a Zinc-dependent metalloproteinase (ZnMP) and a transcriptional regulator HTH-Xre were evaluated. The deletion of the open reading frame (ORF) BAB1_0270, coding for ZnMP, used to produce a mutant strain, allowed us to evaluate the survival and gene expression of B. abortus 2308 under oxidative conditions. Our results showed that the B. abortus mutant strain exhibited a significantly reduced capacity to survive under hydrogen peroxide-induced oxidative stress. Furthermore, this mutant strain showed a decreased expression of genes coding for catalase (katE), alkyl hydroperoxide reductase (ahpC) and transcriptional regulators (oxyR and oxyR-like), as well as genes involved in the general stress response, phyR and rpoE1, when compared to the wild-type strain. These findings suggest that this type II ZnMP/HTH-Xre TA system is required by B. abortus to resist oxidative stress. Additionally, previous evidence has demonstrated that this ZnMP also participates in the acidic stress resistance and virulence of B. abortus 2308. Therefore, we propose a hypothetical regulatory function for this ZnMP/HTH-Xre TA system, providing insight into the stress response and its potential roles in the pathogenesis of B. abortus.
Collapse
Affiliation(s)
- Leonardo A. Gómez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile; (R.E.M.); (R.I.S.); (M.R.F.); (R.F.C.-R.); (D.A.M.)
| | | | | | | | | | | | - Ángel A. Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile; (R.E.M.); (R.I.S.); (M.R.F.); (R.F.C.-R.); (D.A.M.)
| |
Collapse
|
8
|
Kato F, Yamaguchi Y, Inouye K, Matsuo K, Ishida Y, Inouye M. A novel gyrase inhibitor from toxin-antitoxin system expressed by Staphylococcus aureus. FEBS J 2023; 290:1502-1518. [PMID: 36148483 DOI: 10.1111/febs.16634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
Toxin-antitoxin (TA) systems consist of a toxin inhibiting essential cellular functions (such as DNA, RNA and protein synthesis), and its cognate antitoxin neutralizing the toxicity. Recently, we identified a TA system termed TsbA/TsbT in the Staphylococcus aureus genome. The induction of the tsbT gene in Escherichia coli halted both DNA and RNA synthesis, reduced supercoiled plasmid and resulted in increasingly relaxed DNA. These results suggested that DNA gyrase was the target of TsbT. In addition, TsbT inhibited both E. coli and S. aureus DNA gyrase activity and induced linearization of plasmid DNA in vitro. Taken together, these results demonstrate that the TsbT toxin targets DNA gyrase in vivo. Site-directed mutagenesis experiments showed that the E27 and D37 residues in TsbT are critical for toxicity. Secondary structure prediction combining the analysis of vacuum-ultraviolet circular-dichroism spectroscopy and neural network method demonstrated that the 22nd-32nd residues of TsbT form an α-helix structure, and that the E27 residue is located around the centre of the α-helix segment. These findings give new insights not only into S. aureus TA systems, but also into bacterial toxins targeting DNA topoisomerases.
Collapse
Affiliation(s)
- Fuminori Kato
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yoshihiro Yamaguchi
- Department of Biology and Geosciences, Graduate School of Sciences, Osaka City University, Japan
| | - Keiko Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yojiro Ishida
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Masayori Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
9
|
Wang D, Zhu L, Zhen X, Yang D, Li C, Chen Y, Wang H, Qu Y, Liu X, Yin Y, Gu H, Xu L, Wan C, Wang Y, Ouyang S, Shen X. A secreted effector with a dual role as a toxin and as a transcriptional factor. Nat Commun 2022; 13:7779. [PMID: 36522324 PMCID: PMC9755527 DOI: 10.1038/s41467-022-35522-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria have evolved multiple secretion systems for delivering effector proteins into the cytosol of neighboring cells, but the roles of many of these effectors remain unknown. Here, we show that Yersinia pseudotuberculosis secretes an effector, CccR, that can act both as a toxin and as a transcriptional factor. The effector is secreted by a type VI secretion system (T6SS) and can enter nearby cells of the same species and other species (such as Escherichia coli) via cell-cell contact and in a contact-independent manner. CccR contains an N-terminal FIC domain and a C-terminal DNA-binding domain. In Y. pseudotuberculosis cells, CccR inhibits its own expression by binding through its DNA-binding domain to the cccR promoter, and affects the expression of other genes through unclear mechanisms. In E. coli cells, the FIC domain of CccR AMPylates the cell division protein FtsZ, inducing cell filamentation and growth arrest. Thus, our results indicate that CccR has a dual role, modulating gene expression in neighboring cells of the same species, and inhibiting the growth of competitors.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangkai Zhen
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Daoyan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yating Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huannan Wang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yichen Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaozhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanling Yin
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Huawei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuanxing Wan
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Rao L, Xu Y, Shen L, Wang X, Zhao H, Wang B, Zhang J, Xiao Y, Guo Y, Sheng Y, Cheng L, Song Z, Yu F. Small-molecule compound SYG-180-2-2 attenuates Staphylococcus aureus virulence by inhibiting hemolysin and staphyloxanthin production. Front Cell Infect Microbiol 2022; 12:1008289. [PMID: 36310881 PMCID: PMC9606476 DOI: 10.3389/fcimb.2022.1008289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Multi-drug resistant Staphylococcus aureus infection is still a serious threat to global health. Therefore, there is an urgent need to develop new antibacterial agents based on virulence factor therapy to overcome drug resistance. Previously, we synthesized SYG-180-2-2 (C21H16N2OSe), an effective small molecule compound against biofilm. The aim of this study was to investigate the anti-virulence efficacy of SYG-180-2-2 against Staphylococcus aureus. MIC results demonstrated no apparent antibacterial activity of the SYG-180-2-2. The growth curve assay showed that SYG-180-2-2 had nonlethal effect on S. aureus. Besides, SYG-180-2-2 strongly inhibited the hemolytic activity and staphyloxanthin synthesis in S. aureus. Inhibition of staphyloxanthin by SYG-180-2-2 enhanced the sensitivity of S. aureus to oxidants and human whole blood. In addition, SYG-180-2-2 significantly decreased the expression of saeR-mediated hemolytic gene hlb and staphyloxanthin-related crtM, crtN and sigB genes by quantitative polymerase chain reaction (qPCR). Meanwhile, the expression of oxidative stress-related genes sodA, sodM and katA also decreased. Galleria Mellonella assay revealed that SYG-180-2-2 was not toxic to larvae. Further, the larvae infection model showed that the virulence of bacteria was significantly reduced after 4 μg/mL SYG-180-2-2 treatment. SYG-180-2-2 also reduced skin abscess formation in mice by reducing bacterial burden and subcutaneous inflammation. In conclusion, SYG-180-2-2 might be a promising agent to attenuate the virulence of S. aureus by targeting genes associated with hemolytic activity and staphyloxanthin synthesis.
