1
|
Hickson SM, Ledger EL, Wells TJ. Emerging antimicrobial therapies for Gram-negative infections in human clinical use. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:16. [PMID: 40016340 PMCID: PMC11868545 DOI: 10.1038/s44259-025-00087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
The growing problem of multi-drug resistance (MDR) is prevalent in Gram-negative infections, and the significant decline in antibiotic development poses a critical threat to global public health. Many emerging non-antibiotic therapies have been proposed, including phage therapy, anti-virulence agents, antimicrobial peptides, plasmapheresis, and immunotherapy options. To identify the therapies most likely to be the next immediate step in treatment for MDR Gram-negative infections, this review highlights emerging therapeutics that have either been successfully used for compassionate care or are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Sarah M Hickson
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Emma L Ledger
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Wells TJ, Esposito T, Henderson IR, Labzin LI. Mechanisms of antibody-dependent enhancement of infectious disease. Nat Rev Immunol 2025; 25:6-21. [PMID: 39122820 DOI: 10.1038/s41577-024-01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/12/2024]
Abstract
Antibody-dependent enhancement (ADE) of infectious disease is a phenomenon whereby host antibodies increase the severity of an infection. It is well established in viral infections but ADE also has an underappreciated role during bacterial, fungal and parasitic infections. ADE can occur during both primary infections and re-infections with the same or a related pathogen; therefore, understanding the underlying mechanisms of ADE is critical for understanding the pathogenesis and progression of many infectious diseases. Here, we review the four distinct mechanisms by which antibodies increase disease severity during an infection. We discuss the most established mechanistic explanation for ADE, where cross-reactive, disease-enhancing antibodies bound to pathogens interact with Fc receptors, thereby enhancing pathogen entry or replication, ultimately increasing the total pathogen load. Additionally, we explore how some pathogenic antibodies can shield bacteria from complement-dependent killing, thereby enhancing bacterial survival. We interrogate the molecular mechanisms by which antibodies can amplify inflammation to drive severe disease, even in the absence of increased pathogen replication. We also examine emerging roles for autoantibodies in enhancing the pathogenesis of infectious diseases. Finally, we discuss how we can leverage these insights to improve vaccine design and future treatments for infectious diseases.
Collapse
Affiliation(s)
- Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - Tyron Esposito
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Larisa I Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Hickson SM, Hoehensteiger JK, Mayer-Coverdale J, Torres VVL, Feng W, Monteith JN, Henderson IR, McCarthy KL, Wells TJ. Antibody-Mediated Serum Resistance Protects Pseudomonas aeruginosa During Bloodstream Infections. J Infect Dis 2024; 230:e221-e229. [PMID: 38235716 PMCID: PMC11326846 DOI: 10.1093/infdis/jiad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a frequent pathogen isolated from bacterial bloodstream infection (BSI) and is associated with high mortality. To survive in the blood, P aeruginosa must resist the bactericidal action of complement (ie, serum killing). Antibodies usually promote serum killing through the classical complement pathway; however, "cloaking antibodies" (cAbs) have been described, which paradoxically protect bacteria from serum killing. The relevance of cAbs in P aeruginosa BSI is unknown. METHODS Serum and P aeruginosa were collected from a cohort of 100 patients with BSI. Isolates were tested for sensitivity to healthy control serum (HCS). cAb prevalence was determined in sera. Patient sera were mixed with HCS to determine if killing of the matched isolate was inhibited. RESULTS Overall, 36 patients had elevated titers of cAbs, and 34 isolates were sensitive to HCS killing. Fifteen patients had cAbs and HCS-sensitive isolates; of these patients, 14 had serum that protected their matched bacteria from HCS killing. Patients with cAbs were less likely to be neutropenic or have comorbidities. CONCLUSIONS cAbs are prevalent in patients with P aeruginosa BSI and allow survival of otherwise serum-sensitive bacteria in the bloodstream. Generation of cAbs may be a risk factor for the development of BSI.
