1
|
Azumah JD, Koroma SG, Sraku IK, Afrane YA, Sagoe KWC, Adusei-Poku MA. Impact of hepatitis B virus infection in patients with plasmodium parasites in selected health facilities in Accra, Ghana. BMC Infect Dis 2025; 25:642. [PMID: 40312291 PMCID: PMC12044864 DOI: 10.1186/s12879-025-11029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND The severity of malaria is often exacerbated by concurrent health issues, including coinfections with hepatitis B virus (HBV). Recent research suggests that the shared pathophysiological characteristics of HBV and malaria influence patient outcomes. This study aimed to determine the prevalence of HBV among patients infected with Plasmodium species and to evaluate the associated risk factors and clinical outcomes in individuals attending various health facilities. METHOD A cross-sectional study was conducted at Korle-Bu, Mamprobi, and Ashaiman Polyclinics in the Greater Accra Region. Patients presenting with malaria-like symptoms at the outpatient department (OPD) were recruited. Participants who tested positive for malaria via a rapid diagnostic test (RDT) and provided written consent were included. Demographic and clinical data were obtained through questionnaires. Blood samples (4 mL) were collected into a serum separator and EDTA tubes. The HBV surface antigen (HBsAg) and malaria parasites were detected via an HBV rapid diagnostic test and microscopy, respectively. Polymerase chain reaction (PCR) was also used to confirm the presence of the Plasmodium parasite. Liver function and hematological parameters were evaluated via a chemistry analyser and hematology analyser, respectively. RESULTS In total, 174 participants were recruited, comprising 99 (56.90%) from Korle-Bu Polyclinic, 50 (28.74%) from Mamprobi Polyclinic, and 25 (14.37%) from Ashaiman Polyclinic. Malaria diagnostics revealed that 52.87% (92/174) of the samples tested positive for malaria parasite via microscopy, and 73.56% (128/174) of the samples tested positive via PCR. The majority of participants were females (56.89%) and were predominantly aged 18-30 years. Common symptoms included headache, loss of appetite, and fever. HBV and malaria coinfection was observed in 9.19% of the patients. Increased alanine transaminase (ALT) levels and basophil counts were significantly associated with HBV and malaria coinfection (p = 0.029). CONCLUSION This study revealed a slightly greater prevalence of HBV and malaria coinfection than previously reported. These findings highlight the importance of incorporating routine coinfection diagnostics and improving HBV vaccination efforts to improve patient outcomes.
Collapse
Affiliation(s)
- Judith Dzifa Azumah
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Shekou Gibriel Koroma
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Isaac Kwame Sraku
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | | | | |
Collapse
|
2
|
Ochwedo KO, Wang X, Céspedes N, Bentil RE, Wild R, Hernandez E, Hernandez A, Kaylor HL, Debebe Y, Datta J, Robert MA, Riffell JA, Lewis EE, Luckhart S. Regulation of diel locomotor activity and retinal responses of Anopheles stephensi by ingested histamine and serotonin is temperature- and infection-dependent. PLoS Pathog 2025; 21:e1013139. [PMID: 40294029 PMCID: PMC12058162 DOI: 10.1371/journal.ppat.1013139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 05/07/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Disrupting behaviors linked to movement of primary mosquito vectors, such as diel locomotor activity and visual sensitivity, is a novel and plausible malaria control intervention. Diel locomotor activity is an output of arthropod circadian activity and is influenced by factors such as light, temperature, and infection status. The biogenic amines histamine and serotonin (5-HT) are ingested with blood and differ between healthy hosts and those with severe malaria. They regulate malaria parasite infection in Anopheles stephensi, but the degree to which aging, temperature, and infection interact with ingested biogenic amines to influence mosquito behavior was unknown prior to these studies. We provisioned A. stephensi with histamine and 5-HT at healthy- and malaria-associated levels to examine diel locomotor activity of uninfected A. stephensi across lifespan, at temperatures that A. stephensi could encounter within its range, and on Plasmodium yoelii-infected mosquitoes during sporogony. We further evaluated treatment effects on retinal sensitivity of uninfected mosquitoes during light and dark periods typically associated with low and high activity for this crepuscular species. Treatment with malaria-associated levels of histamine and 5-HT significantly increased the locomotor activity of A. stephensi across lifespan and enhanced retinal sensitivity to a broad spectrum of wavelengths at the onset of light. This treatment in combination with higher temperatures also increased activity levels and broadened the peak hours of activity of A. stephensi. Notably, these effects were infection dependent. Together, our data suggest that histaminergic and serotonergic signaling within the gut-brain axis of A. stephensi could be targeted to alter mosquito activity and visual sensitivity as the basis for novel transmission-blocking strategies for malaria control.