Collapse
Affiliation(s)
- Lulin Rao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinjuan Guo
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaoguang Sheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lixia Cheng
- Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Qiu J, Zhai Y, Wei M, Zheng C, Jiao X. Toxin–antitoxin systems: Classification, biological roles, and applications. Microbiol Res 2022; 264:127159. [DOI: 10.1016/j.micres.2022.127159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
|
12
|
Xue L, Khan MH, Yue J, Zhu Z, Niu L. The two paralogous copies of the YoeB-YefM toxin-antitoxin module in Staphylococcus aureus differ in DNA binding and recognition patterns. J Biol Chem 2022; 298:101457. [PMID: 34861238 PMCID: PMC8717551 DOI: 10.1016/j.jbc.2021.101457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous regulatory modules for bacterial growth and cell survival following stress. YefM-YoeB, the most prevalent type II TA system, is present in a variety of bacterial species. In Staphylococcus aureus, the YefM-YoeB system exists as two independent paralogous copies. Our previous research resolved crystal structures of the two oligomeric states (heterotetramer and heterohexamer-DNA ternary complex) of the first paralog as well as the molecular mechanism of transcriptional autoregulation of this module. However, structural details reflecting molecular diversity in both paralogs have been relatively unexplored. To understand the molecular mechanism of how Sa2YoeB and Sa2YefM regulate their own transcription and how each paralog functions independently, we solved a series of crystal structures of the Sa2YoeB-Sa2YefM. Our structural and biochemical data demonstrated that both paralogous copies adopt similar mechanisms of transcriptional autoregulation. In addition, structural analysis suggested that molecular diversity between the two paralogs might be reflected in the interaction profile of YefM and YoeB and the recognition pattern of promoter DNA by YefM. Interaction analysis revealed unique conformational and activating force effected by the interface between Sa2YoeB and Sa2YefM. In addition, the recognition pattern analysis demonstrated that residues Thr7 and Tyr14 of Sa2YefM specifically recognizes the flanking sequences (G and C) of the promoter DNA. Together, these results provide the structural insights into the molecular diversity and independent function of the paralogous copies of the YoeB-YefM TA system.
Collapse
Affiliation(s)
- Lu Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
13
|
Gu Q, He P, Wang D, Ma J, Zhong X, Zhu Y, Zhang Y, Bai Q, Pan Z, Yao H. An Auto-Regulating Type II Toxin-Antitoxin System Modulates Drug Resistance and Virulence in Streptococcus suis. Front Microbiol 2021; 12:671706. [PMID: 34475853 PMCID: PMC8406773 DOI: 10.3389/fmicb.2021.671706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements that play an essential role in multidrug tolerance and virulence of bacteria. So far, little is known about the TA systems in Streptococcus suis. In this study, the Xress-MNTss TA system, composed of the MNTss toxin in the periplasmic space and its interacting Xress antitoxin, was identified in S. suis. β-galactosidase activity and electrophoretic mobility shift assay (EMSA) revealed that Xress and the Xress-MNTss complex could bind directly to the Xress-MNTss promoter as well as downregulate streptomycin adenylyltransferase ZY05719_RS04610. Interestingly, the Xress deletion mutant was less pathogenic in vivo following a challenge in mice. Transmission electron microscopy and adhesion assays pointed to a significantly thinner capsule but greater biofilm-formation capacity in ΔXress than in the wild-type strain. These results indicate that Xress-MNTss, a new type II TA system, plays an important role in antibiotic resistance and pathogenicity in S. suis.
