1
|
Zheng Z, Xie X, Wang L, Xu M, He J, Deng Y, Yu K. Association between neutrophil-percentage-to-albumin ratio and periodontitis: insights from a population-based study. Front Nutr 2025; 12:1551349. [PMID: 40290655 PMCID: PMC12021642 DOI: 10.3389/fnut.2025.1551349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Background Periodontal diseases, characterized by the loss of tooth-supporting structures, are highly prevalent in the general population. The Neutrophil-Percentage-To-Albumin Ratio (NPAR) has been identified as a promising biomarker for systemic inflammation, but its relationship with periodontal disease has not been thoroughly investigated. Despite growing interest in its role in other chronic conditions, the specific connection between NPAR and periodontal disease remains underexplored and requires further examination to understand its potential clinical applications. Methods A population-based analysis was performed using data from the National Health and Nutrition Examination Survey (NHANES), with a total of 8,389 participants included with complete full-mouth periodontal examination, NPAR related index and covariates. NPAR was employed as the primary independent variable, the periodontitis and clinical periodontal parameters were set to the outcomes along with tooth counts and functional dentition as the sensitivity outcomes. To investigate its association between NPAR and periodontitis, weighted multivariate linear and logistic regression analyses were conducted. Sensitivity and replication analyses were also carried out to assess the robustness and reliability of the findings. Results This population-based study revealed a significant association between elevated NPAR levels and a higher likelihood of periodontitis, increased attachment loss (AL), and probing depth (PD). After full adjustment for potential confounders, NPAR was significantly associated with periodontitis (OR = 1.04, p = 0.005), attachment loss (β = 0.03, p < 0.001), and probing depth (β = 0.02, p < 0.001). Furthermore, the highest quartile of NPAR remained significantly associated with periodontitis (OR = 1.34, p = 0.010), AL (β = 0.15, p < 0.001) and PD (β = 0.09, p < 0.001). A significant trend was observed, with periodontitis strongly associated with increasing NPAR levels. These findings were further validated by the sensitivity analyses with decreased tooth counts (β = -0.08, p < 0.005) and the lower incidence of functional dentition (OR = 0.96, p = 0.030). Additionally, the replication analysis also enhanced the roundness of the results (OR = 1.07, p < 0.001). Conclusion This population-based study demonstrated a statistically significant positive relationship between NPAR and the prevalence of periodontitis, NPAR has been recognized as a potential biomarker for periodontal disease. Additional longitudinal research are needed to confirm these findings and investigate the clinical implications of NPAR in managing periodontal conditions.
Collapse
Affiliation(s)
- Ziyang Zheng
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Xinyu Xie
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Lan Wang
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Mingzhang Xu
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Jiaqi He
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yunyi Deng
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Ke Yu
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Ogulur I, Mitamura Y, Yazici D, Pat Y, Ardicli S, Li M, D'Avino P, Beha C, Babayev H, Zhao B, Zeyneloglu C, Giannelli Viscardi O, Ardicli O, Kiykim A, Garcia-Sanchez A, Lopez JF, Shi LL, Yang M, Schneider SR, Skolnick S, Dhir R, Radzikowska U, Kulkarni AJ, Imam MB, Veen WVD, Sokolowska M, Martin-Fontecha M, Palomares O, Nadeau KC, Akdis M, Akdis CA. Type 2 immunity in allergic diseases. Cell Mol Immunol 2025; 22:211-242. [PMID: 39962262 PMCID: PMC11868591 DOI: 10.1038/s41423-025-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/09/2025] [Indexed: 03/01/2025] Open
Abstract
Significant advancements have been made in understanding the cellular and molecular mechanisms of type 2 immunity in allergic diseases such as asthma, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis (EoE), food and drug allergies, and atopic dermatitis (AD). Type 2 immunity has evolved to protect against parasitic diseases and toxins, plays a role in the expulsion of parasites and larvae from inner tissues to the lumen and outside the body, maintains microbe-rich skin and mucosal epithelial barriers and counterbalances the type 1 immune response and its destructive effects. During the development of a type 2 immune response, an innate immune response initiates starting from epithelial cells and innate lymphoid cells (ILCs), including dendritic cells and macrophages, and translates to adaptive T and B-cell immunity, particularly IgE antibody production. Eosinophils, mast cells and basophils have effects on effector functions. Cytokines from ILC2s and CD4+ helper type 2 (Th2) cells, CD8 + T cells, and NK-T cells, along with myeloid cells, including IL-4, IL-5, IL-9, and IL-13, initiate and sustain allergic inflammation via T cell cells, eosinophils, and ILC2s; promote IgE class switching; and open the epithelial barrier. Epithelial cell activation, alarmin release and barrier dysfunction are key in the development of not only allergic diseases but also many other systemic diseases. Recent biologics targeting the pathways and effector functions of IL4/IL13, IL-5, and IgE have shown promising results for almost all ages, although some patients with severe allergic diseases do not respond to these therapies, highlighting the unmet need for a more detailed and personalized approach.
