1
|
Samodova D, Stankevic E, Søndergaard MS, Hu N, Ahluwalia TS, Witte DR, Belstrøm D, Lubberding AF, Jagtap PD, Hansen T, Deshmukh AS. Salivary proteomics and metaproteomics identifies distinct molecular and taxonomic signatures of type-2 diabetes. MICROBIOME 2025; 13:5. [PMID: 39794871 PMCID: PMC11720885 DOI: 10.1186/s40168-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Saliva is a protein-rich body fluid for noninvasive discovery of biomolecules, containing both human and microbial components, associated with various chronic diseases. Type-2 diabetes (T2D) imposes a significant health and socio-economic burden. Prior research on T2D salivary microbiome utilized methods such as metagenomics, metatranscriptomics, 16S rRNA sequencing, and low-throughput proteomics. RESULTS We conducted ultrafast, in-depth MS-based proteomic and metaproteomic profiling of saliva from 15 newly diagnosed T2D individuals and 15 age-/BMI-matched healthy controls (HC). Using state-of-the-art proteomics, over 4500 human and bacterial proteins were identified in a single 21-min run. Bioinformatic analysis revealed host signatures of altered immune-, lipid-, and glucose-metabolism regulatory systems, increased oxidative stress, and possible precancerous changes in T2D saliva. Abundance of peptides for bacterial genera such as Neisseria and Corynebacterium were altered showing biomarker potential, offering insights into disease pathophysiology and microbial applications for T2D management. CONCLUSIONS This study presents a comprehensive mapping of salivary proteins and microbial communities, serving as a foundational resource for enhancing understanding of T2D pathophysiology. The identified biomarkers hold promise for advancing diagnostics and therapeutic approaches in T2D and its associated long-term complication Video Abstract.
Collapse
Affiliation(s)
- Diana Samodova
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Evelina Stankevic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | | | - Naiyu Hu
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, Herlev, 2730, Denmark
- Department of Biology, The Bioinformatics Center, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Bartholins Allé 2, Building 1260, Aarhus, 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 11, Entrance A, Aarhus, 8200, Denmark
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, University of Copenhagen, Nørre Allé 20, Copenhagen, 2200, Denmark
| | | | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 420 Washington Ave SE, Minneapolis, MN, 55455, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark.
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark.
| |
Collapse
|
2
|
Vivek S, Shen YS, Guan W, Onyeaghala G, Oyenuga M, Staley C, Karger AB, Prizment AE, Thyagarajan B. Association between Circulating T Cells and the Gut Microbiome in Healthy Individuals: Findings from a Pilot Study. Int J Mol Sci 2024; 25:6831. [PMID: 38999941 PMCID: PMC11241708 DOI: 10.3390/ijms25136831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024] Open
Abstract
Though the microbiome's impact on immune system homeostasis is well documented, the effect of circulating T cells on the gut microbiome remains unexamined. We analyzed data from 50 healthy volunteers in a pilot trial of aspirin, using immunophenotyping and 16S rRNA sequencing to evaluate the effect of baseline T cells on microbiome changes over 6 weeks. We employed an unsupervised sparse canonical correlation analysis (sCCA) and used multivariable linear regression models to evaluate the association between selected T cell subsets and selected bacterial genera after adjusting for covariates. In the cross-sectional analysis, percentages of naïve CD4+ T cells were positively associated with a relative abundance of Intestinimonas, and the percentage of activated CD8+ T cells was inversely associated with Cellulosibacter. In the longitudinal analysis, the baseline percentages of naïve CD4+ T cells and activated CD4+ T cells were inversely associated with a 6-week change in the relative abundance of Clostridium_XlVb and Anaerovorax, respectively. The baseline percentage of terminal effector CD4+ T cells was positively associated with the change in Flavonifractor. Notably, the microbiome taxa associated with T cell subsets exclusively belonged to the Bacillota phylum. These findings can guide future experimental studies focusing on the role of T cells in impacting gut microbiome homeostasis.
