1
|
Torres-Puig S, García V, Stærk K, Andersen TE, Møller-Jensen J, Olsen JE, Herrero-Fresno A. “Omics” Technologies - What Have They Told Us About Uropathogenic Escherichia coli Fitness and Virulence During Urinary Tract Infection? Front Cell Infect Microbiol 2022; 12:824039. [PMID: 35237532 PMCID: PMC8882828 DOI: 10.3389/fcimb.2022.824039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infection (UTI), a widespread infectious disease of great impact on human health. This is further emphasized by the rapidly increase in antimicrobial resistance in UPEC, which compromises UTI treatment. UPEC biology is highly complex since uropathogens must adopt extracellular and intracellular lifestyles and adapt to different niches in the host. In this context, the implementation of forefront ‘omics’ technologies has provided substantial insight into the understanding of UPEC pathogenesis, which has opened the doors for new therapeutics and prophylactics discovery programs. Thus, ‘omics’ technologies applied to studies of UPEC during UTI, or in models of UTI, have revealed extensive lists of factors that are important for the ability of UPEC to cause disease. The multitude of large ‘omics’ datasets that have been generated calls for scrutinized analysis of specific factors that may be of interest for further development of novel treatment strategies. In this review, we describe main UPEC determinants involved in UTI as estimated by ‘omics’ studies, and we compare prediction of factors across the different ‘omics’ technologies, with a focus on those that have been confirmed to be relevant under UTI-related conditions. We also discuss current challenges and future perspectives regarding analysis of data to provide an overview and better understanding of UPEC mechanisms involved in pathogenesis which should assist in the selection of target sites for future prophylaxis and treatment.
Collapse
Affiliation(s)
- Sergi Torres-Puig
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Vanesa García
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Kristian Stærk
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Thomas E. Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Ana Herrero-Fresno,
| |
Collapse
|
2
|
Sarshar M, Scribano D, Limongi D, Zagaglia C, Palamara AT, Ambrosi C. Adaptive strategies of uropathogenic Escherichia coli CFT073: from growth in lab media to virulence during host cell adhesion. Int Microbiol 2022; 25:481-494. [PMID: 35106679 DOI: 10.1007/s10123-022-00235-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Urinary tract infections (UTIs) are a major concern in public health. The prevalent uropathogenic bacterium in healthcare settings is Escherichia coli. The increasing rate of antibiotic-resistant strains demands studies to understand E. coli pathogenesis to drive the development of new therapeutic approaches. This study compared the gene expression profile of selected target genes in the prototype uropathogenic E. coli (UPEC) strain CFT073 grown in Luria Bertani (LB), artificial urine (AU), and during adhesion to host bladder cells by semi-quantitative real-time PCR (RT-PCR) assays. AU effectively supported the growth of strain CFT073 as well as other E. coli strains with different lifestyles, thereby confirming the appropriateness of this medium for in vitro models. Unexpectedly, gene expression of strain CFT073 in LB and AU was quite similar; conversely, during the adhesion assay, adhesins and porins were upregulated, while key global regulators were downregulated with respect to lab media. Interestingly, fimH and papGII genes were significantly expressed in all tested conditions. Taken together, these results provide for the first time insights of the metabolic and pathogenic profile of strain CFT073 during the essential phase of host cell adhesion.
Collapse
Affiliation(s)
- Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy.,Dani Di Giò Foundation-Onlus, 00193, Rome, Italy
| | - Dolores Limongi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS San Raffaele Rome, 00166, Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore Di Sanità, 00161, Rome, Italy.,Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS San Raffaele Rome, 00166, Rome, Italy.