Collapse
Affiliation(s)
- Kevin O. Ochwedo
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Xiaodi Wang
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nora Céspedes
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Ronald E. Bentil
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Ryan Wild
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Emily Hernandez
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Amy Hernandez
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Yared Debebe
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Jyotishka Datta
- Department of Statistics and Center of Biostatics and Health Data Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael A. Robert
- Department of Mathematics, Center for the Mathematics of Biosystems; and Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens (CeZAP), Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
3
|
Céspedes N, Tsolis RM, Piliponsky AM, Luckhart S. The type 2 immune response in gut homeostasis and parasite transmission in malaria. Trends Parasitol 2025; 41:38-51. [PMID: 39658487 DOI: 10.1016/j.pt.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Malaria predisposes to concomitant bacteremia, resulting in increased mortality risk. Previous studies indicated that malaria causes structural changes in the intestine, induces tolerogenic immune responses, inhibits neutrophil recruitment, suppresses innate synthesis of IFN-γ, dysregulates mast cells (MCs) and basophils, and induces Th2-type immune responses. These can reduce parasite control while increasing enteropathogenic dissemination. Moreover, there is growing evidence that Th2 immunity, while protecting the host from overwhelming inflammation, may also contribute to increased parasite transmission. This review explores the roles of the regulatory immune response in bacterial coinfections and parasite transmission in malaria.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| | - Adrian M Piliponsky
- Department of Pediatrics and Department of Pathology, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA; Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
4
|
Kevin TDA, Cedric Y, Nadia NAC, Sandra TNJ, Azizi MA, Sidiki NNA, Guy-Armand GN, Christian MN, Géraldine ESE, Roméo TT, Payne VK, Gustave LL. Antimalarial Efficacy of Ethanol Extract of Bridelia micrantha Stem Bark against Plasmodium berghei-Infected Mice. J Parasitol Res 2024; 2024:8821019. [PMID: 38566916 PMCID: PMC10985642 DOI: 10.1155/2024/8821019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background The spread of drug resistance is a significant issue, particularly in endemic countries with limited resources. The aim of this study was to evaluate antimalarial and antioxidant activity of B. micrantha in order to justify its use in traditional medicine. Methods Evaluation of the in vivo antimalarial activity of B. micrantha was carried out according to the model of the suppressive and curative test of Peters' over 4 days in infected Swiss albino mice. Antioxidant parameters and stress were measured after intraperitoneal administration of 1 × 107 infected red blood cells. Results At doses of 150 mg/kg, 300 mg/kg, and 600 mg/kg, administration of B. micrantha substantially produced suppression of P. berghei infection by 67.75%, 73.46%, and 78.99%, respectively, while 84.64% of the untreated group (1% DMSO) had suppression from chloroquine. The curative test significantly decreased the levels of parasitaemia and death in the treated groups. Furthermore, after B. micrantha extract was given to infected mice, a noteworthy increase in total protein, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) was observed. On the other hand, hepatic catalase (CAT) and superoxide dismutase (SOD) productions were considerably greater than that of the healthy control. Mice had considerably lower levels of nonenzymatic antioxidant markers such as glutathione, NO, and MDA showing that the liver was protected. Conclusion The infected groups responded favorably to the ethanol extract of B. micrantha. This result justifies investigation for its use in Cameroon.
Collapse
Affiliation(s)
- Tako Djimefo Alex Kevin
- Department of Animal Organisms, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
| | - Yamssi Cedric
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Bamenda, P.O. Box 39, Bambili, Bamenda, Cameroon
| | - Noumedem Anangmo Christelle Nadia
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of Microbiology, Hematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, P.O. Box 96, Dschang, Cameroon
| | - Tientcheu Noutong Jemimah Sandra
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Mounvera Abdel Azizi
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Ngouyamsa Nsapkain Aboubakar Sidiki
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Gamago Nkadeu Guy-Armand
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Mbohou Nchetnkou Christian
- Department of Animal Organisms, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Essangui Same Estelle Géraldine
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 02701, Douala, Cameroon
| | - Tankoua-Tchounda Roméo
- Department of Animal Organisms, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Vincent Khan Payne
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Lehman Léopold Gustave
- Department of Animal Organisms, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| |
Collapse
|
5
|
Donnelly EL, Céspedes N, Hansten G, Wagers D, Briggs AM, Lowder C, Schauer J, Haapanen L, Van de Water J, Luckhart S. The Basophil IL-18 Receptor Precisely Regulates the Host Immune Response and Malaria-Induced Intestinal Permeability and Alters Parasite Transmission to Mosquitoes without Effect on Gametocytemia. Immunohorizons 2022; 6:630-641. [PMID: 35985797 PMCID: PMC9977167 DOI: 10.4049/immunohorizons.2200057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/03/2023] Open
Abstract
We have recently demonstrated that basophils are protective against intestinal permeability during malaria and contribute to reduced parasite transmission to mosquitoes. Given that IL-18 is an early cytokine/alarmin in malaria and has been shown to activate basophils, we sought to determine the role of the basophil IL-18R in this protective phenotype. To address this, we infected control [IL18r flox/flox or basoIL-18R (+)] mice and mice with basophils lacking the IL-18R [IL18r flox/flox × Basoph8 or basoIL-18R (-)] with Plasmodium yoelii yoelii 17XNL, a nonlethal strain of mouse malaria. Postinfection (PI), intestinal permeability, ileal mastocytosis, bacteremia, and levels of ileal and plasma cytokines and chemokines were measured through 10 d PI. BasoIL-18R (-) mice exhibited greater intestinal permeability relative to basoIL-18R (+) mice, along with increased plasma levels of proinflammatory cytokines at a single time point PI, day 4 PI, a pattern not observed in basoIL-18R (+) mice. Surprisingly, mosquitoes fed on basoIL-18R (-) mice became infected less frequently than mosquitoes fed on basoIL-18R (+) mice, with no difference in gametocytemia, a pattern that was distinct from that observed previously with basophil-depleted mice. These findings suggest that early basophil-dependent protection of the intestinal barrier in malaria is mediated by IL-18, and that basophil IL-18R-dependent signaling differentially regulates the inflammatory response to infection and parasite transmission.