Collapse
Affiliation(s)
- Sithara Vivek
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609, 420 Delaware Street, Minneapolis, MN 55455, USA
| | - You Shan Shen
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Mosunmoluwa Oyenuga
- Department of Internal Medicine, Abbott Northwestern Hospital, Minneapolis, MN 55407, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy B Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609, 420 Delaware Street, Minneapolis, MN 55455, USA
| | - Anna E Prizment
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609, 420 Delaware Street, Minneapolis, MN 55455, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609, 420 Delaware Street, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Xu R, McLoughlin G, Nicol M, Geddes D, Stinson L. Residents or Tourists: Is the Lactating Mammary Gland Colonized by Residential Microbiota? Microorganisms 2024; 12:1009. [PMID: 38792838 PMCID: PMC11123721 DOI: 10.3390/microorganisms12051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The existence of the human milk microbiome has been widely recognized for almost two decades, with many studies examining its composition and relationship to maternal and infant health. However, the richness and viability of the human milk microbiota is surprisingly low. Given that the lactating mammary gland houses a warm and nutrient-rich environment and is in contact with the external environment, it may be expected that the lactating mammary gland would contain a high biomass microbiome. This discrepancy raises the question of whether the bacteria in milk come from true microbial colonization in the mammary gland ("residents") or are merely the result of constant influx from other bacterial sources ("tourists"). By drawing together data from animal, in vitro, and human studies, this review will examine the question of whether the lactating mammary gland is colonized by a residential microbiome.
Collapse
Affiliation(s)
- Ruomei Xu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia (D.G.)
| | - Grace McLoughlin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (G.M.); (M.N.)
| | - Mark Nicol
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (G.M.); (M.N.)
| | - Donna Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia (D.G.)
| | - Lisa Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia (D.G.)
| |
Collapse
|
4
|
Yang Y, Zhang H, Wang Y, Xu J, Shu S, Wang P, Ding S, Huang Y, Zheng L, Yang Y, Xiong C. Promising dawn in the management of pulmonary hypertension: The mystery veil of gut microbiota. IMETA 2024; 3:e159. [PMID: 38882495 PMCID: PMC11170974 DOI: 10.1002/imt2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 06/18/2024]
Abstract
The gut microbiota is a complex community of microorganisms inhabiting the intestinal tract, which plays a vital role in human health. It is intricately involved in the metabolism, and it also affects diverse physiological processes. The gut-lung axis is a bidirectional pathway between the gastrointestinal tract and the lungs. Recent research has shown that the gut microbiome plays a crucial role in immune response regulation in the lungs and the development of lung diseases. In this review, we present the interrelated factors concerning gut microbiota and the associated metabolites in pulmonary hypertension (PH), a lethal disease characterized by elevated pulmonary vascular pressure and resistance. Our research team explored the role of gut-microbiota-derived metabolites in cardiovascular diseases and established the correlation between metabolites such as putrescine, succinate, trimethylamine N-oxide (TMAO), and N, N, N-trimethyl-5-aminovaleric acid with the diseases. Furthermore, we found that specific metabolites, such as TMAO and betaine, have significant clinical value in PH, suggesting their potential as biomarkers in disease management. In detailing the interplay between the gut microbiota, their metabolites, and PH, we underscored the potential therapeutic approaches modulating this microbiota. Ultimately, we endeavor to alleviate the substantial socioeconomic burden associated with this disease. This review presents a unique exploratory analysis of the link between gut microbiota and PH, intending to propel further investigations in the gut-lung axis.