Collapse
Affiliation(s)
- Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Carina Beha
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Bingjie Zhao
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Can Zeyneloglu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Asuncion Garcia-Sanchez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Biomedical and Diagnostic Science, School of Medicine, University of Salamanca, Salamanca, Spain
| | - Juan-Felipe Lopez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Li-Li Shi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Minglin Yang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephen Skolnick
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Seed Health Inc., Los Angeles, CA, USA
| | - Raja Dhir
- Seed Health Inc., Los Angeles, CA, USA
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Abhijeet J Kulkarni
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mar Martin-Fontecha
- Departamento de Quimica Organica, Facultad de Optica y Optometria, Complutense University of Madrid, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| |
Collapse
|
3
|
Malcangi G, Inchingolo AM, Casamassima L, Trilli I, Ferrante L, Inchingolo F, Palermo A, Inchingolo AD, Dipalma G. Effectiveness of Herbal Medicines with Anti-Inflammatory, Antimicrobial, and Antioxidant Properties in Improving Oral Health and Treating Gingivitis and Periodontitis: A Systematic Review. Nutrients 2025; 17:762. [PMID: 40077632 PMCID: PMC11901544 DOI: 10.3390/nu17050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVES This systematic review investigates the effectiveness of natural extracts with anti-inflammatory properties for improving oral health, particularly in managing gingivitis and periodontal disease (PD). With PD being a major global health issue, exacerbated by microbial dysbiosis and oxidative stress, the integration of phytochemicals and herbal formulations into periodontal therapy offers a promising avenue for adjunctive treatments. METHODS A systematic review was conducted following PRISMA guidelines and registered under the International Prospective Register of Systematic Reviews (ID: 641944). Databases, including PubMed, Scopus, and Web of Science, were searched between 18-24 December 2024, using Boolean keywords combining terms such as "herbal medicine", "plant extracts", "anti-inflammatory", and "periodontal therapy". Studies involving animal models, in vitro data, or non-peer-reviewed articles were excluded. RESULTS Seventeen studies met inclusion criteria. Polyherbal formulations and single-component extracts (e.g., Camellia sinensis, Punica granatum, Zingiber officinale, and Rosmarinus officinalis) demonstrated comparable efficacy to conventional agents like chlorhexidine (CHX). Polyherbal rinses, camellia sinensis gels, and extracts like Punica granatum reduced inflammation, improved gingival health, and showed antimicrobial properties, offering effective natural alternatives. CONCLUSIONS Natural products, including single extracts and polyherbal formulations, provide effective and safe alternatives for managing gingivitis and PD. Their anti-inflammatory, antimicrobial, and antioxidant properties support their adjunctive role alongside with scaling and root planning therapy (SRP) in periodontal therapy. However, further large-scale, long-term studies are needed to standardize formulations and establish optimal protocols.