Collapse
Affiliation(s)
- Erinn L Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Gretchen Hansten
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Delaney Wagers
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Anna M Briggs
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Casey Lowder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Joseph Schauer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA
| | - Lori Haapanen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID; .,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| |
Collapse
|
6
|
Donnelly EL, Céspedes N, Hansten G, Wagers D, Briggs AM, Lowder C, Schauer J, Garrison SM, Haapanen L, Van de Water J, Luckhart S. Basophil Depletion Alters Host Immunity, Intestinal Permeability, and Mammalian Host-to-Mosquito Transmission in Malaria. Immunohorizons 2022; 6:581-599. [PMID: 35970557 PMCID: PMC9977168 DOI: 10.4049/immunohorizons.2200055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/03/2023] Open
Abstract
Malaria-induced bacteremia has been shown to result from intestinal mast cell (MC) activation. The appearance of MCs in the ileum and increased intestinal permeability to enteric bacteria are preceded by an early Th2-biased host immune response to infection, characterized by the appearance of IL-4, IL-10, mast cell protease (Mcpt)1 and Mcpt4, and increased circulating basophils and eosinophils. Given the functional similarities of basophils and MCs in the context of allergic inflammation and the capacity of basophils to produce large amounts of IL-4, we sought to define the role of basophils in increased intestinal permeability, in MC influx, and in the development of bacteremia in the context of malaria. Upon infection with nonlethal Plasmodium yoelii yoelii 17XNL, Basoph8 × ROSA-DTα mice or baso (-) mice that lack basophils exhibited increased intestinal permeability and increased ileal MC numbers, without any increase in bacterial 16S ribosomal DNA copy numbers in the blood, relative to baso (+) mice. Analysis of cytokines, chemokines, and MC-associated factors in the ileum revealed significantly increased TNF-α and IL-13 at day 6 postinfection in baso (-) mice compared with baso (+) mice. Moreover, network analysis of significantly correlated host immune factors revealed profound differences between baso (-) and baso (+) mice following infection in both systemic and ileal responses to parasites and translocated bacteria. Finally, basophil depletion was associated with significantly increased gametocytemia and parasite transmission to Anopheles mosquitoes, suggesting that basophils play a previously undescribed role in controlling gametocytemia and, in turn, mammalian host-to-mosquito parasite transmission.