Collapse
Affiliation(s)
- Sarah M Hickson
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Johanna Mayer-Coverdale
- UQ Centre for Clinical Research, The University of Queensland, Herston, Australia
- Department of Microbiology, Pathology Queensland, Brisbane, Australia
| | - Von Vergel L Torres
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Wenkang Feng
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Joshua N Monteith
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ian R Henderson
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kate L McCarthy
- Department of Microbiology, Pathology Queensland, Brisbane, Australia
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Timothy J Wells
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Pham A, Tan KKY, Ledger EL, Smith DJ, Reid DW, Burr L, Chambers DC, Wells TJ. Cloaking antibodies are prevalent in Burkholderia cepacia complex infection and their removal restores serum killing. Front Cell Infect Microbiol 2024; 14:1426773. [PMID: 39193503 PMCID: PMC11347948 DOI: 10.3389/fcimb.2024.1426773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction The Burkholderia cepacia complex encompasses a group of gram-negative opportunistic pathogens that cause chronic lung infections in people with cystic fibrosis. Distinct from other respiratory pathogens, Burkholderia causes a unique clinical disease in a subset of patients known as 'cepacia syndrome', fulminant pneumonia accompanied by bacteraemia and sepsis with a mortality rate of up to 75%. Due to the bacteraemia associated with this disease, the mechanisms that allow Burkholderia to resist the bactericidal effects of serum complement-depending killing are vital. Antibodies usually promote serum killing; however, we have described 'cloaking antibodies', specific for lipopolysaccharides that paradoxically protect serum-sensitive bacteria from complement-mediated lysis. Cloaking antibodies that protect Pseudomonas aeruginosa have been found in 24%-41% of patients with chronic lung diseases. The presence of these antibodies is also associated with worse clinical outcomes. Here, we sought to determine the relevance of cloaking antibodies in patients with Burkholderia infection. Methods Twelve Burkholderia spp. were isolated from nine pwCF and characterised for susceptibility to healthy control serum. Patient serum was analysed for the titre of the cloaking antibody. The ability of the patient serum to prevent healthy control serum (HCS) killing of its cognate isolates was determined. Results We found that several of the Burkholderia strains were shared between patients. Ten of the 12 isolates were highly susceptible to HCS killing. Four of nine (44%) patients had cloaking antibodies that protected their cognate strain from serum killing. Depleting cloaking antibodies from patient serum restored HCS killing of Burkholderia isolates. Discussion Cloaking antibodies are prevalent in patients with Burkholderia pulmonary infection and protect these strains from serum killing. Removal of cloaking antibodies via plasmapheresis, as previously described for individuals with life-threatening Pseudomonas infection, may be a useful new strategy for those with serious and life-threatening Burkholderia infection.
Collapse
Affiliation(s)
- Amy Pham
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Kellynn K. Y. Tan
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Emma L. Ledger
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel J. Smith
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- The Adult Cystic Fibrosis Centre and Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - David W. Reid
- The Adult Cystic Fibrosis Centre and Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lucy Burr
- Department of Respiratory Medicine, Mater Health, South Brisbane, QLD, Australia
- Mater Research, University of Queensland, Brisbane, QLD, Australia
| | - Daniel C. Chambers
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Timothy J. Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Miles JR, Lu P, Bai S, Aguillón-Durán GP, Rodríguez-Herrera JE, Gunn BM, Restrepo BI, Lu LL. Antigen specificity shapes antibody functions in tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597169. [PMID: 38895452 PMCID: PMC11185737 DOI: 10.1101/2024.06.03.597169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberculosis (TB) is the number one infectious disease cause of death worldwide due to an incomplete understanding of immunity. Emerging data highlight antibody functions mediated by the Fc domain as immune correlates. However, the mechanisms by which antibody functions impact the causative agent Mycobacterium tuberculosis (Mtb) are unclear. Here, we examine how antigen specificity determined by the Fab domain shapes Fc effector functions against Mtb. Using the critical structural and secreted virulence proteins Mtb cell wall and ESAT-6 & CFP-10, we observe that antigen specificity alters subclass, antibody post-translational glycosylation, and Fc effector functions in TB patients. Moreover, Mtb cell wall IgG3 enhances disease through opsonophagocytosis of extracellular Mtb . In contrast, polyclonal and a human monoclonal IgG1 we generated targeting ESAT-6 & CFP-10 inhibit intracellular Mtb . These data show that antibodies have multiple roles in TB and antigen specificity is a critical determinant of the protective and pathogenic capacity.