Collapse
Affiliation(s)
- Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Hanwen Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yaoyao Wang
- State Key Laboratory of Cardiovascular Disease, Department of Nephrology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
- Department of Genetics University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Peizhi Wang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
- Center for Molecular Cardiology University of Zurich Zurich Switzerland
| | - Shusi Ding
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection The Capital Medical University Beijing China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lemin Zheng
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection The Capital Medical University Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, School of Basic Medical Sciences, Health Science Center The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Beijing China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Changming Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
5
|
Song X, Dou X, Chang J, Zeng X, Xu Q, Xu C. The role and mechanism of gut-lung axis mediated bidirectional communication in the occurrence and development of chronic obstructive pulmonary disease. Gut Microbes 2024; 16:2414805. [PMID: 39446051 PMCID: PMC11509012 DOI: 10.1080/19490976.2024.2414805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
The current studies have shown that the occurrence and development of chronic obstructive pulmonary disease (COPD) are closely related to the changes in gut health and its microenvironment, and even some gut diseases have significant clinical correlation with COPD. The dysbiosis of gut microbiota observed in COPD patients also suggests a potential bidirectional interaction between the gut and lung. Communication between the gut and lung may occur through circulating inflammatory cells, gut microbial metabolites, and circulating inflammatory mediators, but the mechanism of bidirectional communication between the gut and lung in COPD is still under study. Therefore, more research is still needed in this area. In this review, we summarize recent clinical studies and animal models on the role of the gut-lung axis in the occurrence and development of COPD and its mechanisms, so as to provide ideas for further research in this field. In addition, we also summarized the negative effects of COPD medication on gut microbiota and the gut microbiota risk factors for COPD and proposed the potential prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Qinhong Xu
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Brown EL, Essigmann HT, Hoffman KL, Petrosino J, Jun G, Brown SA, Aguilar D, Hanis CL. C-Reactive Protein Levels Correlate with Measures of Dysglycemia and Gut Microbiome Profiles. Curr Microbiol 2023; 81:45. [PMID: 38127093 DOI: 10.1007/s00284-023-03560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
C-reactive protein (CRP) is a commonly used marker of low-grade inflammation as well as a marker of acute infection. CRP levels are elevated in those with diabetes and increased CRP concentrations are a risk factor for developing type 2 diabetes. Gut microbiome effects on metabolism and immune responses can impact chronic inflammation, including affecting CRP levels, that in turn can lead to the development and maintenance of dysglycemia. Using a high-sensitivity C-reactive protein (hsCRP) assay capable of detecting subtle changes in C-reactive protein, we show that higher hsCRP levels specifically correlate with worsening glycemia, reduced microbial richness and evenness, and with a reduction in the Firmicutes/Bacteroidota ratio. These data demonstrate a pivotal role for CRP not only in the context of worsening glycemia and changes to the gut microbiota, but also highlight CRP as a potential target for mitigating type 2 diabetes progression or as a therapeutic target that could be manipulated through the microbiome. Understanding these processes will provide insights into the etiology of type 2 diabetes in addition to opening doors leading to possible novel diagnostic strategies and therapeutics.
Collapse
Affiliation(s)
- Eric L Brown
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, 77030, USA.
| | - Heather T Essigmann
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Goo Jun
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Sharon A Brown
- The University of Texas at Austin School of Nursing, Austin, TX, 78712, USA
| | - David Aguilar
- LSU Health New Orleans School of Medicine, Cardiology, New Orleans, LA, 70112, USA
| | - Craig L Hanis
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Lingasamy P, Modhukur V, Mändar R, Salumets A. Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools. Semin Reprod Med 2023; 41:172-189. [PMID: 38262441 PMCID: PMC10846929 DOI: 10.1055/s-0043-1778017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The dynamic interplay between the immunome and microbiome in reproductive health is a complex and rapidly advancing research field, holding tremendously vast possibilities for the development of reproductive medicine. This immunome-microbiome relationship influences the innate and adaptive immune responses, thereby affecting the onset and progression of reproductive disorders. However, the mechanisms governing these interactions remain elusive and require innovative approaches to gather more understanding. This comprehensive review examines the current knowledge on reproductive microbiomes across various parts of female reproductive tract, with special consideration of bidirectional interactions between microbiomes and the immune system. Additionally, it explores innate and adaptive immunity, focusing on immunoglobulin (Ig) A and IgM antibodies, their regulation, self-antigen tolerance mechanisms, and their roles in immune homeostasis. This review also highlights ongoing technological innovations in microbiota research, emphasizing the need for standardized detection and analysis methods. For instance, we evaluate the clinical utility of innovative technologies such as Phage ImmunoPrecipitation Sequencing (PhIP-Seq) and Microbial Flow Cytometry coupled to Next-Generation Sequencing (mFLOW-Seq). Despite ongoing advancements, we emphasize the need for further exploration in this field, as a deeper understanding of immunome-microbiome interactions holds promise for innovative diagnostic and therapeutic strategies for reproductive health, like infertility treatment and management of pregnancy.