Collapse
Affiliation(s)
- Erinn L Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Gretchen Hansten
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Delaney Wagers
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Anna M Briggs
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Casey Lowder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Joseph Schauer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Sarah M Garrison
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Lori Haapanen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID; .,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| |
Collapse
|
7
|
Thiam F, Diop G, Coulonges C, Derbois C, Mbengue B, Thiam A, Nguer CM, Zagury JF, Deleuze JF, Dieye A. G6PD and HBB polymorphisms in the Senegalese population: prevalence, correlation with clinical malaria. PeerJ 2022; 10:e13487. [PMID: 35811813 PMCID: PMC9266585 DOI: 10.7717/peerj.13487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/03/2022] [Indexed: 01/24/2023] Open
Abstract
Background Host genetic factors contribute to the variability of malaria phenotypes and can allow a better understanding of mechanisms involved in susceptibility and/or resistance to Plasmodium falciparum infection outcomes. Several genetic polymorphisms were reported to be prevalent among populations living in tropical malaria-endemic regions and induce protection against malaria. The present study aims to investigate the prevalence of HBB (chr11) and G6PD (chrX) deficiencies polymorphisms among Senegalese populations and their associations with the risk for severe Plasmodium falciparum malaria occurrence. Methods We performed a retrospective study with 437 samples, 323 patients recruited in hospitals located in three different endemic areas where malaria episodes were confirmed and 114 free malaria controls. The patients enrolled were classified into two groups: severe malaria (SM) (153 patients) and uncomplicated malaria (UM) (170 patients). PCR and DNA sequencing assessed host genetic polymorphisms in HBB and G6PD. Using a multivariate regression and additive model, estimates of the impact of human HBB and G6PD polymorphisms on malaria incidence were performed. Results Six frequent SNPs with minor allele frequencies (MAF) > 3% were detected in the HBB gene (rs7946748, rs7480526, rs10768683, rs35209591, HbS (rs334) and rs713040) and two in the G6PD gene (rs762515 and rs1050828 (G6PD-202 G > A). Analysis of selected HbS polymorphism showed significant association with protective effect against severe malaria with a significant p-value = 0.033 (OR 0.38, 95% CI [0.16-0.91]) for SM vs. UM comparison. Surprisingly, our study did not identify the protective effect of variant HbC polymorphism against severe malaria. Finally, we found some of the polymorphisms, like HbS (rs334), are associated with age and biological parameters like eosinophils, basophils, lymphocytes etc. Conclusion Our data report HBB and G6PD polymorphisms in the Senegalese population and their correlation with severe/mild malaria and outcome. The G6PD and HBB deficiencies are widespread in West Africa endemic malaria regions such as The Gambia, Mali, and Burkina Faso. The study shows the critical role of genetic factors in malaria outcomes. Indeed, genetic markers could be good tools for malaria endemicity prognosis.
Collapse
Affiliation(s)
- Fatou Thiam
- Groupe de Recherche Biotechnologie Appliquée et Bioprocédés Environnementaux (GRBA-BE), Laboratoire Eau, Energie, Environnement et Procédés Industriels (LE3PI), Département de Génie Chimique et Biologie Appliquée, Ecole Supérieure Polytechnique, Université Cheikh Anta DIOP de Dakar, Dakar Fann, Dakar, Sénégal
| | - Gora Diop
- Unité Postulante de Biologie Génétique, Génomique et Bio-informatique (G2B), Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP, Avenue Cheikh Anta DIOP, Dakar Fann, Dakar, Sénégal,Pole d’Immunophysiopathologie & Maladies Infectieuses (IMI), Institut Pasteur de Dakar, Dakar, Sénégal
| | - Cedric Coulonges
- Equipe GBA «Génomique, Bioinformatique & Applications », Conservatoire National des Arts et Métiers, Paris, France
| | - Céline Derbois
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Babacar Mbengue
- Service d’Immunologie, Faculté de Médecine, de Pharmacie et d’Odontostomatologie, Université Cheikh Anta DIOP, Dakar, Sénégal
| | - Alassane Thiam
- Pole d’Immunophysiopathologie & Maladies Infectieuses (IMI), Institut Pasteur de Dakar, Dakar, Sénégal
| | - Cheikh Momar Nguer
- Groupe de Recherche Biotechnologie Appliquée et Bioprocédés Environnementaux (GRBA-BE), Laboratoire Eau, Energie, Environnement et Procédés Industriels (LE3PI), Département de Génie Chimique et Biologie Appliquée, Ecole Supérieure Polytechnique, Université Cheikh Anta DIOP de Dakar, Dakar Fann, Dakar, Sénégal
| | - Jean Francois Zagury
- Equipe GBA «Génomique, Bioinformatique & Applications », Conservatoire National des Arts et Métiers, Paris, France
| | - Jean-Francois Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Alioune Dieye
- Service d’Immunologie, Faculté de Médecine, de Pharmacie et d’Odontostomatologie, Université Cheikh Anta DIOP, Dakar, Sénégal
| |
Collapse
|
8
|
Lagunas-Rangel FA. Sequence Analysis and Comparison of TCTP Proteins from Human Protozoan Parasites. Acta Parasitol 2022; 67:1024-1031. [PMID: 35138574 PMCID: PMC9165267 DOI: 10.1007/s11686-022-00521-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Purpose Translational controlled tumor protein (TCTP) is a functionally important protein in most eukaryotes because it participates in a wide variety of processes, the most representative being proliferation, differentiation, histamine release, cell death, protein synthesis and response to stress conditions. In the present work, we analyze the sequence, structure and phylogeny of TCTP orthologs in a group of human parasitic protozoan species. Methods The complete sequences of TCTP orthologs in protozoan parasites were identified with the NCBI BLAST tool in the database of the EuPathDB Bioinformatics Resource Center. The sequences were aligned and important regions of the protein were identified, and later phylogenetic trees and 3D models were built with different bioinformatic tools. Results Our results show evolutionarily and structurally conserved sites that could be exploited to create new therapeutic strategies given the increase in the number of strains resistant to current drugs. Conclusion TCTP orthologs in protozoan parasites have been little studied but have been shown to be important in parasite growth, proliferation, reproduction, and response to changes in the environment. For all this, TCTP can be considered as a possible therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s11686-022-00521-9.