Collapse
|
6
|
Rodriguez Rodriguez ER, Nordvang RT, Petersson M, Rendsvig JKH, Arendrup EW, Fernández Quintero ML, Jenkins TP, Laustsen AH, Thrane SW. Fit-for-purpose heterodivalent single-domain antibody for gastrointestinal targeting of toxin B from Clostridium difficile. Protein Sci 2024; 33:e5035. [PMID: 38923049 PMCID: PMC11201815 DOI: 10.1002/pro.5035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Single-domain antibodies (sdAbs), such as VHHs, are increasingly being developed for gastrointestinal (GI) applications against pathogens to strengthen gut health. However, what constitutes a suitable developability profile for applying these proteins in a gastrointestinal setting remains poorly explored. Here, we describe an in vitro methodology for the identification of sdAb derivatives, more specifically divalent VHH constructs, that display extraordinary developability properties for oral delivery and functionality in the GI environment. We showcase this by developing a heterodivalent VHH construct that cross-inhibits the toxic activity of the glycosyltransferase domains (GTDs) from three different toxinotypes of cytotoxin B (TcdB) from lineages of Clostridium difficile. We show that the VHH construct possesses high stability and binding activity under gastric conditions, in the presence of bile salts, and at high temperatures. We suggest that the incorporation of early developability assessment could significantly aid in the efficient discovery of VHHs and related constructs fit for oral delivery and GI applications.
Collapse
Affiliation(s)
| | | | - Marcus Petersson
- Bactolife A/SCopenhagen EastDenmark
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | | | | | | - Timothy P. Jenkins
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Andreas H. Laustsen
- Bactolife A/SCopenhagen EastDenmark
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | |
Collapse
|
7
|
Sørensen CV, Fernández J, Adams AC, Wildenauer HHK, Schoffelen S, Ledsgaard L, Pucca MB, Fiebig M, Cerni FA, Tulika T, Voldborg BG, Karatt-Vellatt A, Morth JP, Ljungars A, Grav LM, Lomonte B, Laustsen AH. Antibody-dependent enhancement of toxicity of myotoxin II from Bothrops asper. Nat Commun 2024; 15:173. [PMID: 38228619 PMCID: PMC10791742 DOI: 10.1038/s41467-023-42624-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 01/18/2024] Open
Abstract
Improved therapies are needed against snakebite envenoming, which kills and permanently disables thousands of people each year. Recently developed neutralizing monoclonal antibodies against several snake toxins have shown promise in preclinical rodent models. Here, we use phage display technology to discover a human monoclonal antibody and show that this antibody causes antibody-dependent enhancement of toxicity (ADET) of myotoxin II from the venomous pit viper, Bothrops asper, in a mouse model of envenoming that mimics a snakebite. While clinical ADET related to snake venom has not yet been reported in humans, this report of ADET of a toxin from the animal kingdom highlights the necessity of assessing even well-known antibody formats in representative preclinical models to evaluate their therapeutic utility against toxins or venoms. This is essential to avoid potential deleterious effects as exemplified in the present study.