Collapse
Affiliation(s)
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
DuPont HL, Suescun J, Jiang ZD, Brown EL, Essigmann HT, Alexander AS, DuPont AW, Iqbal T, Utay NS, Newmark M, Schiess MC. Fecal microbiota transplantation in Parkinson's disease-A randomized repeat-dose, placebo-controlled clinical pilot study. Front Neurol 2023; 14:1104759. [PMID: 36937520 PMCID: PMC10019775 DOI: 10.3389/fneur.2023.1104759] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Background and purpose The intestinal microbiome plays a primary role in the pathogenesis of neurodegenerative disorders and may provide an opportunity for disease modification. We performed a pilot clinical study looking at the safety of fecal microbiota transplantation (FMT), its effect on the microbiome, and improvement of symptoms in Parkinson's disease. Methods This was a randomized, double-blind placebo-controlled pilot study, wherein orally administered lyophilized FMT product or matching placebo was given to 12 subjects with mild to moderate Parkinson's disease with constipation twice weekly for 12 weeks. Subjects were followed for safety and clinical improvement for 9 additional months (total study duration 12 months). Results Fecal microbiota transplantation caused non-severe transient upper gastrointestinal symptoms. One subject receiving FMT was diagnosed with unrelated metastatic cancer and was removed from the trial. Beta diversity (taxa) of the microbiome, was similar comparing placebo and FMT groups at baseline, however, for subjects randomized to FMT, it increased significantly at 6 weeks (p = 0.008) and 13 weeks (p = 0.0008). After treatment with FMT, proportions of selective families within the phylum Firmicutes increased significantly, while proportion of microbiota belonging to Proteobacteria were significantly reduced. Objective motor findings showed only temporary improvement while subjective symptom improvements were reported compared to baseline in the group receiving FMT. Constipation, gut transient times (NS), and gut motility index (p = 0.0374) were improved in the FMT group. Conclusions Subjects with Parkinson's disease tolerated multi-dose-FMT, and experienced increased diversity of the intestinal microbiome that was associated with reduction in constipation and improved gut transit and intestinal motility. Fecal microbiota transplantation administration improved subjective motor and non-motor symptoms. Clinical trial registration ClinicalTrial.gov, identifier: NCT03671785.
Collapse
Affiliation(s)
- Herbert L. DuPont
- Microbiome Research Center, Kelsey Research Foundation, Houston, TX, United States
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, United States
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX, United States
- Medical Services and Specialties, Kelsey Seybold Clinic, Houston, TX, United States
| | - Jessika Suescun
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Zhi-Dong Jiang
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, United States
| | - Eric L. Brown
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, United States
| | - Heather T. Essigmann
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, United States
| | - Ashley S. Alexander
- Microbiome Research Center, Kelsey Research Foundation, Houston, TX, United States
| | - Andrew W. DuPont
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX, United States
| | - Tehseen Iqbal
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, United States
| | - Netanya S. Utay
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Newmark
- Microbiome Research Center, Kelsey Research Foundation, Houston, TX, United States
- Medical Services and Specialties, Kelsey Seybold Clinic, Houston, TX, United States
| | - Mya C. Schiess
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
9
|
Weiss MC, Shih YH, Bryan MS, Jackson BP, Aguilar D, Hanis CL, Argos M, Sargis RM. Relationships Between Urinary Metals and Diabetes Traits Among Mexican Americans in Starr County, Texas, USA. Biol Trace Elem Res 2023; 201:529-538. [PMID: 35247137 PMCID: PMC10766113 DOI: 10.1007/s12011-022-03165-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 01/25/2023]
Abstract
Hispanics/Latinos have higher rates of type 2 diabetes (T2D), and the origins of these disparities are poorly understood. Environmental endocrine-disrupting chemicals (EDCs), including some metals and metalloids, are implicated as diabetes risk factors. Data indicate that Hispanics/Latinos may be disproportionately exposed to EDCs, yet they remain understudied with respect to environmental exposures and diabetes. The objective of this study is to determine how metal exposures contribute to T2D progression by evaluating the associations between 8 urinary metals and measures of glycemic status in 414 normoglycemic or prediabetic adults living in Starr County, Texas, a Hispanic/Latino community with high rates of diabetes and diabetes-associated mortality. We used multivariable linear regression to quantify the differences in homeostatic model assessments for pancreatic β-cell function, insulin resistance, and insulin sensitivity (HOMA-β, HOMA-IR, HOMA-S, respectively), plasma insulin, plasma glucose, and hemoglobin A1c (HbA1c) associated with increasing urinary metal concentrations. Quantile-based g-computation was utilized to assess mixture effects. After multivariable adjustment, urinary arsenic and molybdenum were associated with lower HOMA-β, HOMA-IR, and plasma insulin levels and higher HOMA-S. Additionally, higher urinary copper levels were associated with a reduced HOMA-β. Lastly, a higher concentration of the 8 metal mixtures was associated with lower HOMA-β, HOMA-IR, and plasma insulin levels as well as higher HOMA-S. Our data indicate that arsenic, molybdenum, copper, and this metal mixture are associated with alterations in measures of glucose homeostasis among non-diabetics in Starr County. This study is one of the first to comprehensively evaluate associations of urinary metals with glycemic measures in a high-risk Mexican American population.