Collapse
|
9
|
The Potential Role of Gymnema inodorum Leaf Extract Treatment in Hematological Parameters in Mice Infected with Plasmodium berghei. J Trop Med 2021; 2021:9989862. [PMID: 34257672 PMCID: PMC8260294 DOI: 10.1155/2021/9989862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a significant cause of death in tropical and subtropical regions by serious complications with hematological abnormalities consistent with high parasitemia. Hence, this study aimed to determine the efficacy of the Gymnema inodorum leaf extract (GIE) on hematological alteration in Plasmodium berghei infection in mice. Groups of ICR mice were infected intraperitoneally with parasitized red blood cells of P. berghei ANKA (PbANKA). They were administered orally by gavage of 100, 250, and 500 mg/kg of GIE for 4 consecutive days. Healthy and untreated groups were given distilled water, while 10 mg/kg of chloroquine was treated as the positive control. Hematological parameters including RBC count, hemoglobin (Hb), hematocrit (Hct), mean corpuscular volume (MCV), mean cell hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), RBC distribution width (RDW), white blood cell (WBC) count, and WBC differential count were measured. The results showed that significant decreases of RBC count, Hb, Hct, MCV, MCH, MCHC, and reticulocytes were observed in the untreated group, while RDW was significantly increased compared with the healthy control. Furthermore, the WBC, neutrophil, monocyte, basophil, and eosinophil of untreated mice increased significantly, while the lymphocyte was significantly decreased compared with the healthy control. Interestingly, GIE normalized the hematological alteration induced by PbANKA infection in GIE-treated groups compared with healthy and untreated groups. The highest efficacy of GIE was observed at a dose of 500 mg/kg. Our results confirmed that GIE presented the potential role in the treatment of hematological alteration during malaria infection.
Collapse
|
10
|
Nonlethal Plasmodium yoelii Infection Drives Complex Patterns of Th2-Type Host Immunity and Mast Cell-Dependent Bacteremia. Infect Immun 2020; 88:IAI.00427-20. [PMID: 32958528 PMCID: PMC7671899 DOI: 10.1128/iai.00427-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. The anti-inflammatory cytokines (interleukin-4 [IL-4], IL-6, and IL-10) and MCP-1/CCL2 were detected early after P. yoeliiyoelii 17XNL infection. This was followed by the appearance of IL-9 and IL-13, cytokines known for their roles in mast cell activation and growth-enhancing activity as well as IgE production. Later increases in circulating IgE, which can induce mast cell degranulation, as well as Mcpt-1 and Mcpt-4, were observed concurrently with bacteremia and increased intestinal permeability. These results suggest that P. yoeliiyoelii 17XNL infection induces the production of early cytokines that activate mast cells and drive IgE production, followed by elevated IgE, IL-9, and IL-13 that maintain and enhance mast cell activation while disrupting the protease/antiprotease balance in the intestine, contributing to epithelial damage and increased permeability.
Collapse
|
11
|
Sabbagh A, Sonon P, Sadissou I, Mendes-Junior CT, Garcia A, Donadi EA, Courtin D. The role of HLA-G in parasitic diseases. HLA 2018; 91:255-270. [PMID: 29368453 DOI: 10.1111/tan.13196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Little attention has been devoted to the role of HLA-G gene and molecule on parasitic disorders, and the available studies have focused on malaria, African and American trypanosomiasis, leishmaniosis, toxoplasmosis and echinococcosis. After reporting a brief description regarding the role of the cells of innate and adaptive immune system against parasites, we reviewed the major features of the HLA-G gene and molecule and the role of HLA-G on the major cells of immune system. Increased levels of soluble HLA-G (sHLA-G) have been observed in patients presenting toxoplasmosis and in the active phase of echinococcosis. In addition, increased sHLA-G has also been associated with increased susceptibility to malaria and increased susceptibility to develop human African trypanosomiasis (HAT). In contrast, decreased membrane-bound HLA-G has been reported in placenta of patients infected with Plasmodium falciparum and in heart and colon of patients presenting Chagas disease. The 3' untranslated region of the HLA-G gene has been the main focus of studies on malaria, HAT and Chagas disease, exhibiting distinct patterns of associations. Considering that HLA-G is an immune checkpoint molecule, inhibiting the activity of several cells of the immune system, the excessive neoexpression and the increased sHLA-G levels together with the decreased constitutive tissue expression of membrane-bound HLA-G may be detrimental to the host infected with parasite agents.
