1
|
Alejandro-Navarreto X, Cahoon LA, Freitag NE. Characterization of the Listeria monocytogenes PieRS regulon distinguishes the function of the critical secretion chaperone PrsA2 from other regulon members. Infect Immun 2025:e0035724. [PMID: 40422080 DOI: 10.1128/iai.00357-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 04/25/2025] [Indexed: 05/28/2025] Open
Abstract
Listeria monocytogenes (Lm) is a gram-positive pathogen that is widespread throughout the environment and known for its ability to infect mammalian hosts following the ingestion of contaminated food. Lm uses a variety of mechanisms to survive challenging conditions experienced both during life in the outside environment and inside of the infected host. We recently described a novel two-component signaling system known as PieRS that regulates the secretion of the chaperone PrsA2, which is essential for bacterial virulence, as well as its related homolog PrsA1 and a variety of gene products of unknown function. Here, we examine the roles of the less characterized PieRS-regulated gene products and contrast their functions with PrsA2 in terms of bacterial survival under stress conditions and virulence in mice. Characterization of targeted in-frame deletion mutants of PieRS regulon members indicates-in contrast to prsA2 mutants-minimal contributions to stress survival and bacterial virulence. Modest contributions of select regulon members were associated with Lm colonization of the gastrointestinal tract. The PieRS regulon thus consists of gene products that contribute to Lm physiology in ways that are clearly distinct from PrsA2 and the chaperone's essential function for both stress survival and bacterial virulence.
Collapse
Affiliation(s)
| | - Laty A Cahoon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Rahman MM, Zamakhaeva S, Rush JS, Chaton CT, Kenner CW, Hla YM, Tsui HCT, Uversky VN, Winkler ME, Korotkov KV, Korotkova N. Glycosylation of serine/threonine-rich intrinsically disordered regions of membrane-associated proteins in streptococci. Nat Commun 2025; 16:4011. [PMID: 40301326 PMCID: PMC12041528 DOI: 10.1038/s41467-025-58692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/31/2025] [Indexed: 05/01/2025] Open
Abstract
Proteins harboring intrinsically disordered regions (IDRs) lacking stable secondary or tertiary structures are abundant across the three domains of life. These regions have not been systematically studied in prokaryotes. Here, our genome-wide analysis identifies extracytoplasmic serine/threonine-rich IDRs in several biologically important membrane-associated proteins in streptococci. We demonstrate that these IDRs are glycosylated with glucose by glycosyltransferases GtrB and PgtC2 in Streptococcus pyogenes and Streptococcus pneumoniae, and with N-acetylgalactosamine by a Pgf-dependent mechanism in Streptococcus mutans. The absence of glycosylation leads to a defect in biofilm formation under ethanol-stressed conditions in S. mutans. We link this phenotype to the C-terminal IDR of the post-translocation chaperone PrsA. Our data reveal that O-linked glycosylation protects the IDR-containing proteins from proteolytic degradation and is critical for the biological function of PrsA in biofilm formation.
Collapse
Affiliation(s)
- Mohammad M Rahman
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Svetlana Zamakhaeva
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine T Chaton
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Cameron W Kenner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Yin Mon Hla
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA.
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
3
|
Agbavor C, Torres M, Inniss NL, Latimer S, Minasov G, Shuvalova L, Wawrzak Z, Borek D, Otwinowski Z, Stogios PJ, Savchenko A, Anderson WF, Satchell KJF, Cahoon LA. Structural analysis of extracellular ATP-independent chaperones of streptococcal species and protein substrate interactions. mSphere 2025; 10:e0107824. [PMID: 39878509 PMCID: PMC11853100 DOI: 10.1128/msphere.01078-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species. The extracellular parvulin-type PPIase, PrsA in Streptococcus pneumoniae and Streptococcus mutans maintain dimeric crystal structures reminiscent of folding catalysts that consist of two domains, a PPIase and foldase domain. Structural comparison of the two cyclophilin-like extracellular chaperones from S. pneumoniae and Streptococcus pyogenes with other cyclophilins demonstrates that this group of cyclophilin-like chaperones has novel structural appendages formed by 9- and 24-residue insertions. Furthermore, we demonstrate that deletion of prsA and slrA genes impairs the secretion of the cholesterol-dependent pore-forming toxin, pneumolysin in S. pneumoniae. Using protein pull-down and biophysical assays, we demonstrate a direct interaction between PrsA and SlrA with Ply. Then, we developed chaperone-assisted folding assays that show that the S. pneumoniae PrsA and SlrA extracellular chaperones accelerate pneumolysin folding. In addition, we demonstrate that SlrA and, for the first time, S. pyogenes PpiA exhibit PPIase activity and can bind the immunosuppressive drug, cyclosporine A. Altogether, these findings suggest a mechanistic role for streptococcal PPIase chaperones in the activity and folding of secreted virulence factors such as pneumolysin. IMPORTANCE Streptococcal species are a leading cause of lower respiratory infections that annually affect millions of people worldwide. During infection, streptococcal species secrete a medley of virulence factors that allow the bacteria to colonize and translocate to deeper tissues. In many gram-positive bacteria, virulence factors are secreted from the cytosol across the bacterial membrane in an unfolded state. The bacterial membrane-cell wall interface is exposed to the potentially harsh extracellular environment, making it difficult for native virulence factors to fold before being released into the host. ATP-independent PPIase-type chaperones, PrsA and SlrA, are thought to facilitate folding and stabilization of several unfolded proteins to promote the colonization and spread of streptococci. Here, we present crystal structures of the molecular chaperones of PrsA and SlrA homologs from streptococcal species. We provide evidence that the Streptococcus pyogenes SlrA homolog, PpiA, has PPIase activity and binds to cyclosporine A. In addition, we show that Streptococcus pneumoniae PrsA and SlrA directly interact and fold the cholesterol-dependent pore-forming toxin and critical virulence determinant, pneumolysin.