Collapse
Affiliation(s)
- Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Anna Christina Adams
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Helen H K Wildenauer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Sanne Schoffelen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, BR-69310-000, Brazil
| | - Michael Fiebig
- Absolute Antibody Ltd, Wilton Centre, Redcar, Cleveland, TS10 4RF, UK
| | - Felipe A Cerni
- Postgraduate Program in Tropical Medicine, University of the State of Amazonas, Manaus, BR-69040-000, Brazil
| | - Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Bjørn G Voldborg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | | | - J Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Lise M Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San Jose, Costa Rica.
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Olivera-Ardid S, Bello-Gil D, Perez-Cruz M, Costa C, Camoez M, Dominguez MA, Ferrero-Alves Y, Vaquero JM, Khasbiullina N, Shilova NV, Bovin NV, Mañez R. Removal of natural anti-αGal antibodies elicits protective immunity against Gram-negative bacterial infections. Front Immunol 2023; 14:1232924. [PMID: 37662909 PMCID: PMC10471972 DOI: 10.3389/fimmu.2023.1232924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Antibody-dependent enhancement (ADE) of bacterial infections occurs when blocking or inhibitory antibodies facilitate the infectivity of pathogens. In humans, antibodies involved in ADE of bacterial infections may include those naturally produced against Galα1-3Galβ1-4GlcNAcβ (αGal). Here, we investigate whether eliminating circulating anti-αGal antibodies using a soluble αGal glycopolymer confers protection against Gram-negative bacterial infections. We demonstrated that the in vivo intra-corporeal removal of anti-αGal antibodies in α1,3-galactosyltransferase knockout (GalT-KO) mice was associated with protection against mortality from Gram-negative sepsis after cecal ligation and puncture (CLP). The improved survival of GalT-KO mice was associated with an increased killing capacity of serum against Escherichia coli isolated after CLP and reduced binding of IgG1 and IgG3 to the bacteria. Additionally, inhibition of anti-αGal antibodies from human serum in vitro increases the bactericidal killing of E. coli O86:B7 and multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. In the case of E. coli O86:B7, there was also an improvement in bacteria opsonophagocytosis by macrophages. Both lytic mechanisms were related to a decreased binding of IgG2 to the bacteria. Our results show that protective immunity against Gram-negative bacterial pathogens can be elicited, and infectious diseases caused by these bacteria can be prevented by removing natural anti-αGal antibodies.
Collapse
Affiliation(s)
- Sara Olivera-Ardid
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Daniel Bello-Gil
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Magdiel Perez-Cruz
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Cristina Costa
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Mariana Camoez
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Microbiology Department, Bellvitge University Hospital, University of Barcelona, Hospitalet de Llobregat, Spain
| | - M. Angeles Dominguez
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Microbiology Department, Bellvitge University Hospital, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Yara Ferrero-Alves
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Jose Miguel Vaquero
- Flow Cytometry Platform, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Nailya Khasbiullina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda V. Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nicolai V. Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rafael Mañez
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Intensive Care Department, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| |
Collapse
|
9
|
Yang P, Yang L, Cao K, Hu Q, Hu Y, Shi J, Zhao D, Yu X. Novel virulence factor Cba induces antibody-dependent enhancement (ADE) of Streptococcus suis Serotype 9 infection in a mouse model. Front Cell Infect Microbiol 2023; 13:1027419. [PMID: 36896190 PMCID: PMC9989217 DOI: 10.3389/fcimb.2023.1027419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Streptococcus suis (SS) is a zoonotic pathogen that affects the health of humans and the development of the pig industry. The SS Cba protein is a collagen adhesin, and a few of its homologs are related to the enhancement of bacterial adhesion. We compared the phenotypes of SS9-P10, SS9-P10 cba knockout strains and its complementary strains in vitro and in vivo and found that knocking out the cba gene did not affect the growth characteristics of the strain, but it significantly reduced the ability of SS to form biofilms, adhesion to host cells, phagocytic resistance to macrophages and attenuated virulence in a mouse infection model. These results indicated that Cba was a virulence related factor of SS9. In addition, Mice immunized with the Cba protein had higher mortality and more serious organ lesions after challenge, and the same was observed in passive immunization experiments. This phenomenon is similar to the antibody-dependent enhancement of infection by bacteria such as Acinetobacter baumannii and Streptococcus pneumoniae. To our knowledge, this is the first demonstration of antibody-dependent enhancement of SS, and these observations highlight the complexity of antibody-based therapy for SS infection.
