1
|
Iwasaki J, Bzdyl NM, Lin-Sullivan DJM, Scheuplein NJ, Dueñas ME, de Jong E, Harmer NJ, Holzgrabe U, Sarkar-Tyson M. Inhibition of macrophage infectivity potentiator in Burkholderia pseudomallei suppresses pro-inflammatory responses in murine macrophages. Front Cell Infect Microbiol 2024; 14:1353682. [PMID: 38590438 PMCID: PMC10999550 DOI: 10.3389/fcimb.2024.1353682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a disease endemic in many tropical countries globally. Clinical presentation is highly variable, ranging from asymptomatic to fatal septicemia, and thus the outcome of infection can depend on the host immune responses. The aims of this study were to firstly, characterize the macrophage immune response to B. pseudomallei and secondly, to determine whether the immune response was modified in the presence of novel inhibitors targeting the virulence factor, the macrophage infectivity potentiator (Mip) protein. We hypothesized that inhibition of Mip in B. pseudomallei would disarm the bacteria and result in a host beneficial immune response. Methods Murine macrophage J774A.1 cells were infected with B. pseudomallei K96243 in the presence of small-molecule inhibitors targeting the Mip protein. RNA-sequencing was performed on infected cells four hours post-infection. Secreted cytokines and lactose dehydrogenase were measured in cell culture supernatants 24 hours post-infection. Viable, intracellular B. pseudomallei in macrophages were also enumerated 24 hours post-infection. Results Global transcriptional profiling of macrophages infected with B. pseudomallei by RNA-seq demonstrated upregulation of immune-associated genes, in particular a significant enrichment of genes in the TNF signaling pathway. Treatment of B. pseudomallei-infected macrophages with the Mip inhibitor, AN_CH_37 resulted in a 5.3-fold reduction of il1b when compared to cells treated with DMSO, which the inhibitors were solubilized in. A statistically significant reduction in IL-1β levels in culture supernatants was seen 24 hours post-infection with AN_CH_37, as well as other pro-inflammatory cytokines, namely IL-6 and TNF-α. Treatment with AN_CH_37 also reduced the survival of B. pseudomallei in macrophages after 24 hours which was accompanied by a significant reduction in B. pseudomallei-induced cytotoxicity as determined by lactate dehydrogenase release. Discussion These data highlight the potential to utilize Mip inhibitors in reducing potentially harmful pro-inflammatory responses resulting from B. pseudomallei infection in macrophages. This could be of significance since overstimulation of pro-inflammatory responses can result in immunopathology, tissue damage and septic shock.
Collapse
Affiliation(s)
- Jua Iwasaki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Nicole M. Bzdyl
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Dion J. M. Lin-Sullivan
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | | | - Maria Emilia Dueñas
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Emma de Jong
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Nicholas J. Harmer
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
2
|
Moradimotlagh A, Chen S, Koohbor S, Moon KM, Foster LJ, Reiner N, Nandan D. Leishmania infection upregulates and engages host macrophage Argonaute 1, and system-wide proteomics reveals Argonaute 1-dependent host response. Front Immunol 2023; 14:1287539. [PMID: 38098491 PMCID: PMC10720368 DOI: 10.3389/fimmu.2023.1287539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Leishmania donovani, an intracellular protozoan parasite, is the causative agent of visceral leishmaniasis, the most severe form of leishmaniasis in humans. It is becoming increasingly clear that several intracellular pathogens target host cell RNA interference (RNAi) pathways to promote their survival. Complexes of Argonaute proteins with small RNAs are core components of the RNAi. In this study, we investigated the potential role of host macrophage Argonautes in Leishmania pathogenesis. Using Western blot analysis of Leishmania donovani-infected macrophages, we show here that Leishmania infection selectively increased the abundance of host Argonaute 1 (Ago1). This increased abundance of Ago1 in infected cells also resulted in higher levels of Ago1 in active Ago-complexes, suggesting the preferred use of Ago1 in RNAi in Leishmania-infected cells. This analysis used a short trinucleotide repeat containing 6 (TNRC6)/glycine-tryptophan repeat protein (GW182) protein-derived peptide fused to Glutathione S-transferase as an affinity matrix to capture mature Ago-small RNAs complexes from the cytosol of non-infected and Leishmania-infected cells. Furthermore, Ago1 silencing significantly reduced intracellular survival of Leishmania, demonstrating that Ago1 is essential for Leishmania pathogenesis. To investigate the role of host Ago1 in Leishmania pathogenesis, a quantitative whole proteome approach was employed, which showed that expression of several previously reported Leishmania pathogenesis-related proteins was dependent on the level of macrophage Ago1. Together, these findings identify Ago1 as the preferred Argonaute of RNAi machinery in infected cells and a novel and essential virulence factor by proxy that promotes Leishmania survival.