Collapse
Affiliation(s)
- Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Lucia Casamassima
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Andrea Palermo
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| |
Collapse
|
4
|
de Campos Kajimoto N, de Paiva Buischi Y, Mohamadzadeh M, Loomer P. The Oral Microbiome of Peri-Implant Health and Disease: A Narrative Review. Dent J (Basel) 2024; 12:299. [PMID: 39452426 PMCID: PMC11506630 DOI: 10.3390/dj12100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Peri-implantitis disease has increased significantly over the last years, resulting in increased failure of implants. Many factors may play a role in implant complications and failure, including ones related to the oral microbiota. This literature review aims to summarize the current knowledge of microbiome of implants in health and disease, focusing not only on the presence/absence of specific microbiota or on their relative abundance, but also on their phenotypic expression and their complex relationships with the host. The authors examined the MEDLINE database and identified key topics about peri-implant oral microbiome in health and disease. The peri-implant microbiome differs from that of the tooth, both in health and disease, as they are structurally and chemically different. The adhesion and formation of the peri-implant biofilm can be affected by the surface energy, topography, wettability, and electrochemical charges of the implant surface. In addition, the morphogenesis of the tissues surrounding the dental implant also differs from the tooth, making the dental implant more susceptible to bacterial infection. This interplay between the microbiome and the host immune system in peri-implant infections still needs to be elucidated.
Collapse
Affiliation(s)
- Natalia de Campos Kajimoto
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| | - Yvonne de Paiva Buischi
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Peter Loomer
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| |
Collapse
|
5
|
Liu S, Chen Y, Jiang Y, Du J, Guo L, Xu J, Liu Y, Liu Y. The bidirectional effect of neutrophils on periodontitis model in mice: A systematic review. Oral Dis 2024; 30:2865-2875. [PMID: 37927000 DOI: 10.1111/odi.14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To evaluate the regulatory role of neutrophils as the first line of host immune defense in the periodontal microenvironment of mice. METHODS A systematic search was performed using PubMed, Web of Science, and ScienceDirect databases for articles published between 2012 and 2023. In this review, articles investigating the effect of neutrophils on alveolar bone resorption in a mouse model of periodontitis were selected and evaluated according to eligibility criteria. Important variables that may influence outcomes were analyzed. RESULTS Eleven articles were included in this systematic review. The results showed that because of their immune defense functions, the functional homeostasis of local neutrophils is critical for periodontal health. Neutrophil deficiency aggravates alveolar bone loss. However, several studies have shown that excessive neutrophil infiltration is positively correlated with alveolar bone resorption caused by periodontitis in mice. Therefore, the homeostasis of neutrophil function needs to be considered in the treatment of periodontitis. CONCLUSIONS Pooled analysis suggests that neutrophils play a bidirectional role in periodontal tissue remodeling in mouse periodontitis models. Therefore, targeted regulation of local neutrophil function provides a novel strategy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Kondo T, Gleason A, Okawa H, Hokugo A, Nishimura I. Mouse gingival single-cell transcriptomic atlas identified a novel fibroblast subpopulation activated to guide oral barrier immunity in periodontitis. eLife 2023; 12:RP88183. [PMID: 38015204 PMCID: PMC10684155 DOI: 10.7554/elife.88183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Periodontitis, one of the most common non-communicable diseases, is characterized by chronic oral inflammation and uncontrolled tooth supporting alveolar bone resorption. Its underlying mechanism to initiate aberrant oral barrier immunity has yet to be delineated. Here, we report a unique fibroblast subpopulation activated to guide oral inflammation (AG fibroblasts) identified in a single-cell RNA sequencing gingival cell atlas constructed from the mouse periodontitis models. AG fibroblasts localized beneath the gingival epithelium and in the cervical periodontal ligament responded to the ligature placement and to the discrete topical application of Toll-like receptor stimulants to mouse maxillary tissue. The upregulated chemokines and ligands of AG fibroblasts linked to the putative receptors of neutrophils in the early stages of periodontitis. In the established chronic inflammation, neutrophils, together with AG fibroblasts, appeared to induce type 3 innate lymphoid cells (ILC3s) that were the primary source of interleukin-17 cytokines. The comparative analysis of Rag2-/- and Rag2-/-Il2rg-/- mice suggested that ILC3 contributed to the cervical alveolar bone resorption interfacing the gingival inflammation. We propose the AG fibroblast-neutrophil-ILC3 axis as a previously unrecognized mechanism which could be involved in the complex interplay between oral barrier immune cells contributing to pathological inflammation in periodontitis.