| |
Collapse
|
3
|
Soussan D, Salze M, Ledormand P, Sauvageot N, Boukerb A, Lesouhaitier O, Fichant G, Rincé A, Quentin Y, Muller C. The NagY regulator: A member of the BglG/SacY antiterminator family conserved in Enterococcus faecalis and involved in virulence. Front Microbiol 2022; 13:1070116. [PMID: 36875533 PMCID: PMC9981650 DOI: 10.3389/fmicb.2022.1070116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/21/2022] [Indexed: 02/19/2023] Open
Abstract
Enterococcus faecalis is a commensal bacterium of the gastrointestinal tract but also a major nosocomial pathogen. This bacterium uses regulators like BglG/SacY family of transcriptional antiterminators to adapt its metabolism during host colonization. In this report, we investigated the role of the BglG/SacY family antiterminator NagY in the regulation of the nagY-nagE operon in presence of N-acetylglucosamine, with nagE encoding a transporter of this carbohydrate, as well as the expression of the virulence factor HylA. We showed that this last protein is involved in biofilm formation and glycosaminoglycans degradation that are important features in bacterial infection, confirmed in the Galleria mellonella model. In order to elucidate the evolution of these actors, we performed phylogenomic analyses on E. faecalis and Enterococcaceae genomes, identified orthologous sequences of NagY, NagE, and HylA, and we report their taxonomic distribution. The study of the conservation of the upstream region of nagY and hylA genes showed that the molecular mechanism of NagY regulation involves ribonucleic antiterminator sequence overlapping a rho-independent terminator, suggesting a regulation conforming to the canonical model of BglG/SacY family antiterminators. In the perspective of opportunism understanding, we offer new insights into the mechanism of host sensing thanks to the NagY antiterminator and its targets expression.
Collapse
Affiliation(s)
- Diane Soussan
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Marine Salze
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Pierre Ledormand
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Nicolas Sauvageot
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Amine Boukerb
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France.,Plateforme de Génomique, CBSA EA4312, Normandie Université, UNIROUEN, Évreux, France
| | - Olivier Lesouhaitier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Alain Rincé
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Yves Quentin
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Cécile Muller
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
4
|
Bier N, Hammerstrom TG, Koehler TM. Influence of the phosphoenolpyruvate:carbohydrate phosphotransferase system on toxin gene expression and virulence in Bacillus anthracis. Mol Microbiol 2019; 113:237-252. [PMID: 31667937 DOI: 10.1111/mmi.14413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
AtxA, the master virulence gene regulator of Bacillus anthracis, is a PRD-Containing Virulence Regulator (PCVR) as indicated by the crystal structure, post-translational modifications and activity of the protein. PCVRs are transcriptional regulators, named for PTS Regulatory Domains (PRDs) subject to phosphorylation by the phosphoenolpyruvate phosphotransferase system (PEP-PTS) and for their impact on virulence gene expression. Here we present data from experiments employing physiological, genetic and biochemical approaches that support a model in which the PTS proteins HPr and Enzyme I (EI) are required for transcription of the atxA gene, rather than phosphorylation of AtxA. We show that atxA transcription is reduced 2.5-fold in a mutant lacking HPr and EI, and that this change is sufficient to affect anthrax toxin production. Mutants harboring HPr proteins altered for phosphotransfer activity were unable to restore atxA transcription to parent levels, suggesting that phosphotransfer activity of HPr and EI is important for regulation of atxA. In a mouse model for anthrax, a HPr- EI- mutant was attenuated for virulence. Virulence was restored by expressing atxA from an alternative, PTS-independent, promoter. Our data support a model in which HPr transfers a phosphate to an unidentified downstream transcriptional regulator to influence atxA gene transcription.
Collapse
Affiliation(s)
- Naomi Bier
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, UTHealth M.D. Anderson Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Troy G Hammerstrom
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, UTHealth M.D. Anderson Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, UTHealth M.D. Anderson Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
5
|
Raynor MJ, Roh JH, Widen SG, Wood TG, Koehler TM. Regulons and protein-protein interactions of PRD-containing Bacillus anthracis virulence regulators reveal overlapping but distinct functions. Mol Microbiol 2018; 109:10.1111/mmi.13961. [PMID: 29603836 PMCID: PMC6167206 DOI: 10.1111/mmi.13961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 01/19/2023]
Abstract
Bacillus anthracis produces three regulators, AtxA, AcpA and AcpB, which control virulence gene transcription and belong to an emerging class of regulators termed 'PCVRs' (Phosphoenolpyruvate-dependent phosphotransferase regulation Domain-Containing Virulence Regulators). AtxA, named for its control of toxin gene expression, is the master virulence regulator and archetype PCVR. AcpA and AcpB are less well studied. Reports of PCVR activity suggest overlapping function. AcpA and AcpB independently positively control transcription of the capsule biosynthetic operon capBCADE, and culture conditions that enhance AtxA level or activity result in capBCADE transcription in strains lacking acpA and acpB. We used RNA-Seq to assess the regulons of the paralogous regulators in strains constructed to express individual PCVRs at native levels. Plasmid and chromosome-borne genes were PCVR controlled, with AtxA, AcpA and AcpB having a ≥ 4-fold effect on transcript levels of 145, 130 and 49 genes respectively. Several genes were coregulated by two or three PCVRs. We determined that AcpA and AcpB form homomultimers, as shown previously for AtxA, and we detected AtxA-AcpA heteromultimers. In co-expression experiments, AcpA activity was reduced by increased levels of AtxA. Our data show that the PCVRs have specific and overlapping activity and that PCVR stoichiometry and potential heteromultimerization can influence target gene expression.