Collapse
Affiliation(s)
- A Sabbagh
- UMR 216 MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - P Sonon
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - I Sadissou
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - C T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - A Garcia
- UMR 216 MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Bénin
| | - E A Donadi
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - D Courtin
- UMR 216 MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| |
Collapse
|
12
|
Pinkaew D, Fujise K. Fortilin: A Potential Target for the Prevention and Treatment of Human Diseases. Adv Clin Chem 2017; 82:265-300. [PMID: 28939212 DOI: 10.1016/bs.acc.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fortilin is a highly conserved 172-amino-acid polypeptide found in the cytosol, nucleus, mitochondria, extracellular space, and circulating blood. It is a multifunctional protein that protects cells against apoptosis, promotes cell growth and cell cycle progression, binds calcium (Ca2+) and has antipathogen activities. Its role in the pathogenesis of human and animal diseases is also diverse. Fortilin facilitates the development of atherosclerosis, contributes to both systemic and pulmonary arterial hypertension, participates in the development of cancers, and worsens diabetic nephropathy. It is important for the adaptive expansion of pancreatic β-cells in response to obesity and increased insulin requirement, for the regeneration of liver after hepatectomy, and for protection of the liver against alcohol- and ER stress-induced injury. Fortilin is a viable surrogate marker for in vivo apoptosis, and it plays a key role in embryo and organ development in vertebrates. In fish and shrimp, fortilin participates in host defense against bacterial and viral pathogens. Further translational research could prove fortilin to be a viable molecular target for treatment of various human diseases including and not limited to atherosclerosis, hypertension, certain tumors, diabetes mellitus, diabetic nephropathy, hepatic injury, and aberrant immunity and host defense.
Collapse
Affiliation(s)
- Decha Pinkaew
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ken Fujise
- University of Texas Medical Branch at Galveston, Galveston, TX, United States; The Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|
13
|
The Evolution of Human Basophil Biology from Neglect towards Understanding of Their Immune Functions. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8232830. [PMID: 28078302 PMCID: PMC5204076 DOI: 10.1155/2016/8232830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/16/2016] [Indexed: 12/03/2022]
Abstract
Being discovered long ago basophils have been neglected for more than a century. During the past decade evidence emerged that basophils share features of innate and adaptive immunity. Nowadays, basophils are best known for their striking effector role in the allergic reaction. They hence have been used for establishing new diagnostic tests and therapeutic approaches and for characterizing natural and recombinant allergens as well as hypoallergens, which display lower or diminished IgE-binding activity. However, it was a long way from discovery in 1879 until identification of their function in hypersensitivity reactions, including adverse drug reactions. Starting with a historical background, this review highlights the modern view on basophil biology.
Collapse
|
14
|
Eberle JU, Voehringer D. Role of basophils in protective immunity to parasitic infections. Semin Immunopathol 2016; 38:605-13. [PMID: 27116557 DOI: 10.1007/s00281-016-0563-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/21/2016] [Indexed: 01/06/2023]
Abstract
Basophils have been recognized as important players for protective immunity against a variety of different endo- and ectoparasites. Although basophils represent a relatively rare and short-lived cell type, they produce large quantities of effector molecules including histamine, cytokines, chemokines, and lipid mediators which promote type 2 immune responses. Basophils can be activated either directly by parasite-derived factors or indirectly by recognition of parasite-derived antigens via IgE bound to its high-affinity receptor FcεRI on the cell surface. Many parasitic infections cause expansion and tissue recruitment of basophils, but the role of basophils for protective immunity remains poorly understood. The development of basophil-deficient mouse models over the past few years makes it possible to study their contributions in various infections. We review here the current knowledge regarding the role of basophils for protective or immunomodulatory functions of basophils mainly during infections of mice with protozoan parasites, helminths, and ectoparasites.
Collapse
Affiliation(s)
- Joerg U Eberle
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany.
| |
Collapse
|
15
|
Wangala B, Vovor A, Gantin RG, Agbeko YF, Lechner CJ, Huang X, Soboslay PT, Köhler C. Chemokine levels and parasite- and allergen-specific antibody responses in children and adults with severe or uncomplicated Plasmodium falciparum malaria. Eur J Microbiol Immunol (Bp) 2015; 5:131-41. [PMID: 25883801 DOI: 10.1556/eujmi-d-14-00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/11/2015] [Indexed: 12/23/2022] Open
Abstract
Chemokine and antibody response profiles were investigated in children and adults with severe or uncomplicated Plasmodium falciparum malaria; the aim was to reveal which profiles are associated with severe disease, as often seen in nonimmune children, or with mild and uncomplicated disease, as seen in semi-immune adults. Blood samples were obtained from children under 5 years of age as well as adults with falciparum malaria. Classification of malaria was performed according to parasite densities and hemoglobin concentrations. Plasma levels of chemokines (IL-8, IP-10, MCP-4, TARC, PARC, MIP-1δ, eotaxins) were quantified, and antibody responses (IgE, IgG1, and IgG4) to P. falciparum, Entamoeba histolytica-specific antigen, and mite allergen extracts were determined. In children with severe malaria proinflammatory, IL-8, IP10, MIP-1δ, and LARC were at highly elevated levels, suggesting an association with severe disease. In contrast, the Th2-type chemokines TARC, PARC, and eotaxin-2 attained in children the same levels as in adults suggesting the evolution of immune regulatory components. In children with severe malaria, an elevated IgG1 and IgE reactivity to mite allergens and intestinal protozoan parasites was observed. In conclusion, exacerbated proinflammatory chemokines together with IgE responses to mite allergens or E. histolytica-specific antigen extract were observed in children with severe falciparum malaria.
