1
|
Lin MH, Liu CC, Lu CW, Shu JC. Staphylococcus aureus foldase PrsA contributes to the folding and secretion of protein A. BMC Microbiol 2024; 24:108. [PMID: 38566014 PMCID: PMC10986000 DOI: 10.1186/s12866-024-03268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Staphylococcus aureus secretes a variety of proteins including virulence factors that cause diseases. PrsA, encoded by many Gram-positive bacteria, is a membrane-anchored lipoprotein that functions as a foldase to assist in post-translocational folding and helps maintain the stability of secreted proteins. Our earlier proteomic studies found that PrsA is required for the secretion of protein A, an immunoglobulin-binding protein that contributes to host immune evasion. This study aims to investigate how PrsA influences protein A secretion. RESULTS We found that in comparison with the parental strain HG001, the prsA-deletion mutant HG001ΔprsA secreted less protein A. Deleting prsA also decreased the stability of exported protein A. Pulldown assays indicated that PrsA interacts with protein A in vivo. The domains in PrsA that interact with protein A are mapped to both the N- and C-terminal regions (NC domains). Additionally, the NC domains are essential for promoting PrsA dimerization. Furthermore, an immunoglobulin-binding assay revealed that, compared to the parental strain HG001, fewer immunoglobulins bound to the surface of the mutant strain HG001ΔprsA. CONCLUSIONS This study demonstrates that PrsA is critical for the folding and secretion of protein A. The information derived from this study provides a better understanding of virulent protein export pathways that are crucial to the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Mei-Hui Lin
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, 333, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao- Yuan, 333, Taiwan.
| | - Chao-Chin Liu
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao- Yuan, 333, Taiwan
| | - Chiao-Wen Lu
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, 333, Taiwan
| | - Jwu-Ching Shu
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, 333, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao- Yuan, 333, Taiwan.
| |
Collapse
|
2
|
A Regulatory SRNA Rli43 Is Involved in the Modulation of Biofilm Formation and Virulence in Listeria monocytogenes. Pathogens 2022; 11:pathogens11101137. [PMID: 36297193 PMCID: PMC9606912 DOI: 10.3390/pathogens11101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Small RNAs (sRNAs) are a kind of regulatory molecule that can modulate gene expression at the post-transcriptional level, thereby involving alteration of the physiological characteristics of bacteria. However, the regulatory roles and mechanisms of most sRNAs remain unknown in Listeria monocytogenes(L. monocytogenes). To explore the regulatory roles of sRNA Rli43 in L. monocytogenes, the rli43 gene deletion strain LM-Δrli43 and complementation strain LM-Δrli43-rli43 were constructed to investigate the effects of Rli43 on responses to environmental stress, biofilm formation, and virulence, respectively. Additionally, Rli43-regulated target genes were identified using bioinformatic analysis tools and a bacterial dual plasmid reporter system based on E. coli. The results showed that the intracellular expression level of the rli43 gene was significantly upregulated compared with those under extracellular conditions. Compared with the parental and complementation strains, the environmental adaptation, motility, biofilm formation, adhesion, invasion, and intracellular survival of LM-Δrli43 were significantly reduced, respectively, whereas the LD50 of LM-Δrli43 was significantly elevated in BALB/c mice. Furthermore, the bacterial loads and pathological damages were alleviated, suggesting that sRNA Rli43 was involved in the modulation of the virulence of L. monocytogenes. It was confirmed that Rli43 may complementarily pair with the 5'-UTR (-47--55) of HtrA mRNA, thereby regulating the expression level of HtrA protein at the post-transcriptional level. These findings suggest that Rli43-mediated control was involved in the modulation of environmental adaptation, biofilm formation, and virulence in L. monocytogenes.
Collapse
|
3
|
Cahoon LA, Alejandro‐Navarreto X, Gururaja AN, Light SH, Alonzo F, Anderson WF, Freitag NE. Listeria monocytogenes two component system PieRS regulates secretion chaperones PrsA1 and PrsA2 and enhances bacterial translocation across the intestine. Mol Microbiol 2022; 118:278-293. [PMID: 35943959 PMCID: PMC9545042 DOI: 10.1111/mmi.14967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes (Lm) is a widespread environmental Gram-positive bacterium that can transition into a pathogen following ingestion by a susceptible host. To cross host barriers and establish infection, Lm is dependent upon the regulated secretion and activity of many proteins including PrsA2, a peptidyl-prolyl cis-trans isomerase with foldase activity. PrsA2 contributes to the stability and activity of a number of secreted virulence factors that are required for Lm invasion, replication, and cell-to-cell spread within the infected host. In contrast, a second related secretion chaperone, PrsA1, has thus far no identified contributions to Lm pathogenesis. Here we describe the characterization of a two-component signal transduction system PieRS that regulates the expression of a regulon that includes the secretion chaperones PrsA1 and PrsA2. PieRS regulated gene products are required for bacterial resistance to ethanol exposure and are important for bacterial survival during transit through the gastrointestinal tract. PrsA1 was also found to make a unique contribution to Lm survival in the GI tract, revealing for the first time a non-overlapping requirement for both secretion chaperones PrsA1 and PrsA2 during the process of intra-gastric infection.