Collapse
Affiliation(s)
- Margaret C Weiss
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu-Hsuan Shih
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Molly Scannell Bryan
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
- Chicago Center for Health and Environment, Chicago, IL, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - David Aguilar
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Craig L Hanis
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maria Argos
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
- Chicago Center for Health and Environment, Chicago, IL, USA
| | - Robert M Sargis
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Chicago Center for Health and Environment, Chicago, IL, USA.
- Section of Endocrinology, Diabetes, and Metabolism, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, 835 S. Wolcott, Suite E625, M/C 640, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Brown EL, Essigmann HT, Hoffman KL, Alexander AS, Newmark M, Jiang ZD, Suescun J, Schiess MC, Hanis CL, DuPont HL. IgA-Biome Profiles Correlate with Clinical Parkinson's Disease Subtypes. JOURNAL OF PARKINSON'S DISEASE 2023; 13:501-513. [PMID: 37212075 PMCID: PMC10357173 DOI: 10.3233/jpd-230066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Parkinson's disease is a heterogeneous neurodegenerative disorder with distinctive gut microbiome patterns suggesting that interventions targeting the gut microbiota may prevent, slow, or reverse disease progression and severity. OBJECTIVE Because secretory IgA (SIgA) plays a key role in shaping the gut microbiota, characterization of the IgA-Biome of individuals classified into either the akinetic rigid (AR) or tremor dominant (TD) Parkinson's disease clinical subtypes was used to further define taxa unique to these distinct clinical phenotypes. METHODS Flow cytometry was used to separate IgA-coated and -uncoated bacteria from stool samples obtained from AR and TD patients followed by amplification and sequencing of the V4 region of the 16 S rDNA gene on the MiSeq platform (Illumina). RESULTS IgA-Biome analyses identified significant alpha and beta diversity differences between the Parkinson's disease phenotypes and the Firmicutes/Bacteroides ratio was significantly higher in those with TD compared to those with AR. In addition, discriminant taxa analyses identified a more pro-inflammatory bacterial profile in the IgA+ fraction of those with the AR clinical subclass compared to IgA-Biome analyses of those with the TD subclass and with the taxa identified in the unsorted control samples. CONCLUSION IgA-Biome analyses underscores the importance of the host immune response in shaping the gut microbiome potentially affecting disease progression and presentation. In the present study, IgA-Biome analyses identified a unique proinflammatory microbial signature in the IgA+ fraction of those with AR that would have otherwise been undetected using conventional microbiome analysis approaches.