Collapse
Affiliation(s)
- Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of DentistrySendaiJapan
| | - Annie Gleason
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- UCLA Bruin in Genomics Summer ProgramLos AngelesUnited States
| | - Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of DentistrySendaiJapan
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
| |
Collapse
|
7
|
Kondo T, Gleason A, Okawa H, Hokugo A, Nishimura I. Mouse gingival single-cell transcriptomic atlas: An activated fibroblast subpopulation guides oral barrier immunity in periodontitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536751. [PMID: 37546811 PMCID: PMC10401928 DOI: 10.1101/2023.04.13.536751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Periodontitis, one of the most common non-communicable diseases, is characterized by chronic oral inflammation and uncontrolled tooth supporting alveolar bone resorption. Its underlying mechanism to initiate aberrant oral barrier immunity has yet to be delineated. Here, we report a unique fibroblast subpopulation activated to guide oral inflammation (AG fibroblasts) identified in a single-cell RNA sequencing gingival cell atlas constructed from the mouse periodontitis models. AG fibroblasts localized beneath the gingival epithelium and in the cervical periodontal ligament responded to the ligature placement and to the discrete application of Toll-like receptor stimulants to mouse maxillary tissue. The upregulated chemokines and ligands of AG fibroblasts linked to the putative receptors of neutrophils in the early stages of periodontitis. In the established chronic inflammation, neutrophils together with AG fibroblasts appeared to induce type 3 innate lymphoid cells (ILC3s) that were the primary source of interleukin-17 cytokines. The comparative analysis of Rag2-/- and Rag2γc-/- mice suggested that ILC3 contributed to the cervical alveolar bone resorption interfacing the gingival inflammation. We propose that AG fibroblasts function as a previously unrecognized surveillant to initiate gingival inflammation leading to periodontitis through the AG fibroblast-neutrophil-ILC3 axis.
Collapse
Affiliation(s)
- Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Annie Gleason
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Bruin in Genomics Summer Program
| | - Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Joseph S, Carda-Diéguez M, Aduse-Opoku J, Alsam A, Mira A, Curtis M. The Murine Oral Metatranscriptome Reveals Microbial and Host Signatures of Periodontal Disease. J Dent Res 2023; 102:565-573. [PMID: 36883648 PMCID: PMC10152569 DOI: 10.1177/00220345221149675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Periodontal disease is accompanied by alterations to cellular profiles and biological activities of both the subgingival microbiome and host tissues. Although significant progress has been made in describing the molecular basis of the homeostatic balance of host-commensal microbe interactions in health compared to the destructive imbalance in disease, particularly with respect to immune and inflammatory systems, few studies have attempted a comprehensive analysis in diverse host models. Here, we describe the development and application of a metatranscriptomic approach to analysis of host-microbe gene transcription in a murine periodontal disease model, based on oral gavage infection using Porphyromonas gingivalis in C57BL6/J mice. We generated 24 metatranscriptomic libraries from individual mouse oral swabs, representing health and disease. On average, 76% ± 11.7% reads in each sample belonged to the murine host genome and the remainder to the microbes. We found 3,468 (2.4% of the total) murine host transcripts differentially expressed between health and disease, of which 76% were overexpressed in periodontitis. Predictably, there were prominent alterations to genes and pathways linked with the host immune compartment in disease-the CD40 signaling pathway being the top enriched biological process in this data set. However, in addition, we observed significant alterations to other biological processes in disease, particularly cellular/metabolic processes and biological regulation. The number of differentially expressed microbial genes particularly indicated shifts in carbon metabolism pathways in disease with potential consequences for metabolic end-product formation. Together, these metatranscriptome data reveal marked changes between the gene expression patterns in both the murine host and microbiota, which may represent signatures of health and disease, providing the basis for future functional studies of prokaryotic and eukaryotic cellular responses in periodontal disease. In addition, the noninvasive protocol developed in this study will enable further longitudinal and interventionist studies of host-microbe gene expression networks.