Collapse
|
16
|
Taylor KJ, Van TTH, MacDonald SM, Meshnick SR, Fernley RT, Macreadie IG, Smooker PM. Immunization of mice with Plasmodium TCTP delays establishment of Plasmodium infection. Parasite Immunol 2015; 37:23-31. [PMID: 25376500 DOI: 10.1111/pim.12158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/31/2014] [Indexed: 12/19/2022]
Abstract
Translationally controlled tumour protein (TCTP) may play an important role in the establishment or maintenance of parasitemia in a malarial infection. In this study, the potential of TCTP as a malaria vaccine was investigated in two trials. In the initial vaccine trial, Plasmodium falciparum TCTP (PfTCTP) was expressed in Saccharomyces cerevisiae and used to immunize BALB/c mice. Following challenge with Plasmodium yoelii YM, parasitemia was significantly reduced during the early stages of infection. In the second vaccine trial, the TCTP from P. yoelii and P. berghei was expressed in Escherichia coli and used in several mouse malaria models. A significant reduction in parasitemia in the early stages of infection was observed in BALB/c mice challenged with P. yoelii YM. A significantly reduced parasitemia at each day leading up to a delayed and reduced peak parasitemia was also observed in BALB/c mice challenged with the nonlethal Plasmodium chabaudi (P.c.) chabaudi AS. These results suggest that TCTP has an important role for parasite establishment and may be important for pathogenesis.
Collapse
Affiliation(s)
- K J Taylor
- School of Applied Sciences, RMIT University, Bundoora, VIc., Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Mathieu C, Demarta-Gatsi C, Porcherie A, Brega S, Thiberge S, Ronce K, Smith L, Peronet R, Amino R, Ménard R, Mécheri S. Plasmodium bergheihistamine-releasing factor favours liver-stage development via inhibition of IL-6 production and associates with a severe outcome of disease. Cell Microbiol 2014; 17:542-58. [DOI: 10.1111/cmi.12382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Cédric Mathieu
- Institut Pasteur; Unité de Biologie des Interactions Hôte Parasites; Paris F-75015 France
- Centre National de la Recherche Scientifique; Unité de Recherche Associée 2581 CEDEX 15 Paris F-75724 France
| | - Claudia Demarta-Gatsi
- Institut Pasteur; Unité de Biologie des Interactions Hôte Parasites; Paris F-75015 France
- Centre National de la Recherche Scientifique; Unité de Recherche Associée 2581 CEDEX 15 Paris F-75724 France
| | - Adeline Porcherie
- Institut Pasteur; Unité de Biologie des Interactions Hôte Parasites; Paris F-75015 France
- Centre National de la Recherche Scientifique; Unité de Recherche Associée 2581 CEDEX 15 Paris F-75724 France
| | - Sara Brega
- Institut Pasteur; Unité de Biologie et Génétique du Paludisme; Paris F-75015 France
| | - Sabine Thiberge
- Institut Pasteur; Unité de Biologie et Génétique du Paludisme; Paris F-75015 France
| | - Karine Ronce
- Institut Pasteur; Unité de Biologie des Interactions Hôte Parasites; Paris F-75015 France
- Centre National de la Recherche Scientifique; Unité de Recherche Associée 2581 CEDEX 15 Paris F-75724 France
| | - Leanna Smith
- Institut Pasteur; Unité de Biologie des Interactions Hôte Parasites; Paris F-75015 France
- Centre National de la Recherche Scientifique; Unité de Recherche Associée 2581 CEDEX 15 Paris F-75724 France
| | - Roger Peronet
- Institut Pasteur; Unité de Biologie des Interactions Hôte Parasites; Paris F-75015 France
- Centre National de la Recherche Scientifique; Unité de Recherche Associée 2581 CEDEX 15 Paris F-75724 France
| | - Rogerio Amino
- Institut Pasteur; Unité de Biologie et Génétique du Paludisme; Paris F-75015 France
| | - Robert Ménard
- Institut Pasteur; Unité de Biologie et Génétique du Paludisme; Paris F-75015 France
| | - Salaheddine Mécheri
- Institut Pasteur; Unité de Biologie des Interactions Hôte Parasites; Paris F-75015 France
- Centre National de la Recherche Scientifique; Unité de Recherche Associée 2581 CEDEX 15 Paris F-75724 France
| |
Collapse
|
18
|
The Plasmodium falciparum translationally controlled tumor protein (TCTP) is incorporated more efficiently into B cells than its human homologue. PLoS One 2014; 9:e85514. [PMID: 24465583 PMCID: PMC3894975 DOI: 10.1371/journal.pone.0085514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum secretes a homologue of the translationally controlled tumor protein (TCTP) into serum of infected individuals, although its role in pathogenesis or virulence is unknown. To determine the effect of P. falciparum TCTP on B cells as compared to human TCTP, fluorescently labeled proteins were incubated on primary cultures of mouse splenic B cells and analyzed by flow cytometry and confocal microscopy. Our results indicate that both recombinant proteins are incorporated into B cells, but differ significantly in their rate and percentage of incorporation, being significantly higher for P. falciparum TCTP. Furthermore, P. falciparum TCTP showed a lower B cell proliferative effect than human TCTP, suggesting a mechanism through which the former could interfere in the host's immune response.