Collapse
Affiliation(s)
- Malik J. Raynor
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Jung-Hyeob Roh
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
| | - Stephen G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Thomas G. Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Theresa M. Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
6
|
Galinier A, Deutscher J. Sophisticated Regulation of Transcriptional Factors by the Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. J Mol Biol 2017; 429:773-789. [PMID: 28202392 DOI: 10.1016/j.jmb.2017.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 11/16/2022]
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a carbohydrate transport and phosphorylation system present in bacteria of all different phyla and in archaea. It is usually composed of three proteins or protein complexes, enzyme I, HPr, and enzyme II, which are phosphorylated at histidine or cysteine residues. However, in many bacteria, HPr can also be phosphorylated at a serine residue. The PTS not only functions as a carbohydrate transporter but also regulates numerous cellular processes either by phosphorylating its target proteins or by interacting with them in a phosphorylation-dependent manner. The target proteins can be catabolic enzymes, transporters, and signal transduction proteins but are most frequently transcriptional regulators. In this review, we will describe how PTS components interact with or phosphorylate proteins to regulate directly or indirectly the activity of transcriptional repressors, activators, or antiterminators. We will briefly summarize the well-studied mechanism of carbon catabolite repression in firmicutes, where the transcriptional regulator catabolite control protein A needs to interact with seryl-phosphorylated HPr in order to be functional. We will present new results related to transcriptional activators and antiterminators containing specific PTS regulation domains, which are the phosphorylation targets for three different types of PTS components. Moreover, we will discuss how the phosphorylation level of the PTS components precisely regulates the activity of target transcriptional regulators or antiterminators, with or without PTS regulation domain, and how the availability of PTS substrates and thus the metabolic status of the cell are connected with various cellular processes, such as biofilm formation or virulence of certain pathogens.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UPR 9043, CNRS, Aix Marseille Université, IMM, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; Centre National de la Recherche Scientifique, UMR8261 (affiliated with the Univ. Paris Diderot, Sorbonne, Paris Cité), Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
7
|
Zhuge X, Tang F, Zhu H, Mao X, Wang S, Wu Z, Lu C, Dai J, Fan H. AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian Pathogenic Escherichia coli Infection. Sci Rep 2016; 6:25085. [PMID: 27113849 PMCID: PMC4844996 DOI: 10.1038/srep25085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/11/2016] [Indexed: 12/18/2022] Open
Abstract
Bacteria can change its lifestyle during inhabiting in host niches where they survive and replicate by rapidly altering gene expression pattern to accommodate the new environment. In this study, two novel regulators in avian pathogenic Escherichia coli (APEC) were identified and designated as AutA and AutR. RT-PCR and β-galactosidase assay results showed that AutA and AutR co-regulated the expression of adhesin UpaB in APEC strain DE205B. Electrophoretic mobility shift assay showed that AutA and AutR could directly bind the upaB promoter DNA. In vitro transcription assay indicated that AutA could activate the upaB transcription, while AutR inhibited the upaB transcription due to directly suppressing the activating effect of AutA on UpaB expression. Transcriptome analysis showed that AutA and AutR coherently affected the expression of hundreds of genes. Our study confirmed that AutA and AutR co-regulated the expression of DE205B K1 capsule and acid resistance systems in E. coli acid fitness island (AFI). Moreover, phenotypic heterogeneity in expression of K1 capsule and acid resistance systems in AFI during host–pathogen interaction was associated with the regulation of AutA and AutR. Collectively speaking, our studies presented that AutA and AutR are involved in APEC adaptive lifestyle change to facilitate its infection.