Collapse
Affiliation(s)
- Qibing Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Peijuan He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Dan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qiankun Bai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
14
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
15
|
Hossain T, Deter HS, Peters EJ, Butzin NC. Antibiotic tolerance, persistence, and resistance of the evolved minimal cell, Mycoplasma mycoides JCVI-Syn3B. iScience 2021; 24:102391. [PMID: 33997676 PMCID: PMC8091054 DOI: 10.1016/j.isci.2021.102391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance is a growing problem, but bacteria can evade antibiotic treatment via tolerance and persistence. Antibiotic persisters are a small subpopulation of bacteria that tolerate antibiotics due to a physiologically dormant state. Hence, persistence is considered a major contributor to the evolution of antibiotic-resistant and relapsing infections. Here, we used the synthetically developed minimal cell Mycoplasma mycoides JCVI-Syn3B to examine essential mechanisms of antibiotic survival. The minimal cell contains only 473 genes, and most genes are essential. Its reduced complexity helps to reveal hidden phenomenon and fundamental biological principles can be explored because of less redundancy and feedback between systems compared to natural cells. We found that Syn3B evolves antibiotic resistance to different types of antibiotics expeditiously. The minimal cell also tolerates and persists against multiple antibiotics. It contains a few already identified persister-related genes, although lacking many systems previously linked to persistence (e.g. toxin-antitoxin systems, ribosome hibernation genes).
Collapse
Affiliation(s)
- Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Heather S. Deter
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Eliza J. Peters
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Nicholas C. Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| |
Collapse
|
16
|
Interactions of the Streptococcus pneumoniae Toxin-Antitoxin RelBE Proteins with Their Target DNA. Microorganisms 2021; 9:microorganisms9040851. [PMID: 33921033 PMCID: PMC8071376 DOI: 10.3390/microorganisms9040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Type II bacterial toxin-antitoxin (TA) systems are found in most bacteria, archaea, and mobile genetic elements. TAs are usually found as a bi-cistronic operon composed of an unstable antitoxin and a stable toxin that targets crucial cellular functions like DNA supercoiling, cell-wall synthesis or mRNA translation. The type II RelBE system encoded by the pathogen Streptococcus pneumoniae is highly conserved among different strains and participates in biofilm formation and response to oxidative stress. Here, we have analyzed the participation of the RelB antitoxin and the RelB:RelE protein complex in the self-regulation of the pneumococcal relBE operon. RelB acted as a weak repressor, whereas RelE performed the role of a co-repressor. By DNA footprinting experiments, we show that the proteins bind to a region that encompasses two palindromic sequences that are located around the -10 sequences of the single promoter that directs the synthesis of the relBE mRNA. High-resolution footprinting assays showed the distribution of bases whose deoxyriboses are protected by the bound proteins, demonstrating that RelB and RelB:RelE contacted the DNA backbone on one face of the DNA helix and that these interactions extended beyond the palindromic sequences. Our findings suggest that the binding of the RelBE proteins to its DNA target would lead to direct inhibition of the binding of the host RNA polymerase to the relBE promoter.
Collapse
|
17
|
Ma D, Gu H, Shi Y, Huang H, Sun D, Hu Y. Edwardsiella piscicida YefM-YoeB: A Type II Toxin-Antitoxin System That Is Related to Antibiotic Resistance, Biofilm Formation, Serum Survival, and Host Infection. Front Microbiol 2021; 12:646299. [PMID: 33732226 PMCID: PMC7957083 DOI: 10.3389/fmicb.2021.646299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
The emergence of drug resistant bacteria is a tricky and confronted problem in modern medicine, and one of important reasons is the widespread of toxin-antitoxin (TA) systems in pathogenic bacteria. Edwardsiella piscicida (also known as E. tarda) is the leading pathogen threatening worldwide fresh and seawater aquaculture industries and has been considered as a model organism for studying intracellular and systemic infections. However, the role of type II TA systems are completely unknown in aquatic pathogenic bacteria. In this study, we identified and characterized a type II TA system, YefM-YoeB, of E. piscicida, where YefM is the antitoxin and YoeB is the toxin. yefM and yoeB are co-expressed in a bicistronic operon. When expressed in E. coli, YoeB cause bacterial growth arrest, which was restored by the addition of YefM. To investigate the biological role of the TA system, two markerless yoeB and yefM-yoeB in-frame mutant strains, TX01ΔyoeB and TX01ΔyefM-yoeB, were constructed, respectively. Compared to the wild strain TX01, TX01ΔyefM-yoeB exhibited markedly reduced resistance against oxidative stress and antibiotic, and markedly reduced ability to form persistent bacteria. The deletion of yefM-yoeB enhanced the bacterial ability of high temperature tolerance, biofilm formation, and host serum resistance, which is the first study about the relationship between type II TA system and serum resistance. In vitro infection experiment showed that the inactivation of yefM-yoeB greatly enhanced bacterial capability of adhesion in host cells. Consistently, in vivo experiment suggested that the yefM-yoeB mutation had an obvious positive effect on bacteria dissemination of fish tissues and general virulence. Introduction of a trans-expressed yefM-yoeB restored the virulence of TX01ΔyefM-yoeB. These findings suggest that YefM-YoeB is involved in responding adverse circumstance and pathogenicity of E. piscicida. In addition, we found that YefM-YoeB negatively autoregulated the expression of yefM-yoeB and YefM could directly bind with own promoter. This study provides first insights into the biological activity of type II TA system YefM-YoeB in aquatic pathogenic bacteria and contributes to understand the pathogenesis of E. piscicida.