Collapse
Affiliation(s)
- Laty A. Cahoon
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | | | - Avinash N. Gururaja
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sam H. Light
- Department of MicrobiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Francis Alonzo
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
| | - Wayne F. Anderson
- Center for Genomics and Infectious Diseases, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Nancy E. Freitag
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
4
|
HtrA family proteases of bacterial pathogens: pros and cons for their therapeutic use. Clin Microbiol Infect 2021; 27:559-564. [DOI: 10.1016/j.cmi.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/25/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
|
5
|
Mariaule V, Kriaa A, Soussou S, Rhimi S, Boudaya H, Hernandez J, Maguin E, Lesner A, Rhimi M. Digestive Inflammation: Role of Proteolytic Dysregulation. Int J Mol Sci 2021; 22:ijms22062817. [PMID: 33802197 PMCID: PMC7999743 DOI: 10.3390/ijms22062817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of the proteolytic balance is often associated with diseases. Serine proteases and matrix metalloproteases are involved in a multitude of biological processes and notably in the inflammatory response. Within the framework of digestive inflammation, several studies have stressed the role of serine proteases and matrix metalloproteases (MMPs) as key actors in its pathogenesis and pointed to the unbalance between these proteases and their respective inhibitors. Substantial efforts have been made in developing new inhibitors, some of which have reached clinical trial phases, notwithstanding that unwanted side effects remain a major issue. However, studies on the proteolytic imbalance and inhibitors conception are directed toward host serine/MMPs proteases revealing a hitherto overlooked factor, the potential contribution of their bacterial counterpart. In this review, we highlight the role of proteolytic imbalance in human digestive inflammation focusing on serine proteases and MMPs and their respective inhibitors considering both host and bacterial origin.
Collapse
Affiliation(s)
- Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Souha Soussou
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Houda Boudaya
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Juan Hernandez
- Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), University of Nantes, 101 Route de Gachet, 44300 Nantes, France;
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, PL80-308 Gdansk, Poland;
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
- Correspondence:
| |
Collapse
|
6
|
Cardiotropic Isolates of Listeria monocytogenes with Enhanced Vertical Transmission Dependent upon the Bacterial Surface Protein InlB. Infect Immun 2021; 89:IAI.00321-20. [PMID: 33139387 DOI: 10.1128/iai.00321-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a facultative Gram-positive intracellular bacterium that is capable of causing serious invasive infections in pregnant women, resulting in abortion, still-birth, and disseminated fetal infection. Previously, a clinical L. monocytogenes isolate, 07PF0776, was identified as having an enhanced ability to target cardiac tissue. This tissue tropism appeared to correlate with amino acid variations found within internalin B (InlB), a bacterial surface protein associated with host cell invasion. Given that the mammalian receptor bound by InlB, Met, is abundantly expressed by placental tissue, we assessed isolate 07PF0776 for its ability to be transmitted from mother to fetus. Pregnant Swiss Webster mice were infected on gestational day E13 via tail vein injection with the standard isolate 10403S, a noncardiotropic strain, or 07PF0776, the cardiac isolate. Pregnant mice infected with 07PF0776 exhibited significantly enhanced transmission of L. monocytogenes to placentas and fetuses compared to 10403S. Both bacterial burdens and the frequency of placental and fetal infection were increased in mice infected with the cardiac isolate. Strain 07PF0776 also exhibited an enhanced ability to invade Jar human trophoblast tissue culture cells in comparison to 10403S, and was found to have increased levels of InlB associated with the bacterial cell surface. Overexpression of surface InlB via genetic manipulation was sufficient to confer enhanced invasion of the placenta and fetus to both 10403S and 07PF0776. These data support a central role for surface InlB in promoting vertical transmission of L. monocytogenes.
Collapse
|
7
|
Leseigneur C, Lê-Bury P, Pizarro-Cerdá J, Dussurget O. Emerging Evasion Mechanisms of Macrophage Defenses by Pathogenic Bacteria. Front Cell Infect Microbiol 2020; 10:577559. [PMID: 33102257 PMCID: PMC7545029 DOI: 10.3389/fcimb.2020.577559] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Macrophages participate to the first line of defense against infectious agents. Microbial pathogens evolved sophisticated mechanisms to escape macrophage killing. Here, we review recent discoveries and emerging concepts on bacterial molecular strategies to subvert macrophage immune responses. We focus on the expanding number of fascinating subversive tools developed by Listeria monocytogenes, Staphylococcus aureus, and pathogenic Yersinia spp., illustrating diversity and commonality in mechanisms used by microorganisms with different pathogenic lifestyles.