Collapse
|
10
|
Gartlan C, Tipton T, Salguero FJ, Sattentau Q, Gorringe A, Carroll MW. Vaccine-Associated Enhanced Disease and Pathogenic Human Coronaviruses. Front Immunol 2022; 13:882972. [PMID: 35444667 PMCID: PMC9014240 DOI: 10.3389/fimmu.2022.882972] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 01/14/2023] Open
Abstract
Vaccine-associated enhanced disease (VAED) is a difficult phenomenon to define and can be confused with vaccine failure. Using studies on respiratory syncytial virus (RSV) vaccination and dengue virus infection, we highlight known and theoretical mechanisms of VAED, including antibody-dependent enhancement (ADE), antibody-enhanced disease (AED) and Th2-mediated pathology. We also critically review the literature surrounding this phenomenon in pathogenic human coronaviruses, including MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Poor quality histopathological data and a lack of consistency in defining severe pathology and VAED in preclinical studies of MERS-CoV and SARS-CoV-1 vaccines in particular make it difficult to interrogate potential cases of VAED. Fortuitously, there have been only few reports of mild VAED in SARS-CoV-2 vaccination in preclinical models and no observations in their clinical use. We describe the problem areas and discuss methods to improve the characterisation of VAED in the future.
Collapse
Affiliation(s)
- Cillian Gartlan
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Francisco J Salguero
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Quentin Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andrew Gorringe
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Miles W Carroll
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Anti-LPS IgA and IgG Can Inhibit Serum Killing of Pseudomonas aeruginosa in Patients with Cystic Fibrosis. Infect Immun 2021; 89:e0041221. [PMID: 34460286 DOI: 10.1128/iai.00412-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa is one of the principal pathogens implicated in respiratory infections of patients with cystic fibrosis (CF) and non-CF bronchiectasis. Previously, we demonstrated that impaired serum-mediated killing of P. aeruginosa was associated with increased severity of respiratory infections in patients with non-CF bronchiectasis. This inhibition was mediated by high titers of O-antigen-specific IgG2 antibodies that cloak the surface of the bacteria, blocking access to the membrane. Infection-related symptomatology was ameliorated in patients by using plasmapheresis to remove the offending antibodies. To determine if these inhibitory "cloaking antibodies" were prevalent in patients with CF, we investigated 70 serum samples from patients with P. aeruginosa infection and 5 from those without P. aeruginosa infection. Of these patients, 32% had serum that inhibited the ability of healthy control serum to kill P. aeruginosa. Here, we demonstrate that this inhibition of killing requires O-antigen expression. Furthermore, we reveal that while IgG alone can inhibit the activity of healthy control serum, O-antigen-specific IgA in patient sera can also inhibit serum-killing. We found that antibody affinity, not just titer, was also important in the inhibition of serum-mediated killing. These studies provide novel insight into cloaking antibodies in human infection and may provide further options in CF and other diseases for treatment of recalcitrant P. aeruginosa infections.