Collapse
Affiliation(s)
- Dongmei Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Yanjie Shi
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Huiqin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Dongmei Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
| |
Collapse
|
18
|
Ghazali AK, Eng SA, Khoo JS, Teoh S, Hoh CC, Nathan S. Whole-genome comparative analysis of Malaysian Burkholderia pseudomallei clinical isolates. Microb Genom 2021; 7. [PMID: 33565959 PMCID: PMC8208702 DOI: 10.1099/mgen.0.000527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei, a soil-dwelling Gram-negative bacterium, is the causative agent of the endemic tropical disease melioidosis. Clinical manifestations of B. pseudomallei infection range from acute or chronic localized infection in a single organ to fulminant septicaemia in multiple organs. The diverse clinical manifestations are attributed to various factors, including the genome plasticity across B. pseudomallei strains. We previously characterized B. pseudomallei strains isolated in Malaysia and noted different levels of virulence in model hosts. We hypothesized that the difference in virulence might be a result of variance at the genome level. In this study, we sequenced and assembled four Malaysian clinical B. pseudomallei isolates, UKMR15, UKMPMC2000, UKMD286 and UKMH10. Phylogenomic analysis showed that Malaysian subclades emerged from the Asian subclade, suggesting that the Malaysian strains originated from the Asian region. Interestingly, the low-virulence strain, UKMH10, was the most distantly related compared to the other Malaysian isolates. Genomic island (GI) prediction analysis identified a new island of 23 kb, GI9c, which is present in B. pseudomallei and Burkholderia mallei, but not Burkholderia thailandensis. Genes encoding known B. pseudomallei virulence factors were present across all four genomes, but comparative analysis of the total gene content across the Malaysian strains identified 104 genes that are absent in UKMH10. We propose that these genes may encode novel virulence factors, which may explain the reduced virulence of this strain. Further investigation on the identity and role of these 104 proteins may aid in understanding B. pseudomallei pathogenicity to guide the design of new therapeutics for treating melioidosis.
Collapse
Affiliation(s)
- Ahmad-Kamal Ghazali
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Su-Anne Eng
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Jia-Shiun Khoo
- Codon Genomics S/B, 26, Jalan Dutamas 7, Taman Dutamas Balakong, Selangor, Malaysia
| | - Seddon Teoh
- Codon Genomics S/B, 26, Jalan Dutamas 7, Taman Dutamas Balakong, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics S/B, 26, Jalan Dutamas 7, Taman Dutamas Balakong, Selangor, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
19
|
The antimicrobial peptide Brevinin-2ISb enhances the innate immune response against methicillin-resistant Staphylococcus aureus by activating DAF-2/DAF-16 signaling in Caenorhabditis elegans, as determined by in vivo imaging. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Liu B, Sun B. Rsp promotes the transcription of virulence factors in an agr-independent manner in Staphylococcus aureus. Emerg Microbes Infect 2020; 9:796-812. [PMID: 32248753 PMCID: PMC7241556 DOI: 10.1080/22221751.2020.1752116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus is a major human pathogen that causes a great diversity of community- and hospital-acquired infections. Rsp, a member of AraC/XylS family of transcriptional regulators (AFTRs), has been reported to play an important role in the regulation of virulence determinants in S. aureus via an agr-dependent pathway. Here we demonstrated that Rsp could bind to the rsp promoter to positively regulate its own expression. We then constructed an isogenic rsp deletion strain and compared the haemolysis in the wild-type and rsp mutant strains. Our results indicated that the rsp mutant strain displayed decreased haemolytic activity, which was correlated with a dramatic decrease in the expression of hla and psm. Furthermore, we analysed the regulatory effects of Rsp in the agr mutant strain and found that they are agr-independent. Electrophoretic mobility shift assay indicated that Rsp can directly bind to the promoter regions of hla and psm. The mouse model of subcutaneous abscess showed that the rsp mutant strain displayed a significant defect in virulence compared to the wild-type strain. These findings reveal that Rsp positively regulates the virulence of S. aureus by promoting the expression of hla and psm through direct binding to their promoter regions.
Collapse
Affiliation(s)
- Banghui Liu
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
21
|
Klimkaitė L, Armalytė J, Skerniškytė J, Sužiedėlienė E. The Toxin-Antitoxin Systems of the Opportunistic Pathogen Stenotrophomonas maltophilia of Environmental and Clinical Origin. Toxins (Basel) 2020; 12:E635. [PMID: 33019620 PMCID: PMC7650669 DOI: 10.3390/toxins12100635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has recently emerged as a multidrug-resistant opportunistic pathogen causing bloodstream, respiratory, and urinary tract infections. The connection between the commensal environmental S. maltophilia and the opportunistic pathogen strains is still under investigation. Bacterial toxin-antitoxin (TA) systems have been previously associated with pathogenic traits, such as biofilm formation and resistance to antibiotics, which are important in clinical settings. The same species of the bacterium can possess various sets of TAs, possibly influencing their overall stress response. While the TA systems of other important opportunistic pathogens have been researched, nothing is known about the TA systems of S. maltophilia. Here, we report the identification and characterization of S. maltophilia type II TA systems and their prevalence in the isolates of clinical and environmental origins. We found 49 putative TA systems by bioinformatic analysis in S. maltophilia genomes. Despite their even spread in sequenced S. maltophilia genomes, we observed that relBE, hicAB, and previously undescribed COG3832-ArsR operons were present solely in clinical S. maltophilia isolates collected in Lithuania, while hipBA was more frequent in the environmental ones. The kill-rescue experiments in Escherichia coli proved higBA, hicAB, and relBE systems to be functional TA modules. Together with different TA profiles, the clinical S. maltophilia isolates exhibited stronger biofilm formation, increased antibiotic, and serum resistance compared to environmental isolates. Such tendencies suggest that certain TA systems could be used as indicators of virulence traits.