Collapse
Affiliation(s)
- Atieh Moradimotlagh
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stella Chen
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sara Koohbor
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Neil Reiner
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Devki Nandan
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Muruaga EJ, Briones G, Roset MS. Biochemical and functional characterization of Brucella abortus cyclophilins: So similar, yet so different. Front Microbiol 2022; 13:1046640. [DOI: 10.3389/fmicb.2022.1046640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Brucella spp. are the etiological agent of animal and human brucellosis. We have reported previously that cyclophilins of Brucella (CypA and CypB) are upregulated within the intraphagosomal replicative niche and required for stress adaptation and host intracellular survival and virulence. Here, we characterize B. abortus cyclophilins, CypA, and CypB from a biochemical standpoint by studying their PPIase activity, chaperone activity, and oligomer formation. Even though CypA and CypB are very similar in sequence and share identical chaperone and PPIase activities, we were able to identify outstanding differential features between them. A series of differential peptide loops were predicted when comparing CypA and CypB, differences that might explain why specific antibodies (anti-CypA or anti-CypB) were able to discriminate between both cyclophilins without cross-reactivity. In addition, we identified the presence of critical amino acids in CypB, such as the Trp134 which is responsible for the cyclosporin A inhibition, and the Cys128 that leads to CypB homodimer formation by establishing a disulfide bond. Here, we demonstrated that CypB dimer formation was fully required for stress adaptation, survival within HeLa cells, and mouse infection in B. abortus. The presence of Trp134 and the Cys128 in CypB, which are not present in CypA, suggested that two different kinds of cyclophilins have evolved in Brucella, one with eukaryotic features (CypB), another (CypA) with similar features to Gram-negative cyclophilins.
Collapse
|
4
|
Legionella pneumophila PPIase Mip Interacts with the Bacterial Proteins SspB, Lpc2061, and FlaA and Promotes Flagellation. Infect Immun 2022; 90:e0027622. [PMID: 36314784 PMCID: PMC9670971 DOI: 10.1128/iai.00276-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The peptidyl-prolyl-
cis/trans
-isomerase (PPIase) macrophage infectivity potentiator (Mip) contributes to the pathogenicity and fitness of
L. pneumophila
, the causative agent of Legionnaires’ disease. Here, we identified the stringent starvation protein SspB, hypothetical protein Lpc2061, and flagellin FlaA as bacterial interaction partners of Mip.
Collapse
|
5
|
Abstract
The soil saprophyte, Burkholderia pseudomallei, is the causative agent of melioidosis, a disease endemic in South East Asia and northern Australia. Exposure to B. pseudomallei by either inhalation or inoculation can lead to severe disease. B. pseudomallei rapidly shifts from an environmental organism to an aggressive intracellular pathogen capable of rapidly spreading around the body. The expression of multiple virulence factors at every stage of intracellular infection allows for rapid progression of infection. Following invasion or phagocytosis, B. pseudomallei resists host-cell killing mechanisms in the phagosome, followed by escape using the type III secretion system. Several secreted virulence factors manipulate the host cell, while bacterial cells undergo a shift in energy metabolism allowing for overwhelming intracellular replication. Polymerisation of host cell actin into “actin tails” propels B. pseudomallei to the membranes of host cells where the type VI secretion system fuses host cells into multinucleated giant cells (MNGCs) to facilitate cell-to-cell dissemination. This review describes the various mechanisms used by B. pseudomallei to survive within cells.