Collapse
Affiliation(s)
- Clarisse Leseigneur
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Pierre Lê-Bury
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Javier Pizarro-Cerdá
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France.,National Reference Laboratory Plague & Other Yersiniosis, Institut Pasteur, Paris, France.,WHO Collaborative Research & Reference Centre for Yersinia, Institut Pasteur, Paris, France
| | - Olivier Dussurget
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
8
|
Roch M, Lelong E, Panasenko OO, Sierra R, Renzoni A, Kelley WL. Thermosensitive PBP2a requires extracellular folding factors PrsA and HtrA1 for Staphylococcus aureus MRSA β-lactam resistance. Commun Biol 2019; 2:417. [PMID: 31754647 PMCID: PMC6858329 DOI: 10.1038/s42003-019-0667-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen and represents a clinical challenge because of widespread antibiotic resistance. Methicillin resistant Staphylococcus aureus (MRSA) is particularly problematic and originates by the horizontal acquisition of mecA encoding PBP2a, an extracellular membrane anchored transpeptidase, which confers resistance to β-lactam antibiotics by allosteric gating of its active site channel. Herein, we show that dual disruption of PrsA, a lipoprotein chaperone displaying anti-aggregation activity, together with HtrA1, a membrane anchored chaperone/serine protease, resulted in severe and synergistic attenuation of PBP2a folding that restores sensitivity to β-lactams such as oxacillin. Purified PBP2a has a pronounced unfolding transition initiating at physiological temperatures that leads to irreversible precipitation and complete loss of activity. The concordance of genetic and biochemical data highlights the necessity for extracellular protein folding factors governing MRSA β-lactam resistance. Targeting the PBP2a folding pathway represents a particularly attractive adjuvant strategy to combat antibiotic resistance.
Collapse
Affiliation(s)
- Mélanie Roch
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland
| | - Emmanuelle Lelong
- Service of Infectious Diseases and Department of Medical Specialties, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, Geneva, CH-1206 Switzerland
| | - Olesya O. Panasenko
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland
- Service of Infectious Diseases and Department of Medical Specialties, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, Geneva, CH-1206 Switzerland
| | - Roberto Sierra
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases and Department of Medical Specialties, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, Geneva, CH-1206 Switzerland
| | - William L. Kelley
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland
| |
Collapse
|
9
|
Abfalter CM, Bernegger S, Jarzab M, Posselt G, Ponnuraj K, Wessler S. The proteolytic activity of Listeria monocytogenes HtrA. BMC Microbiol 2019; 19:255. [PMID: 31726993 PMCID: PMC6857308 DOI: 10.1186/s12866-019-1633-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background High temperature requirement A (HtrA) is a widely expressed chaperone and serine protease in bacteria. HtrA proteases assemble and hydrolyze misfolded proteins to enhance bacterial survival under stress conditions. Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that induces listeriosis in humans. In previous studies, it was shown that deletion of htrA in the genome of L. monocytogenes increased the susceptibility to cellular stress and attenuated virulence. However, expression and protease activity of listerial HtrA (LmHtrA) were never analyzed in detail. Results In this study, we cloned LmHtrA wildtype (LmHtrAwt) and generated a proteolytic inactive LmHtrASA mutant. Recombinant LmHtrAwt and LmHtrASA were purified and the proteolytic activity was analyzed in casein zymography and in vitro cleavage assays. LmHtrA activity could be efficiently blocked by a small molecule inhibitor targeting bacterial HtrA proteases. The expression of LmHtrA was enhanced in the stationary growth phase of L. monocytogenes and significantly contributed to bacterial survival at high temperatures. Conclusions Our data show that LmHtrA is a highly active caseinolytic protease and provide a deeper insight into the function and mechanism, which could lead to medical and biotechnological applications in the future.
Collapse
Affiliation(s)
- Carmen M Abfalter
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Sabine Bernegger
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Miroslaw Jarzab
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Gernot Posselt
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Silja Wessler
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria.
| |
Collapse
|
10
|
The Ethanolamine Permease EutH Promotes Vacuole Adaptation of Salmonella enterica and Listeria monocytogenes during Macrophage Infection. Infect Immun 2018. [PMID: 29531136 DOI: 10.1128/iai.00172-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ethanolamine is a ubiquitous and essential molecule within a host. Significantly, bacterial pathogens exploit ethanolamine during infection to promote growth and regulate virulence. The ethanolamine permease EutH is dispensable for growth in vitro under standard conditions, whereas EutH is required for ethanolamine utilization at low pH. These findings suggested a model in which EutH facilitates diffusion of ethanolamine into the bacterial cell in acidic environments. To date, the ecological significance of this model has not been thoroughly investigated, and the importance of EutH to bacterial growth under physiologically relevant conditions is not known. During infection, immune cells internalize invading bacteria within an acidic, nutrient-depleted vacuole called the phagosome. Here, we investigated the hypothesis that EutH promotes bacterial survival following phagocytosis. Our findings indicate that EutH is important for survival and replication of the facultative intracellular pathogens Salmonella enterica serovar Typhimurium and Listeria monocytogenes during prolonged or transient exposure to the phagosome, respectively. Furthermore, in agreement with EutH being important in the acidic environment, neutralization of the vacuole abolished the requirement for EutH. Significantly, consistent with a role for EutH in promoting intramacrophage survival, EutH was not required during S Typhimurium local intestinal infection but specifically conferred an advantage upon dissemination to peripheral organs. These findings reveal a physiologically relevant and conserved role for EutH in spatiotemporal niche adaptation during infection.
Collapse
|