Collapse
|
19
|
Gutiérrez-Galeano DF, Toscano-Morales R, Calderón-Pérez B, Xoconostle-Cázares B, Ruiz-Medrano R. Structural divergence of plant TCTPs. FRONTIERS IN PLANT SCIENCE 2014; 5:361. [PMID: 25120549 PMCID: PMC4114181 DOI: 10.3389/fpls.2014.00361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/07/2014] [Indexed: 05/02/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a highly conserved protein at the level of sequence, considered to play an essential role in the regulation of growth and development in eukaryotes. However, this function has been inferred from studies in a few model systems, such as mice and mammalian cell lines, Drosophila and Arabidopsis. Thus, the knowledge regarding this protein is far from complete. In the present study bioinformatic analysis showed the presence of one or more TCTP genes per genome in plants with highly conserved signatures and subtle variations at the level of primary structure but with more noticeable differences at the level of predicted three-dimensional structures. These structures show differences in the "pocket" region close to the center of the protein and in its flexible loop domain. In fact, all predictive TCTP structures can be divided into two groups: (1) AtTCTP1-like and (2) CmTCTP-like, based on the predicted structures of an Arabidopsis TCTP and a Cucurbita maxima TCTP; according to this classification we propose that their probable function in plants may be inferred in principle. Thus, different TCTP genes in a single organism may have different functions; additionally, in those species harboring a single TCTP gene this could carry multiple functions. On the other hand, in silico analysis of AtTCTP1-like and CmTCTP-like promoters suggest that these share common motifs but with different abundance, which may underscore differences in their gene expression patterns. Finally, the absence of TCTP genes in most chlorophytes with the exception of Coccomyxa subellipsoidea, indicates that other proteins perform the roles played by TCTP or the pathways regulated by TCTP occur through alternative routes. These findings provide insight into the evolution of this gene family in plants.
Collapse
Affiliation(s)
| | | | | | | | - Roberto Ruiz-Medrano
- *Correspondence: Roberto Ruiz-Medrano, Department of Biotechnology and Bioengineering, CINVESTAV-IPN, Ave., IPN 2508, Zacatenco, 07360 Mexico DF, Mexico e-mail:
| |
Collapse
|
20
|
Abstract
Basophils have emerged in recent years as a small but potent subpopulation of leukocytes capable of bridging innate and adaptive immunity. They can be activated through IgE-dependent and IgE-independent mechanisms to release preformed mediators and to produce Th2 cytokines. In addition to their role in protective immunity to helminths, basophils are major participants in allergic reactions as diverse as anaphylaxis and immediate hypersensitivity reactions, late-phase hypersensitivity reactions, and delayed hypersensitivity reactions. Additionally, basophils have been implicated in the pathophysiology of autoimmune diseases such as lupus nephritis and rheumatoid arthritis, and the modulation of immune responses to bacterial infections, as well as being a feature of myelogenous leukemias. Distinct signals for activation, degranulation, transendothelial migration, and immune regulation are being defined, and demonstrate the important role of basophils in promoting a Th2 microenvironment. These mechanistic insights are driving innovative approaches for diagnostic testing and therapeutic targeting of basophils.
Collapse
Affiliation(s)
- Jessica L Cromheecke
- Departments of Microbial Pathogenesis & Immunology and Medicine, Texas A&M College of Medicine, 2121 West Holcombe Boulevard, Houston, TX, 77030, USA
| | | | | |
Collapse
|
21
|
Crossing the wall: The opening of endothelial cell junctions during infectious diseases. Int J Biochem Cell Biol 2013; 45:1165-73. [DOI: 10.1016/j.biocel.2013.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/05/2013] [Accepted: 03/15/2013] [Indexed: 12/22/2022]
|
22
|
Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia. Infect Immun 2013; 81:3515-26. [PMID: 23690397 DOI: 10.1128/iai.00380-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop L-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of L-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with L-arginine or L-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with L-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing L-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans.
Collapse
|