Collapse
Affiliation(s)
- Nicole M Bzdyl
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Clare L Moran
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Justine Bendo
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mitali Sarkar-Tyson
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
6
|
Zhang Y, Liu L, Zhou M, Zhang Y, Su H, Dong D, Wang J. PPIB-regulated alternative splicing of cell cycle genes contributes to the regulation of cell proliferation. Am J Transl Res 2022; 14:6163-6174. [PMID: 36247241 PMCID: PMC9556483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Peptidylprolyl cis-trans isomerase B (PPIB) plays an important role in the process of inflammation through binding RNA, but the molecular pathogenesis is not yet clearly understood. The objective of this study was to investigate and verify the PPIB-regulated gene expressions and alternative splicing in Hela cells. METHODS We examined the PPIB-regulated transcriptomes in HeLa cells using RNA-seq data. Differentially expressed genes, alternative splicing analysis were carried out. Functional enrichment analysis was used to define the enrichment of each term. RESULTS We found that PPIB knockdown successfully downregulated PPIB in Hela cells, which promoted cell proliferation (P < 0.001), but no significant effect on cell apoptosis. Ten alternative splicing genes regulated by PPIB were detected in Hela cells. The ten top Gene Ontology biological process analysis and functional pathways of the alternative splicing genes were screened and identified. The pathways where differentially expressed genes are most enriched were toll-like receptor 4 signaling pathways and other signaling pathways relating to inflammation and immune response. In addition, PPIB affects the alternative splicing of multiple genes, and the Gene Ontology-biological process analysis showed that genes significantly related to alternative splicing changes were mainly enriched in the cell cycle (P < 0.05). CONCLUSION PPIB regulates the alternative splicing of cell cycle-related genes to affect cell proliferation and regulate the occurrence and development of chronic inflammatory diseases such as Nasal polyps.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, People's Republic of China
| | - Lei Liu
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, People's Republic of China
| | - Minghui Zhou
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, People's Republic of China
| | - Yujie Zhang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, People's Republic of China
| | - Hongxia Su
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, People's Republic of China
| | - Dong Dong
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, People's Republic of China
| | - Jia Wang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, People's Republic of China
| |
Collapse
|
7
|
Kumawat M, Chaudhary D, Nabi B, Kumar M, Sarma DK, Shubham S, Karuna I, Ahlawat N, Ahlawat S. Purification and characterization of Cyclophilin: a protein associated with protein folding in Salmonella Typhimurium. Arch Microbiol 2021; 203:5509-5517. [PMID: 34417854 DOI: 10.1007/s00203-021-02519-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Salmonella Typhimurium (ST) is a Gram-negative zoonotic pathogenic bacterium that causes infectious disease in humans as well as in animals. It causes foodborne diarrheal or gastrointestinal illness and fever called salmonellosis, which is a leading cause of millions of deaths worldwide. Salmonellaenterica serovar Typhimurium (S. Typhimurium) during its pathogenesis take away the actin cytoskeleton of their host cells and this is the crucial step of its infection cycle. Cyclophilin A, a type of peptidyl-prolyl isomerase that's encoded by the ppiA gene in ST, plays pleiotropic roles in maintaining bacterial physiology. In this investigation, the proteomic characterization of the peptidyl-prolyl cis-trans isomerase- A (Cyclophilin A) from Salmonella Typhimurium is reported. Cyclophilin A (CypA) protein from Salmonella Typhimurium proved to be highly conserved and homologous protein sequence compared to other organisms. This protein was expressed in Escherichia coli followed by its purification in a recombinant form protein exhibited a characteristic PPIases activity (Vmax = 0.8752 ± 0.13892 µmoles/min, Km = 0.9315 ± 0.5670 µM) in comparison to control. The mass spectrometry analysis of Cyp A protein-peptide showed a highest sequence similarity with the cyclophilin protein of Salmonella. PPIases proteins (enzyme) data suggest that Ppi-A has roles in the protein folding that may be contributing to the virulence of Salmonella by isomerization of protein outline. These results suggest an active and vital role of this protein in protein folding along with regulation in Salmonella Typhimurium.
Collapse
Affiliation(s)
- Manoj Kumawat
- Department of Microbiology, ICMR National Institute for Research in Environmental Health, Bhopal, 462030, India.