Collapse
Affiliation(s)
- Xiangkai Zhuge
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Tang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongfei Zhu
- Beijing Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiang Mao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zongfu Wu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengping Lu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Dai
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjie Fan
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Porcheron G, Schouler C, Dozois CM. Survival games at the dinner table: regulation of Enterobacterial virulence through nutrient sensing and acquisition. Curr Opin Microbiol 2016; 30:98-106. [PMID: 26871481 DOI: 10.1016/j.mib.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
The ability of bacterial pathogens to colonize specific host niches is largely dependent on acquisition of essential metabolites and co-factors for growth and sensing and adapting in response to specific environmental cues. Nutrient availability in host environments is strongly influenced by host physiology and immunity, diet, and competition with other members of the host microbiota. Rapid adaptation to environmental cues and nutrient availability is a hallmark of bacterial fitness and virulence. This adaptability requires complex regulatory networks that tightly link sensing of nutrient availability to expression of virulence genes accordingly. This review focuses on recent findings highlighting the ability of bacterial pathogens to compete for nutrient acquisition in the host-microbiota environment, and emphasizes key aspects mediating the multi-tiered regulatory cascades that coordinately control nutrient sensing and expression of virulence genes in pathogenic Enterobacteria.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRS-Institut Armand Frappier, Laval, Québec, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Québec, Canada
| | - Catherine Schouler
- INRA, UMR1282 Infectiologie et Santé Publique, 37 380 Nouzilly, France; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, 37 000 Tours, France
| | - Charles M Dozois
- INRS-Institut Armand Frappier, Laval, Québec, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
9
|
Gordon N, Rosenblum R, Nussbaum-Shochat A, Eliahoo E, Amster-Choder O. A Search for Ribonucleic Antiterminator Sites in Bacterial Genomes: Not Only Antitermination? J Mol Microbiol Biotechnol 2015; 25:143-53. [PMID: 26159075 DOI: 10.1159/000375263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BglG/LicT-like proteins are transcriptional antiterminators that prevent termination of transcription at intrinsic terminators by binding to ribonucleic antiterminator (RAT) sites and stabilizing an RNA conformation which is mutually exclusive with the terminator structure. The known RAT sites, which are located in intergenic regions of sugar utilization operons, show low sequence conservation but significant structural analogy. To assess the prevalence of RATs in bacterial genomes, we employed bioinformatic tools that describe RNA motifs based on both sequence and structural constraints. Using descriptors with different stringency, we searched the genomes of Escherichiacoli K12, uropathogenic E. coli and Bacillus subtilis for putative RATs. Our search identified all known RATs and additional putative RAT elements. Surprisingly, most putative RATs do not overlap an intrinsic terminator and many reside within open reading frames (ORFs). The ability of one of the putative RATs, which is located within an antiterminator-encoding ORF and does not overlap a terminator, to bind to its cognate antiterminator protein in vitro and in vivo was confirmed experimentally. Our results suggest that the capacity of RAT elements has been exploited during evolution to mediate activities other than antitermination, for example control of transcription elongation or of RNA stability.
Collapse
Affiliation(s)
- Noa Gordon
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
10
|
Phenotypic Heterogeneity in Expression of the K1 Polysaccharide Capsule of Uropathogenic Escherichia coli and Downregulation of the Capsule Genes during Growth in Urine. Infect Immun 2015; 83:2605-13. [PMID: 25870229 PMCID: PMC4468546 DOI: 10.1128/iai.00188-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/03/2015] [Indexed: 11/20/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the major causative agent of uncomplicated urinary tract infections (UTI). The K1 capsule on the surface of UPEC strains is a key virulence factor, and its expression may be important in the onset and progression of UTI. In order to understand capsule expression in more detail, we analyzed its expression in the UPEC strain UTI89 during growth in rich medium (LB medium) and urine and during infection of a bladder epithelial cell line. Comparison of capsule gene transcription using a chromosomal gfp reporter fusion showed a significant reduction in transcription during growth in urine compared to that during growth in LB medium. When examined at the single-cell level, following growth in both media, capsule gene expression appears to be heterogeneous, with two distinct green fluorescent protein (GFP)-expressing populations. Using anti-K1 antibody, we showed that this heterogeneity in gene expression results in two populations of encapsulated and unencapsulated cells. We demonstrated that the capsule hinders attachment to and invasion of epithelial cells and that the unencapsulated cells within the population preferentially adhere to and invade bladder epithelial cells. We found that once internalized, UTI89 starts to produce capsule to aid in its intracellular survival and spread. We propose that this observed phenotypic diversity in capsule expression is a fitness strategy used by the bacterium to deal with the constantly changing environment of the urinary tract.
Collapse
|