Collapse
Affiliation(s)
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-1025 Vilnius, Lithuania; (L.K.); (J.S.)
| | | | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-1025 Vilnius, Lithuania; (L.K.); (J.S.)
| |
Collapse
|
22
|
Janczak M, Hyz K, Bukowski M, Lyzen R, Hydzik M, Wegrzyn G, Szalewska-Palasz A, Grudnik P, Dubin G, Wladyka B. Chromosomal localization of PemIK toxin-antitoxin system results in the loss of toxicity - Characterization of pemIK Sa1-Sp from Staphylococcus pseudintermedius. Microbiol Res 2020; 240:126529. [PMID: 32622987 DOI: 10.1016/j.micres.2020.126529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and on numerous occasions have been postulated to play a role in virulence of pathogens. Some Staphylococcus aureus strains carry a plasmid, which encodes the highly toxic PemIKSa TA system involved in maintenance of the plasmid but also implicated in modulation of gene expression. Here we showed that pemIKSa1-Sp TA system, homologous to the plasmid-encoded PemIKSa, is present in virtually each chromosome of S. pseudintermedius strain, however exhibits sequence heterogeneity. This results in two length variants of the PemKSa1-Sp toxin. The shorter (96 aa), C-terminally truncated toxin is enzymatically inactive, whereas the full length (112 aa) variant is an RNase, though nontoxic to the host cells. The lack of toxicity of the active PemKSa-Sp2 toxin is explained by increased substrate specificity. The pemISa1-Sp antitoxin gene seems pseudogenized, however, the whole pemIKSa1-Sp system is transcriptionally active. When production of N-terminally truncated antitoxins using alternative start codons is assumed, there are five possible length variants. Here we showed that even substantially truncated antitoxins are able to interact with PemKSa-Sp2 toxin and inhibit its RNase activity. Moreover, the antitoxins can rescue bacterial cells from toxic effects of overexpression of plasmid-encoded PemKSa toxin. Collectively, our data indicates that, contrary to the toxic plasmid-encoded PemIKSa TA system, location of pemIKSa1-Sp in the chromosome of S. pseudintermedius results in the loss of its toxicity. Interestingly, the retained RNase activity of PemKSa1-Sp2 toxin and functionality of the putative, N-terminally truncated antitoxins suggest the existence of evolutionary pressure for alleviation/mitigation of the toxin's toxicity and retention of the inhibitory activity of the antitoxin, respectively.
Collapse
Affiliation(s)
- Monika Janczak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Hyz
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Lyzen
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Gdansk, Poland
| | - Marcin Hydzik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Przemyslaw Grudnik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
23
|
Yadav M, Rathore JS. The hipBA Xn operon from Xenorhabdus nematophila functions as a bonafide toxin-antitoxin module. Appl Microbiol Biotechnol 2020; 104:3081-3095. [PMID: 32043192 DOI: 10.1007/s00253-020-10441-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
Here, for the first time, we have investigated the hipBAXn toxin-antitoxin (TA) module from entomopathogenic bacterium Xenorhabdus nematophila. It is a type II TA module that consists of HipAXn toxin and HipBXn antitoxin protein and located in the complementary strand of chromosome under XNC1_operon 0810 locus tag. For functional analysis, hipAXn toxin, hipBXn antitoxin, and an operon having both genes were cloned in pBAD/His C vector and transformed in Escherichia coli cells. The expression profiles and endogenous toxicity assay were performed in these cells. To determine the active amino acid residues responsible for the toxicity of HipAXn toxin, site-directed mutagenesis (SDM) was performed. SDM results showed that amino acid residues S149, D306, and D329 in HipAXn toxin protein were significantly essential for its toxicity. For transcriptional analysis, the 157 bp upstream region of the hipBAXn TA module was identified as a promoter with bioinformatics tools. Further, the LacZ reporter construct with promoter region was prepared and LacZ assays as well as reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was performed under different stress conditions. Electrophoretic mobility shift assay (EMSA) was also performed with recombinant HipAXn toxin, HipBXn antitoxin protein, and 157 bp promoter region. Results showed that the hipBAXn TA module is a well-regulated system in which the upregulation of gene expression was also found compulsive in different SOS conditions. KEY POINTS: •Functional characterization of hipBA Xn TA module from Xenorhabdus nematophila. •hipBA Xn TA module is a functional type II TA module. •Transcriptional characterization of hipBA Xn TA module. •hipBA Xn TA module is a well regulated TA module. Graphical abstract.