Collapse
Affiliation(s)
- S. Joseph
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - M. Carda-Diéguez
- Oral Microbiome Lab, Department of Health and Genomics, FISABIO foundation, Valencia, Spain
| | - J. Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - A. Alsam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - A. Mira
- Oral Microbiome Lab, Department of Health and Genomics, FISABIO foundation, Valencia, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
| | - M.A. Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| |
Collapse
|
9
|
Hajishengallis G, Lamont RJ, Koo H. Oral polymicrobial communities: Assembly, function, and impact on diseases. Cell Host Microbe 2023; 31:528-538. [PMID: 36933557 PMCID: PMC10101935 DOI: 10.1016/j.chom.2023.02.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Oral microbial communities assemble into complex spatial structures. The sophisticated physical and chemical signaling systems underlying the community enable their collective functional regulation as well as the ability to adapt by integrating environmental information. The combined output of community action, as shaped by both intra-community interactions and host and environmental variables, dictates homeostatic balance or dysbiotic disease such as periodontitis and dental caries. Oral polymicrobial dysbiosis also exerts systemic effects that adversely affect comorbidities, in part due to ectopic colonization of oral pathobionts in extra-oral tissues. Here, we review new and emerging concepts that explain the collective functional properties of oral polymicrobial communities and how these impact health and disease both locally and systemically.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
He H, Hao Y, Fan Y, Li B, Cheng L. The interaction between innate immunity and oral microbiota in oral diseases. Expert Rev Clin Immunol 2023; 19:405-415. [PMID: 36803467 DOI: 10.1080/1744666x.2023.2182291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Innate immunity serves as the frontline to combat invading pathogens. Oral microbiota is the total collection of microorganisms colonized within the oral cavity. By recognizing the resident microorganisms through pattern recognition receptors, innate immunity is capable of interacting with oral microbiota and maintaining homeostasis. Dysregulation of interaction may lead to the pathogenesis of several oral diseases. Decoding the crosstalk between oral microbiota and innate immunity may be contributory to developing novel therapies for preventing and treating oral diseases. AREAS COVERED This article reviewed pattern recognition receptors in the recognition of oral microbiota, the reciprocal interaction between innate immunity and oral microbiota, and discussed how the dysregulation of this relationship leads to the pathogenesis and development of oral diseases. EXPERT OPINION Many studies have been conducted to illustrate the relationship between oral microbiota and innate immunity and its role in the occurrence of different oral diseases. The impact and mechanisms of innate immune cells on oral microbiota and the mechanisms of dysbiotic microbiota in altering innate immunity are still needed to be investigated. Altering the oral microbiota might be a possible solution for treating and preventing oral diseases.