- Department of Biochemistry and Biochemical Engineering, SHUATS, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.
| | - Divya Chaudhary
- Department of Biotechnology and Microbiology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Bilkees Nabi
- Department of Biochemistry and Biochemical Engineering, SHUATS, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Manoj Kumar
- Department of Microbiology, ICMR National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Swasti Shubham
- Department of Microbiology, ICMR National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Irungbam Karuna
- Divisions of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 , India
| | - Neeraj Ahlawat
- Department of Animal Husbandry and Dairying, SHUATS, Prayagraj , 211007, India
| | - Sushma Ahlawat
- Department of Biochemistry and Biochemical Engineering, SHUATS, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.
| |
Collapse
|
8
|
Xu J, Li Q, Zhang J, Li X, Sun T. In Silico Structural and Functional Analysis of Cold Shock Proteins in Pseudomonas fluorescens PF08 from Marine Fish. J Food Prot 2021; 84:1446-1454. [PMID: 33852731 DOI: 10.4315/jfp-21-044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022]
Abstract
ABSTRACT Pseudomonas fluorescens is a specific spoilage microorganism of refrigerated marine fish, and is highly adapted to low temperature. Cold shock proteins (CSPs) play an important role in cold adaptation of bacteria. In this study, CSP genes were identified from the genome of P. fluorescens PF08 by search of the conserved domain of CSPs with HMMER software, and the CSP physicochemical properties, structures, and functions were analyzed through bioinformatics. Five typical CSPs were identified in the P. fluorescens PF08 genome (PfCSPs). All five PfCSPs are small hydrophilic acidic proteins with a molecular mass of ca. 7.4 kDa. They are located in the cytoplasm and are nonsecretory and nontransmembrane proteins. Multiple sequence alignment analysis indicated that the CSPs are highly conserved between species, especially in DNA-binding sites and RNA-binding motifs that can bind to single-stranded DNA and RNA. The five PfCSPs clustered with CspD from Escherichia coli and Salmonella Typhimurium, which suggests a close homology and high functional similarity among the five PfCSPs and CspD. The secondary and tertiary structures of the PfCSPs are in accordance with the characteristics of the CSP family, and ligand binding sites with higher likelihood were found in PfCSPs. The five PfCSPs were predicted to interact with some of the same proteins that are involved in virulence, stress responses (including to low temperature), cell growth, ribosome assembly, and RNA degradation. The results provide further elucidation of the function of CSPs in adaptation to low temperatures by P. fluorescens. HIGHLIGHTS
Collapse
Affiliation(s)
- Jinxiu Xu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, People's Republic of China
| | - Qiuying Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, People's Republic of China
| | - Jingyang Zhang
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, People's Republic of China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, People's Republic of China
| | - Tong Sun
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, People's Republic of China
| |
Collapse
|
9
|
Denic M, Turlin E, Michel V, Fischer F, Khorasani-Motlagh M, Zamble D, Vinella D, de Reuse H. A novel mode of control of nickel uptake by a multifunctional metallochaperone. PLoS Pathog 2021; 17:e1009193. [PMID: 33444370 PMCID: PMC7840056 DOI: 10.1371/journal.ppat.1009193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/27/2021] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Cellular metal homeostasis is a critical process for all organisms, requiring tight regulation. In the major pathogen Helicobacter pylori, the acquisition of nickel is an essential virulence determinant as this metal is a cofactor for the acid-resistance enzyme, urease. Nickel uptake relies on the NixA permease and the NiuBDE ABC transporter. Till now, bacterial metal transporters were reported to be controlled at their transcriptional level. Here we uncovered post-translational regulation of the essential Niu transporter in H. pylori. Indeed, we demonstrate that SlyD, a protein combining peptidyl-prolyl isomerase (PPIase), chaperone, and metal-binding properties, is required for the activity of the Niu transporter. Using two-hybrid assays, we found that SlyD directly interacts with the NiuD permease subunit and identified a motif critical for this contact. Mutants of the different SlyD functional domains were constructed and used to perform in vitro PPIase activity assays and four different in vivo tests measuring nickel intracellular accumulation or transport in H. pylori. In vitro, SlyD PPIase activity is down-regulated by nickel, independently of its C-terminal region reported to bind metals. In vivo, a role of SlyD PPIase function was only revealed upon exposure to high nickel concentrations. Most importantly, the IF chaperone domain of SlyD was shown to be mandatory for Niu activation under all in vivo conditions. These data suggest that SlyD is required for the active functional