Collapse
Affiliation(s)
- Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Yamuna Expressway, Greater Noida, Uttar Pradesh, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Yamuna Expressway, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
24
|
Habib G, Zhu J, Sun B. A novel type I toxin-antitoxin system modulates persister cell formation in Staphylococcus aureus. Int J Med Microbiol 2020; 310:151400. [PMID: 32001143 DOI: 10.1016/j.ijmm.2020.151400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 01/03/2023] Open
Abstract
A plethora of toxin-antitoxin systems exist in bacteria and has multilateral roles in bacterial pathogenesis and virulence. Toxin-antitoxin systems have been involved in persister cell formation in Escherichia coli and Mycobacterium but have not been reported to be associated with Staphylococcus aureus persistence. Persistence is the ability of bacterial cells to tolerate unfavorable conditions and multiple stresses. There are less known and more unknown factors that either alleviate or aggravate bacterial persistence phenomenon. For the first time, we reported a new chromosomally encoded tripartite toxin-antitoxin system and its role in S. aureus persister cell formation. The toxin gene is bacteriostatic in action and counterbalanced by antitoxin RNA that could basepair with the toxin mRNA and formed a duplex. The transcriptional regulator positively regulates the toxin expression under certain stress conditions. The toxin ectopic induction increased S. aureus susceptibility to norfloxacin, ciprofloxacin, and ofloxacin. Whole-genome RNA sequencing revealed that MDR efflux pump norA is significantly down-regulated by toxin ectopic induction. The deletion of norA from S. aureus genome reduced resistance toward ciprofloxacin, norfloxacin, and ofloxacin, as well as resulted in a decrease in minimal inhibitory concentration while complementation of norA successfully restored the phenotypes. The persistence assay of the norA mutant revealed that deletion of norA increased persister cell survival in S. aureus. Altogether, we have provided insight into the first tripartite type-I TA system and revealed the role of MDR NorA in the persister cell formation of S. aureus.
Collapse
Affiliation(s)
- Gul Habib
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China. Hefei, Anhui 230027, China
| | - Jiade Zhu
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China. Hefei, Anhui 230027, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China. Hefei, Anhui 230027, China.
| |
Collapse
|
25
|
Production of Lysostaphin by Nonproprietary Method Utilizing a Promoter from Toxin–Antitoxin System. Mol Biotechnol 2019; 61:774-782. [DOI: 10.1007/s12033-019-00203-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Germain-Amiot N, Augagneur Y, Camberlein E, Nicolas I, Lecureur V, Rouillon A, Felden B. A novel Staphylococcus aureus cis-trans type I toxin-antitoxin module with dual effects on bacteria and host cells. Nucleic Acids Res 2019; 47:1759-1773. [PMID: 30544243 PMCID: PMC6393315 DOI: 10.1093/nar/gky1257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial type I toxin–antitoxin (TA) systems are widespread, and consist of a stable toxic peptide whose expression is monitored by a labile RNA antitoxin. We characterized Staphylococcus aureus SprA2/SprA2AS module, which shares nucleotide similarities with the SprA1/SprA1AS TA system. We demonstrated that SprA2/SprA2AS encodes a functional type I TA system, with the cis-encoded SprA2AS antitoxin acting in trans to prevent ribosomal loading onto SprA2 RNA. We proved that both TA systems are distinct, with no cross-regulation between the antitoxins in vitro or in vivo. SprA2 expresses PepA2, a toxic peptide which internally triggers bacterial death. Conversely, although PepA2 does not affect bacteria when it is present in the extracellular medium, it is highly toxic to other host cells such as polymorphonuclear neutrophils and erythrocytes. Finally, we showed that SprA2AS expression is lowered during osmotic shock and stringent response, which indicates that the system responds to specific triggers. Therefore, the SprA2/SprA2AS module is not redundant with SprA1/SprA1AS, and its PepA2 peptide exhibits an original dual mode of action against bacteria and host cells. This suggests an altruistic behavior for S. aureus in which clones producing PepA2 in vivo shall die as they induce cytotoxicity, thereby promoting the success of the community.
Collapse
Affiliation(s)
- Noëlla Germain-Amiot
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Yoann Augagneur
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Emilie Camberlein
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Irène Nicolas
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Valérie Lecureur
- Université de Rennes 1, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, 35000 Rennes, France
| | - Astrid Rouillon
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Brice Felden
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| |
Collapse
|
27
|
Riffaud C, Pinel-Marie ML, Pascreau G, Felden B. Functionality and cross-regulation of the four SprG/SprF type I toxin-antitoxin systems in Staphylococcus aureus. Nucleic Acids Res 2019; 47:1740-1758. [PMID: 30551143 PMCID: PMC6393307 DOI: 10.1093/nar/gky1256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 01/21/2023] Open
Abstract
Toxin–antitoxin (TA) systems are ubiquitous among bacteria, frequently expressed in multiple copies, and important for functions such as antibiotic resistance and persistence. Type I TA systems are composed of a stable toxic peptide whose expression is repressed by an unstable RNA antitoxin. Here, we investigated the functionalities, regulation, and possible cross-talk between three core genome copies of the pathogenicity island-encoded ‘sprG1/sprF1’ type I TA system in the human pathogen Staphylococcus aureus. Except for SprG4, all RNA from these pairs, sprG2/sprF2, sprG3/sprF3, sprG4/sprF4, are expressed in the HG003 strain. SprG2 and SprG3 RNAs encode toxic peptides whose overexpression triggers bacteriostasis, which is counteracted at the RNA level by the overexpression of SprF2 and SprF3 antitoxins. Complex formation between each toxin and its cognate antitoxin involves their overlapping 3′ ends, and each SprF antitoxin specifically neutralizes the toxicity of its cognate SprG toxin without cross-talk. However, overexpression studies suggest cross-regulations occur at the RNA level between the SprG/SprF TA systems during growth. When subjected to H2O2-induced oxidative stress, almost all antitoxin levels dropped, while only SprG1 and SprF1 were reduced during phagocytosis-induced oxidative stress. SprG1, SprF1, SprF2, SprG3 and SprF3 levels also decrease during hyperosmotic stress. This suggests that novel SprG/SprF TA systems are involved in S. aureus persistence.