Collapse
Affiliation(s)
- Hongzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Liu J, Dan R, Zhou X, Xiang J, Wang J, Liu J. Immune senescence and periodontitis: From mechanism to therapy. J Leukoc Biol 2022; 112:1025-1040. [PMID: 36218054 DOI: 10.1002/jlb.3mr0822-645rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most prevalent infectious inflammatory diseases, characterized by irreversible destruction of the supporting tissues of teeth, which is correlated with a greater risk of multiple systemic diseases, thus regarded as a major health concern. Dysregulation between periodontal microbial community and host immunity is considered to be the leading cause of periodontitis. Comprehensive studies have unveiled the double-edged role of immune response in the development of periodontitis. Immune senescence, which is described as age-related alterations in immune system, including a diminished immune response to endogenous and exogenous stimuli, a decline in the efficiency of immune protection, and even failure in immunity build-up after vaccination, leads to the increased susceptibility to infection. Recently, the intimate relationship between immune senescence and periodontitis has come into focus, especially in the aging population. In this review, both periodontal immunity and immune senescence will be fully introduced, especially their roles in the pathology and progression of periodontitis. Furthermore, novel immunotherapies targeting immune senescence are presented to provide potential targets for research and clinical intervention in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruichen Dan
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueman Zhou
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Alves CH, Russi KL, Rocha NC, Bastos F, Darrieux M, Parisotto TM, Girardello R. Host-microbiome interactions regarding peri-implantitis and dental implant loss. Lab Invest 2022; 20:425. [PMID: 36138430 PMCID: PMC9502891 DOI: 10.1186/s12967-022-03636-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
In the last decades, the ortho-aesthetic-functional rehabilitation had significant advances with the advent of implantology. Despite the success in implantology surgeries, there is a percentage of failures mainly due to in loco infections, through bacterial proliferation, presence of fungi and biofilm formation, originating peri-implantitis. In this sense, several studies have been conducted since then, seeking answers to numerous questions that remain unknown. Thus, the present work aims to discuss the interaction between host-oral microbiome and the development of peri-implantitis. Peri-implantitis was associated with a diversity of bacterial species, being Porphiromonas gingivalis, Treponema denticola and Tannerella forsythia described in higher proportion of peri-implantitis samples. In a parallel role, the injury of peri-implant tissue causes an inflammatory response mediated by activation of innate immune cells such as macrophages, dendritic cells, mast cells, and neutrophils. In summary, the host immune system activation may lead to imbalance of oral microbiota, and, in turn, the oral microbiota dysbiosis is reported leading to cytokines, chemokines, prostaglandins, and proteolytic enzymes production. These biological processes may be responsible for implant loss.
Collapse
Affiliation(s)
- Carlos Henrique Alves
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Karolayne Larissa Russi
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Natália Conceição Rocha
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | | | - Michelle Darrieux
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Thais Manzano Parisotto
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil
| | - Raquel Girardello
- Laboratório de Microbiologia Molecular E Clínica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade São Francisco, 218, São Francisco Ave., Bragança Paulista, São Paulo, Zip code: # 12916900, Brazil.
| |
Collapse
|
13
|
Ide M, Karimova M, Setterfield J. Oral Health, Antimicrobials and Care for Patients With Chronic Oral Diseases – A Review of Knowledge and Treatment Strategies. FRONTIERS IN ORAL HEALTH 2022; 3:866695. [PMID: 35747534 PMCID: PMC9210540 DOI: 10.3389/froh.2022.866695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Periodontal and chronic oral mucosal diseases are significant life impacting conditions which may co-exist and synergistically act to cause more severe and widespread oral pathology with enhanced challenges in effective management. Clinicians regularly observe these effects and struggle to effectively manage both problems in many patients. There is limited understanding of many basic and applied scientific elements underpinning potentially shared aetiopathological features and management. Recent developments in translational science provide an opportunity to greater improve knowledge and subsequently care for patients with these problems.