Collapse
Affiliation(s)
- Eric L. Brown
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Heather T. Essigmann
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Kristi L. Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Zhi-Dong Jiang
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Jessika Suescun
- Department of Neurology/UTMOVE University of Texas McGovern Medical School, Houston, TX, USA
| | - Mya C. Schiess
- Department of Neurology/UTMOVE University of Texas McGovern Medical School, Houston, TX, USA
| | - Craig L. Hanis
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Herbert L. DuPont
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
- Kelsey Research Foundation, Houston, TX, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
11
|
DuPont HL, Jiang ZD, Alexander AS, DuPont AW, Brown EL. Intestinal IgA-Coated Bacteria in Healthy- and Altered-Microbiomes (Dysbiosis) and Predictive Value in Successful Fecal Microbiota Transplantation. Microorganisms 2022; 11:microorganisms11010093. [PMID: 36677385 PMCID: PMC9862469 DOI: 10.3390/microorganisms11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
IgA-coated bacteria in the gut (IgA-biome) provide a homeostatic function in healthy people through inhibition of microbial invaders and by protecting the epithelial monolayer of the gut. The laboratory methods used to detect this group of bacteria require flow cytometry and DNA sequencing (IgA-Seq). With dysbiosis (reduced diversity of the microbiome), the IgA-biome also is impaired. In the presence of enteric infection, oral vaccines, or an intestinal inflammatory disorder, the IgA-biome focuses on the pathogenic bacteria or foreign antigens, while in other chronic diseases associated with dysbiosis, the IgA-biome is reduced in capacity. Fecal microbiota transplantation (FMT), the use of fecal product from well-screened, healthy donors administered to patients with dysbiosis, has been successful in engrafting the intestine with healthy microbiota and metabolites leading to improve health. Through FMT, IgA-coated bacteria have been transferred to recipients retaining their immune coating. The IgA-biome should be evaluated in FMT studies as these mucosal-associated bacteria are more likely to be associated with successful transplantation than free luminal organisms. Studies of the microbiome pre- and post-FMT should employ metagenomic methods that identify bacteria at least at the species level to better identify organisms of interest while allowing comparisons of microbiota data between studies.
Collapse
Affiliation(s)
- Herbert L. DuPont
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
- Kelsey Research Foundation, Houston, TX 77005, USA
- Correspondence: ; Tel.: +1-713-500-9366
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| | | | - Andrew W. DuPont
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Eric L. Brown
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| |
Collapse
|
12
|
Krog MC, Madsen ME, Bliddal S, Bashir Z, Vexø LE, Hartwell D, Hugerth LW, Fransson E, Hamsten M, Boulund F, Wannerberger K, Engstrand L, Schuppe-Koistinen I, Nielsen HS. OUP accepted manuscript. Hum Reprod Open 2022; 2022:hoac015. [PMID: 35441092 PMCID: PMC9014536 DOI: 10.1093/hropen/hoac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
STUDY QUESTION What is the microbiome profile across different body sites in relation to the normal menstrual cycle (with and without hormonal contraception), recurrent pregnancy loss (RPL) (before and during pregnancy, pregnancy loss or birth) and endometriosis (before, during and after surgery)? How do these profiles interact with genetics, environmental exposures, immunological and endocrine biomarkers? WHAT IS KNOWN ALREADY The microbiome is a key factor influencing human health and disease in areas as diverse as immune functioning, gastrointestinal disease and mental and metabolic disorders. There is mounting evidence to suggest that the reproductive microbiome may be influential in general and reproductive health, fertility and pregnancy outcomes. STUDY DESIGN, SIZE, DURATION This is a prospective, longitudinal, observational study using a systems biology approach in three cohorts totalling 920 participants. Since microbiome profiles by shot-gun sequencing have never been investigated in healthy controls during varying phases of the menstrual cycle, patients with RPL and patients with endometriosis, no formal sample size calculation can be performed. The study period is from 2017 to 2024 and allows for longitudinal profiling of study participants to enable deeper understanding of the role of the microbiome and of host–microbe interactions in reproductive health. PARTICIPANTS/MATERIALS, SETTING, METHODS Participants in each cohort are as follows: Part 1 MiMens—150 healthy women with or without hormonal contraception; Part 2 MiRPL—200 couples with RPL, 50 healthy couples with prior uncomplicated pregnancy and 150 newborns; Part 3 MiEndo—120 patients with endometriosis requiring surgery with or without hormonal treatment. Microbiome profiles from saliva, faeces, rectal mucosa, vaginal fluid and endometrium will be studied, as well as the Omics profile, endocrine disrupting chemicals and endocrine and immune factors in blood, hair, saliva and urine. Pregnancy loss products, seminal microbiome, HLA types, endometriotic tissue and genetic risk and comprehensive questionnaire data will also be studied, where appropriate. Correlations with mental and physical health will be evaluated. STUDY FUNDING/COMPETING INTEREST(S) This work is supported by funding from Ferring Pharmaceuticals ([#MiHSN01] to H.S.N., M.C.K., M.E.M., L.E.V., L.E., I.S.