Collapse
Affiliation(s)
- Camille Riffaud
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Marie-Laure Pinel-Marie
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Gaëtan Pascreau
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Brice Felden
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| |
Collapse
|
28
|
β-Lactam Antibiotics Enhance the Pathogenicity of Methicillin-Resistant Staphylococcus aureus via SarA-Controlled Lipoprotein-Like Cluster Expression. mBio 2019; 10:mBio.00880-19. [PMID: 31186320 PMCID: PMC6561022 DOI: 10.1128/mbio.00880-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
β-Lactam antibiotics are widely applied to treat infectious diseases. However, certain poor disease outcomes caused by β-lactams remain poorly understood. In this study, we have identified a cluster of lipoprotein-like genes (lpl, sa2275–sa2273) that is upregulated in the major clinically prevalent MRSA clones in response to subinhibitory concentrations of β-lactam induction. The major highlight of this work is that β-lactams stimulate the expression of SarA, which directly binds to the lpl cluster promoter region and upregulates lpl expression in MRSA. Deletion of lpl significantly decreases proinflammatory cytokine levels in vitro and in vivo. The β-lactam-induced Lpls enhance host inflammatory responses by triggering the Toll-like-receptor-2-mediated expressions of interleukin-6 and tumor necrosis factor alpha. The β-lactam-induced Lpls are important virulence factors that enhance MRSA pathogenicity. These data elucidate that subinhibitory concentrations of β-lactams can exacerbate the outcomes of MRSA infection through induction of lpl controlled by the global regulator SarA. Methicillin-resistant Staphylococcus aureus (MRSA) resists nearly all β-lactam antibiotics that have a bactericidal activity. However, whether the empirically used β-lactams enhance MRSA pathogenicity in vivo remains unclear. In this study, we showed that a cluster of lipoprotein-like genes (lpl, sa2275 to sa2273 [sa2275–sa2273]) was upregulated in MRSA in response to subinhibitory concentrations of β-lactam induction. The increasing expression of lpl by β-lactams was directly controlled by the global regulator SarA. The β-lactam-induced Lpls stimulated the production of interleukin-6 and tumor necrosis factor alpha in RAW 264.7 macrophages. The lpl deletion mutants (N315Δlpl and USA300Δlpl) decreased the proinflammatory cytokine levels in vitro and in vivo. Purified lipidated SA2275-his proteins could trigger a Toll-like-receptor-2 (TLR2)-dependent immune response in primary mouse bone marrow-derived macrophages and C57BL/6 mice. The bacterial loads of N315Δlpl in the mouse kidney were lower than those of the wild-type N315. The β-lactam-treated MRSA exacerbated cutaneous infections in both BALB/c and C57BL/6 mice, presenting increased lesion size; destroyed skin structure; and easily promoted abscess formation compared with those of the untreated MRSA. However, the size of abscesses caused by the β-lactam-treated N315 was negligibly different from those caused by the untreated N315Δlpl in C57BL/6 TLR2−/− mice. Our findings suggest that β-lactams must be used carefully because they might aggravate the outcome of MRSA infection compared to inaction in treatment.
Collapse
|
29
|
Crystal Structure of VapBC-1 from Nontypeable Haemophilus influenzae and the Effect of PIN Domain Mutations on Survival during Infection. J Bacteriol 2019; 201:JB.00026-19. [PMID: 30936373 DOI: 10.1128/jb.00026-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Toxin-antitoxin (TA) gene pairs have been identified in nearly all bacterial genomes sequenced to date and are thought to facilitate persistence and antibiotic tolerance. TA loci are classified into various types based upon the characteristics of their antitoxins, with those in type II expressing proteic antitoxins. Many toxins from type II modules are ribonucleases that maintain a PilT N-terminal (PIN) domain containing conserved amino acids considered essential for activity. The vapBC (virulence-associated protein) TA system is the largest subfamily in this class and has been linked to pathogenesis of nontypeable Haemophilus influenzae (NTHi). In this study, the crystal structure of the VapBC-1 complex from NTHi was determined to 2.20 Å resolution. Based on this structure, aspartate-to-asparagine and glutamate-to-glutamine mutations of four conserved residues in the PIN domain of the VapC-1 toxin were constructed and the effects of the mutations on protein-protein interactions, growth of Escherichia coli, and pathogenesis ex vivo were tested. Finally, a novel model system was designed and utilized that consists of an NTHi ΔvapBC-1 strain complemented in cis with the TA module containing a mutated or wild-type toxin at an ectopic site on the chromosome. This enabled the analysis of the effect of PIN domain toxin mutants in tandem with their wild-type antitoxin under the control of the vapBC-1 native promoter and in single copy. This is the first report of a system facilitating the study of TA mutant operons in the background of NTHi during infections of primary human tissues ex vivo IMPORTANCE Herein the crystal structure of the VapBC-1 complex from nontypeable Haemophilus influenzae (NTHi) is described. Our results show that some of the mutations in the PIN domain of the VapC-1 toxin were associated with decreased toxicity in E. coli, but the mutants retained the ability to homodimerize and to heterodimerize with the wild-type cognate antitoxin, VapB-1. A new system was designed and constructed to quantify the effects of these mutations on NTHi survival during infections of primary human tissues ex vivo Any mutation to a conserved amino acid in the PIN domain significantly decreased the number of survivors compared to that of the in cis wild-type toxin under the same conditions.