Collapse
|
12
|
Carlier Y, Truyens C, Muraille E. Is Antibody-Dependent Enhancement of Trypanosoma cruzi Infection Contributing to Congenital/Neonatal Chagas Disease? Front Immunol 2021; 12:723516. [PMID: 34566981 PMCID: PMC8461104 DOI: 10.3389/fimmu.2021.723516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
The newborns of women infected with the parasite Trypanosoma cruzi (the agent of Chagas disease) can be infected either before birth (congenitally), or after birth (as e.g., by vector route). Congenital Chagas disease can induce high levels of neonatal morbidity and mortality. Parasite-infected pregnant women transmit antibodies to their fetus. Antibodies, by opsonizing parasites, can promote phagocytosis and killing of T. cruzi by cells expressing FcγR, on the mandatory condition that such cells are sufficiently activated in an inflammatory context. Antibody-dependent enhancement (ADE) is a mechanism well described in viral infections, by which antibodies enhance entry of infectious agents into host cells by exploiting the phagocytic FcγR pathway. Previously reported Chagas disease studies highlighted a severe reduction of the maternal-fetal/neonatal inflammatory context in parasite-transmitting pregnant women and their congenitally infected newborns. Otherwise, experimental observations brought to light ADE of T. cruzi infection (involving FcγR) in mouse pups displaying maternally transferred antibodies, out of an inflammatory context. Herein, based on such data, we discuss the previously unconsidered possibility of a role of ADE in the trans-placental parasite transmission, and/or the development of severe and mortal clinical forms of congenital/neonatal Chagas disease in newborns of T. cruzi-infected mothers.
Collapse
Affiliation(s)
- Yves Carlier
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Carine Truyens
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
13
|
Kulkarni HS, Lease ED. Can we decloak how infections drive complications after lung transplantation? J Heart Lung Transplant 2021; 40:960-962. [PMID: 34176725 PMCID: PMC8405575 DOI: 10.1016/j.healun.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Affiliation(s)
- Hrishikesh S Kulkarni
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St Louis, Missouri.
| | - Erika D Lease
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
14
|
Divithotawela C, Pham A, Bell PT, Ledger EL, Tan M, Yerkovich S, Grant M, Hopkins PM, Wells TJ, Chambers DC. Inferior outcomes in lung transplant recipients with serum Pseudomonas aeruginosa specific cloaking antibodies. J Heart Lung Transplant 2021; 40:951-959. [PMID: 34226118 DOI: 10.1016/j.healun.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Chronic Lung Allograft Dysfunction (CLAD) limits long-term survival following lung transplantation. Colonization of the allograft by Pseudomonas aeruginosa is associated with an increased risk of CLAD and inferior overall survival. Recent experimental data suggests that 'cloaking' antibodies targeting the O-antigen of the P. aeruginosa lipopolysaccharide cell wall (cAbs) attenuate complement-mediated bacteriolysis in suppurative lung disease. METHODS In this retrospective cohort analysis of 123 lung transplant recipients, we evaluated the prevalence, risk factors and clinical impact of serum cAbs following transplantation. RESULTS cAbs were detected in the sera of 40.7% of lung transplant recipients. Cystic fibrosis and younger age were associated with increased risk of serum cAbs (CF diagnosis, OR 6.62, 95% CI 2.83-15.46, p < .001; age at transplant, OR 0.69, 95% CI 0.59-0.81, p < .001). Serum cAbs and CMV mismatch were both independently associated with increased risk of CLAD (cAb, HR 4.34, 95% CI 1.91-9.83, p < .001; CMV mismatch (D+/R-), HR 5.40, 95% CI 2.36-12.32, p < .001) and all-cause mortality (cAb, HR 2.75, 95% CI 1.27-5.95, p = .010, CMV mismatch, HR 3.53, 95% CI 1.62-7.70, p = .002) in multivariable regression analyses. CONCLUSIONS Taken together, these findings suggest a potential role for 'cloaking' antibodies targeting P. aeruginosa LPS O-antigen in the immunopathogenesis of CLAD.
Collapse
Affiliation(s)
| | - Amy Pham
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia
| | - Peter T Bell
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia
| | - Emma L Ledger
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia
| | - Maxine Tan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia
| | | | - Michelle Grant
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia
| | - Peter M Hopkins
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia
| | - Timothy J Wells
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Daniel C Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|