-K., F.B., L.W.H., E.F. and M.H.), Rigshospitalet’s Research Funds ([#E-22614-01 and #E-22614-02] to M.C.K. and [#E-22222-06] to S.B.), Niels and Desiree Yde’s Foundation (S.B., endocrine analyses [#2015-2784]), the Musikforlæggerne Agnes and Knut Mørk’s Foundation (S.B., endocrine and immune analyses [#35108-001]) and Oda and Hans Svenningsen’s Foundation ([#F-22614-08] to H.S.N.). Medical writing assistance with this manuscript was provided by Caroline Loat, PhD, and funded by Ferring Pharmaceuticals. H.S.N. reports personal fees from Ferring Pharmaceuticals, Merck Denmark A/S, Ibsa Nordic, Astra Zeneca and Cook Medical outside the submitted work. K.W. is a full-time employee of Ferring Pharmaceuticals. No other conflicts are reported. TRIAL REGISTRATION NUMBER N/A TRIAL REGISTRATION DATE N/A DATE OF FIRST PATIENT’S ENROLMENT N/A
Collapse
Affiliation(s)
- Maria Christine Krog
- Correspondence address. The Recurrent Pregnancy Loss Unit, The Fertility Clinic 4071, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark. E-mail:
| | | | - Sofie Bliddal
- The Department of Medical Endocrinology and Metabolism, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Zahra Bashir
- The Recurrent Pregnancy Loss Unit, The Capital Region, The Fertility Clinic, Copenhagen University Hospitals Rigshospitalet and Hvidovre, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Slagelse Hospital, Slagelse, Denmark
| | - Laura Emilie Vexø
- The Recurrent Pregnancy Loss Unit, The Capital Region, The Fertility Clinic, Copenhagen University Hospitals Rigshospitalet and Hvidovre, Copenhagen, Denmark
- Department of Gynecology, The Endometriosis Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Dorthe Hartwell
- Department of Gynecology, The Endometriosis Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Luisa W Hugerth
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emma Fransson
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marica Hamsten
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Boulund
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Lars Engstrand
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Henriette Svarre Nielsen
- The Recurrent Pregnancy Loss Unit, The Capital Region, The Fertility Clinic, Copenhagen University Hospitals Rigshospitalet and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen N, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
13
|
Zhang H, Qi C, Zhao Y, Lu M, Li X, Zhou J, Dang H, Cui M, Miao T, Sun J, Li D. Depletion of gut secretory immunoglobulin A coated Lactobacillus reuteri is associated with gestational diabetes mellitus-related intestinal mucosal barrier damage. Food Funct 2021; 12:10783-10794. [PMID: 34609395 DOI: 10.1039/d1fo02517a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Changes in secretory immunoglobulin A (SIgA) coated bacteria from early to late pregnancy were associated with the development of gestational diabetes mellitus (GDM). SIgA coated beneficial gut bacteria, which are depleted in GDM, are potential probiotics for the prevention of GDM. We investigated blood biochemistry, chronic inflammation, mucosal barrier biomarkers and faecal SIgA coated microbiota in healthy early pregnancy (T1H, n = 50), late pregnancy (T3H, n = 30) and women with GDM (T3D, n = 27). The "leaky gut" markers, zonulin and lipopolysaccharide (LPS), significantly increased in T3D compared to the T3H group. The Shannon index of SIgA coated microbiota was elevated in late pregnancy compared to early pregnancy and was the highest in the T3D group (p < 0.001). The T3D group was enriched in SIgA coated Escherichia and Streptococcus and depleted in Lactobacillus and Bifidobacterium. Blood glucose (BG) positively correlated with zonulin (p < 0.001) and LPS (p < 0.05). Lactobacillus reuteri negatively correlated with BG (p < 0.05), zonulin (p < 0.05) and LPS (p < 0.01). Lactobacillus reuteri QS01 isolated from the feces of T1H significantly reduced LPS released by the gut microbiota of GDM individuals in vitro. In conclusion, GDM may be related to intestinal mucosal damage and inflammation-induced dysbiosis of SIgA coated microbiota. SIgA coated L. reuteri can reduce the level of LPS of GDM in vitro.