Collapse
|
30
|
Thomet M, Trautwetter A, Ermel G, Blanco C. Characterization of HicAB toxin-antitoxin module of Sinorhizobium meliloti. BMC Microbiol 2019; 19:10. [PMID: 30630415 PMCID: PMC6327479 DOI: 10.1186/s12866-018-1382-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Toxin-antitoxin (TA) systems are little genetic units generally composed of two genes encoding antitoxin and toxin. These systems are known to be involved in many functions that can lead to growth arrest and cell death. Among the different types of TA systems, the type II gathers together systems where the antitoxin directly binds and inhibits the toxin. Among these type II TA systems, the HicAB module is widely distributed in free-living Bacteria and Archaea and the toxin HicA functions via RNA binding and cleavage. The genome of the symbiotic Sinorhizobium meliloti encodes numerous TA systems and only a few of them are functional. Among the predicted TA systems, there is one homologous to HicAB modules. Results In this study, we characterize the HicAB toxin-antitoxin module of S. meliloti. The production of the HicA of S. meliloti in Escherichia coli cells abolishes growth and decreases cell viability. We show that expression of the HicB of S. meliloti counteracts HicA toxicity. The results of double hybrid assays and co-purification experiments allow demonstrating the interaction of HicB with the toxin HicA. Purified HicA, but not HicAB complex, is able to degrade ribosomal RNA in vitro. The analysis of separated domains of HicB protein permits us to define the antitoxin activity and the operator-binding domain. Conclusions This study points out the first characterization of the HicAB system of the symbiotic S. meliloti whereas HicA is a toxin with ribonuclease activity and HicB has two domains: the COOH-terminal one that binds the operator and the NH2-terminal one that inhibits the toxin. Electronic supplementary material The online version of this article (10.1186/s12866-018-1382-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manon Thomet
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| | - Annie Trautwetter
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| | - Gwennola Ermel
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France.
| | - Carlos Blanco
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| |
Collapse
|
31
|
Habib G, Zhu Q, Sun B. Bioinformatics and Functional Assessment of Toxin-Antitoxin Systems in Staphylococcus aureus. Toxins (Basel) 2018; 10:toxins10110473. [PMID: 30441856 PMCID: PMC6266405 DOI: 10.3390/toxins10110473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a nosocomial pathogen that can cause chronic to persistent infections. Among different mediators of pathogenesis, toxin-antitoxin (TA) systems are emerging as the most prominent. These systems are frequently studied in Escherichia coli and Mycobacterial species but rarely explored in S. aureus. In the present study, we thoroughly analyzed the S. aureus genome and screened all possible TA systems using the Rasta bacteria and toxin-antitoxin database. We further searched E. coli and Mycobacterial TA homologs and selected 67 TA loci as putative TA systems in S. aureus. The host inhibition of growth (HigBA) TA family was predominantly detected in S. aureus. In addition, we detected seven pathogenicity islands in the S. aureus genome that are enriched with virulence genes and contain 26 out of 67 TA systems. We ectopically expressed multiple TA genes in E. coli and S. aureus that exhibited bacteriostatic and bactericidal effects on cell growth. The type I Fst toxin created holes in the cell wall while the TxpA toxin reduced cell size and induced cell wall septation. Besides, we identified a new TA system whose antitoxin functions as a transcriptional autoregulator while the toxin functions as an inhibitor of autoregulation. Altogether, this study provides a plethora of new as well as previously known TA systems that will revitalize the research on S. aureus TA systems.
Collapse
Affiliation(s)
- Gul Habib
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Qing Zhu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Baolin Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
32
|
Sierra R, Viollier P, Renzoni A. Linking toxin-antitoxin systems with phenotypes: A Staphylococcus aureus viewpoint. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:742-751. [PMID: 30056132 DOI: 10.1016/j.bbagrm.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Toxin-antitoxin systems (TAS) are genetic modules controlling different aspects of bacterial physiology. They operate with versatility in an incredibly wide range of mechanisms. New TA modules with unexpected functions are continuously emerging from genome sequencing projects. Their discovery and functional studies have shed light on different characteristics of bacterial metabolism that are now applied to understanding clinically relevant questions and even proposed as antimicrobial treatment. Our main source of knowledge of TA systems derives from Gram-negative bacterial studies, but studies in Gram-positives are becoming more prevalent and provide new insights to TA functional mechanisms. In this review, we present an overview of the present knowledge of TA systems in the clinical pathogen Staphylococcus aureus, their implications in bacterial physiology and discuss relevant aspects that are driving TAS research. "This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier".
Collapse
Affiliation(s)
- Roberto Sierra
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland; Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Patrick Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Adriana Renzoni
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland.
| |
Collapse
|
33
|
Song S, Wood TK. Post-segregational Killing and Phage Inhibition Are Not Mediated by Cell Death Through Toxin/Antitoxin Systems. Front Microbiol 2018; 9:814. [PMID: 29922242 PMCID: PMC5996881 DOI: 10.3389/fmicb.2018.00814] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/10/2018] [Indexed: 02/03/2023] Open
Affiliation(s)
- Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|