conformation of the Niu permease and regulates its activity through a novel mechanism implying direct protein interaction, thereby acting as a gatekeeper of nickel uptake. Finally, in agreement with a central role of SlyD, this protein is essential for the colonization of the mouse model by H. pylori. Metal ions are essential for the viability of all living organisms. Indeed, more than one-third of all proteins need metal cofactors for their function. Intracellular metal concentrations require tight control as non-physiological amounts are very toxic. In particular, nickel plays a unique role in Helicobacter pylori, a bacterial pathogen that colonizes the stomach of about half of the human population worldwide and is associated with the development of gastric cancer. Nickel is essential for H. pylori as it is the cofactor of urease, an enzyme indispensable for resistance to the gastric acidity of the stomach and thus for in vivo colonization. To import nickel despite its scarcity in the human body, H. pylori requires efficient uptake mechanisms. Till now, control of nickel uptake was only reported to rely on transcriptional regulators. In the present study, we uncovered a novel mechanism of regulation of nickel acquisition. SlyD, a multifunctional enzyme was found to control, by direct protein interaction, the activity of an essential nickel uptake system in H. pylori. We revealed that the SlyD chaperone activity is mandatory for the active conformation and thus functionality of the nickel permease.
Collapse
Affiliation(s)
- Milica Denic
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
- Université de Paris, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Evelyne Turlin
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
| | - Valérie Michel
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, Strasbourg, France
| | | | - Deborah Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
- * E-mail: (DV); (HDR)
| | - Hilde de Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
- * E-mail: (DV); (HDR)
| |
Collapse
|
10
|
Ahmad Izaham AR, Scott NE. Open Database Searching Enables the Identification and Comparison of Bacterial Glycoproteomes without Defining Glycan Compositions Prior to Searching. Mol Cell Proteomics 2020. [PMID: 32576591 DOI: 10.1101/2020.04.21.052845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Mass spectrometry has become an indispensable tool for the characterization of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. Although glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses before database searching. Using this approach, we demonstrate how wide tolerance searching can be used to compare glycan use across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.
Collapse
Affiliation(s)
- Ameera Raudah Ahmad Izaham
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
11
|
Ahmad Izaham AR, Scott NE. Open Database Searching Enables the Identification and Comparison of Bacterial Glycoproteomes without Defining Glycan Compositions Prior to Searching. Mol Cell Proteomics 2020; 19:1561-1574. [PMID: 32576591 PMCID: PMC8143609 DOI: 10.1074/mcp.tir120.002100] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry has become an indispensable tool for the characterization of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. Although glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses before database searching. Using this approach, we demonstrate how wide tolerance searching can be used to compare glycan use across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.
Collapse
Affiliation(s)
- Ameera Raudah Ahmad Izaham
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
12
|
Scheuplein NJ, Bzdyl NM, Kibble EA, Lohr T, Holzgrabe U, Sarkar-Tyson M. Targeting Protein Folding: A Novel Approach for the Treatment of Pathogenic Bacteria. J Med Chem 2020; 63:13355-13388. [PMID: 32786507 DOI: 10.1021/acs.jmedchem.0c00911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infectious diseases are a major cause of morbidity and mortality worldwide, exacerbated by increasing antibiotic resistance in many bacterial species. The development of drugs with new modes of action is essential. A leading strategy is antivirulence, with the aim to target bacterial proteins that are important in disease causation and progression but do not affect growth, resulting in reduced selective pressure for resistance. Immunophilins, a superfamily of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes have been shown to be important for virulence in a broad-spectrum of pathogenic bacteria. This Perspective will provide an overview of the recent advances made in understanding the role of each immunophilin family, cyclophilins, FK506 binding proteins (FKBPs), and parvulins in bacteria. Inhibitor design and medicinal chemistry strategies for development of novel drugs against bacterial FKBPs will be discussed. Furthermore, drugs against human cyclophilins and parvulins will be reviewed in their current indication as antiviral and anticancer therapies.
Collapse
Affiliation(s)
- Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia.,School of Veterinary and Life Sciences, Murdoch University, 6150 Murdoch, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| |
Collapse
|