Collapse
Affiliation(s)
- Haowen Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Yuning Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Mengyao Lu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Xinyue Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Jingbo Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Hongyang Dang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Mengjun Cui
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Tingting Miao
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213004, Jiangsu Province, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
14
|
The impact of the Th17:Treg axis on the IgA-Biome across the glycemic spectrum. PLoS One 2021; 16:e0258812. [PMID: 34669745 PMCID: PMC8528330 DOI: 10.1371/journal.pone.0258812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Secretory IgA (SIgA) is released into mucosal surfaces where its function extends beyond that of host defense to include the shaping of resident microbial communities by mediating exclusion/inclusion of respective microbes and regulating bacterial gene expression. In this capacity, SIgA acts as the fulcrum on which host immunity and the health of the microbiota are balanced. We recently completed an analysis of the gut and salivary IgA-Biomes (16S rDNA sequencing of SIgA-coated/uncoated bacteria) in Mexican-American adults that identified IgA-Biome differences across the glycemic spectrum. As Th17:Treg ratio imbalances are associated with gut microbiome dysbiosis and chronic inflammatory conditions such as type 2 diabetes, the present study extends our prior work by examining the impact of Th17:Treg ratios (pro-inflammatory:anti-inflammatory T-cell ratios) and the SIgA response (Th17:Treg-SIgA axis) in shaping microbial communities. Examining the impact of Th17:Treg ratios (determined by epigenetic qPCR lymphocyte subset quantification) on the IgA-Biome across diabetes phenotypes identified a proportional relationship between Th17:Treg ratios and alpha diversity in the stool IgA-Biome of those with dysglycemia, significant changes in community composition of the stool and salivary microbiomes across glycemic profiles, and genera preferentially abundant by T-cell inflammatory phenotype. This is the first study to associate epigenetically quantified Th17:Treg ratios with both the larger and SIgA-fractionated microbiome, assess these associations in the context of a chronic inflammatory disease, and offers a novel frame through which to evaluate mucosal microbiomes in the context of host responses and inflammation.
Collapse
|
15
|
D'Aquila P, Giacconi R, Malavolta M, Piacenza F, Bürkle A, Villanueva MM, Dollé MET, Jansen E, Grune T, Gonos ES, Franceschi C, Capri M, Grubeck-Loebenstein B, Sikora E, Toussaint O, Debacq-Chainiaux F, Hervonen A, Hurme M, Slagboom PE, Schön C, Bernhardt J, Breusing N, Passarino G, Provinciali M, Bellizzi D. Microbiome in Blood Samples From the General Population Recruited in the MARK-AGE Project: A Pilot Study. Front Microbiol 2021; 12:707515. [PMID: 34381434 PMCID: PMC8350766 DOI: 10.3389/fmicb.2021.707515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023] Open
Abstract
The presence of circulating microbiome in blood has been reported in both physiological and pathological conditions, although its origins, identities and function remain to be elucidated. This study aimed to investigate the presence of blood microbiome by quantitative real-time PCRs targeting the 16S rRNA gene. To our knowledge, this is the first study in which the circulating microbiome has been analyzed in such a large sample of individuals since the study was carried out on 1285 Randomly recruited Age-Stratified Individuals from the General population (RASIG). The samples came from several different European countries recruited within the EU Project MARK-AGE in which a series of clinical biochemical parameters were determined. The results obtained reveal an association between microbial DNA copy number and geographic origin. By contrast, no gender and age-related difference emerged, thus demonstrating the role of the environment in influencing the above levels independent of age and gender at least until the age of 75. In addition, a significant positive association was found with Free Fatty Acids (FFA) levels, leukocyte count, insulin, and glucose levels. Since these factors play an essential role in both health and disease conditions, their association with the extent of the blood microbiome leads us to consider the blood microbiome as a potential biomarker of human health.
Collapse
Affiliation(s)
- Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - María Moreno Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Sport Science, Human Performance Research Centre, University of Konstanz, Konstanz, Germany
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center, Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olivier Toussaint
- Research Unit of Cellular Biology (URBC) Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Florence Debacq-Chainiaux
- Research Unit of Cellular Biology (URBC) Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | | | - Mikko Hurme
- Medical School, University of Tampere, Tampere, Finland
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | | | | | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| |
Collapse
|