Collapse
|
14
|
Chen J, Yang Y, Liu B, Xie X, Li W. Hermansky-Pudlak syndrome type 2: A rare cause of severe periodontitis in adolescents-A case study. Front Pediatr 2022; 10:914243. [PMID: 35928686 PMCID: PMC9343695 DOI: 10.3389/fped.2022.914243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by oculocutaneous albinism (OCA) and platelet storage pool deficiency. The HPS-2 subtype is distinguished by neutropenia, and little is known about its periodontal phenotype in adolescents. AP3B1 is the causative gene for HPS-2. A 13-year-old Chinese girl presented to our department suffering from gingival bleeding and tooth mobility. Her dental history was otherwise unremarkable. Suspecting some systemic diseases as the underlying cause, the patient was referred for medical consultation, a series of blood tests, and genetic tests. In this case study, periodontal status and mutation screening of one HPS-2 case are presented. METHODS Blood analysis including a complete blood count (CBC) and glycated hemoglobin levels were measured. Platelet transmission electron microscopy (PTEM) was performed to observe the dense granules in platelets. Whole-exome sequencing (WES) and Sanger sequencing were performed to confirm the pathogenic variants. RESULTS A medical diagnosis of HPS-2 was assigned to the patient. Following the medical diagnosis, a periodontal diagnosis of "periodontitis as a manifestation of systemic disease" was assigned to the patient. We identified novel compound heterozygous variants in AP3B1 (NM_003664.4: exon7: c.763C>T: p.Q255*) and (NM_003664.4: exon1: c.53_56dup: p.E19Dfs*21) in this Chinese pedigree with HPS-2. CONCLUSION This case study indicates the importance of periodontitis as a possible indicator of underlying systemic disease. Systemic disease screening is needed when a young patient presents with unusual, severe periodontitis, as the oral condition may be the first of a systemic abnormality. Our work also expands the spectrum of AP3B1 mutations and further provides additional genetic testing information for other HPS-2 patients.
Collapse
Affiliation(s)
- Jun Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China.,Department of Periodontics, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Yifan Yang
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Binjie Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China.,Department of Periodontics, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Xiaoli Xie
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Wenjie Li
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China.,Deparment of Orthodontics, Xiangya Stomatological Hospital, Central South University, Changsha, China.,Department of Oral Health Science, School of Dentistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
15
|
Vitkov L, Muñoz LE, Schoen J, Knopf J, Schauer C, Minnich B, Herrmann M, Hannig M. Neutrophils Orchestrate the Periodontal Pocket. Front Immunol 2021; 12:788766. [PMID: 34899756 PMCID: PMC8654349 DOI: 10.3389/fimmu.2021.788766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
The subgingival biofilm attached to tooth surfaces triggers and maintains periodontitis. Previously, late-onset periodontitis has been considered a consequence of dysbiosis and a resultant polymicrobial disruption of host homeostasis. However, a multitude of studies did not show "healthy" oral microbiota pattern, but a high diversity depending on culture, diets, regional differences, age, social state etc. These findings relativise the aetiological role of the dysbiosis in periodontitis. Furthermore, many late-onset periodontitis traits cannot be explained by dysbiosis; e.g. age-relatedness, attenuation by anti-ageing therapy, neutrophil hyper-responsiveness, and microbiota shifting by dysregulated immunity, yet point to the crucial role of dysregulated immunity and neutrophils in particular. Furthermore, patients with neutropenia and neutrophil defects inevitably develop early-onset periodontitis. Intra-gingivally injecting lipopolysaccharide (LPS) alone causes an exaggerated neutrophil response sufficient to precipitate experimental periodontitis. Vice versa to the surplus of LPS, the increased neutrophil responsiveness characteristic for late-onset periodontitis can effectuate gingiva damage likewise. The exaggerated neutrophil extracellular trap (NET) response in late-onset periodontitis is blameable for damage of gingival barrier, its penetration by bacteria and pathogen-associated molecular patterns (PAMPs) as well as stimulation of Th17 cells, resulting in further neutrophil activation. This identifies the dysregulated immunity as the main contributor to periodontal disease.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Vascular & Exercise Biology Unit, Department of Biosciences, University of Salzburg, Salzburg, Austria
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernd Minnich
- Vascular & Exercise Biology Unit, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| |
Collapse
|