Collapse
Affiliation(s)
- Charles Agbavor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madeline Torres
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicole L. Inniss
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah Latimer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George Minasov
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ludmilla Shuvalova
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zdzislaw Wawrzak
- Northwestern Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, Illinois, USA
| | - Dominika Borek
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zbyszek Otwinowski
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter J. Stogios
- Biozone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Biozone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J. F. Satchell
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Laty A. Cahoon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Agbavor C, Zimnicka A, Kumar A, George JL, Torres M, Prehna G, Alonzo F, Durrant JD, Freitag NE, Cahoon LA. The chaperone PrsA2 regulates the secretion, stability, and folding of listeriolysin O during Listeria monocytogenes infection. mBio 2024; 15:e0074324. [PMID: 38809022 PMCID: PMC11253611 DOI: 10.1128/mbio.00743-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Pathogenic bacteria rely on secreted virulence factors to cause disease in susceptible hosts. However, in Gram-positive bacteria, the mechanisms underlying secreted protein activation and regulation post-membrane translocation remain largely unknown. Using proteomics, we identified several proteins that are dependent on the secreted chaperone PrsA2. We followed with phenotypic, biochemical, and biophysical assays and computational analyses to examine the regulation of a detected key secreted virulence factor, listeriolysin O (LLO), and its interaction with PrsA2 from the bacterial pathogen Listeria monocytogenes (Lm). Critical to Lm virulence is internalization by host cells and the subsequent action of the cholesterol-dependent pore-forming toxin, LLO, which enables bacterial escape from the host cell phagosome. Since Lm is a Gram-positive organism, the space between the cell membrane and wall is solvent exposed. Therefore, we hypothesized that the drop from neutral to acidic pH as the pathogen is internalized into a phagosome is critical to regulating the interaction of PrsA2 with LLO. Here, we demonstrate that PrsA2 directly interacts with LLO in a pH-dependent manner. We show that PrsA2 protects and sequesters LLO under neutral pH conditions where LLO can be observed to aggregate. In addition, we identify molecular features of PrsA2 that are required for interaction and ultimately the folding and activity of LLO. Moreover, protein-complex modeling suggests that PrsA2 interacts with LLO via its cholesterol-binding domain. These findings highlight a mechanism by which a Gram-positive secretion chaperone regulates the secretion, stability, and folding of a pore-forming toxin under conditions relevant to host cell infection. IMPORTANCE Lm is a ubiquitous food-borne pathogen that can cause severe disease to vulnerable populations. During infection, Lm relies on a wide repertoire of secreted virulence factors including the LLO that enables the bacterium to invade the host and spread from cell to cell. After membrane translocation, secreted factors must become active in the challenging bacterial cell membrane-wall interface. However, the mechanisms required for secreted protein folding and function are largely unknown. Lm encodes a chaperone, PrsA2, that is critical for the activity of secreted factors. Here, we show that PrsA2 directly associates and protects the major Lm virulence factor, LLO, under conditions corresponding to the host cytosol, where LLO undergoes irreversible denaturation. Additionally, we identify molecular features of PrsA2 that enable its interaction with LLO. Together, our results suggest that Lm and perhaps other Gram-positive bacteria utilize secreted chaperones to regulate the activity of pore-forming toxins during infection.
Collapse
Affiliation(s)
- Charles Agbavor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adriana Zimnicka
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Allison Kumar
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jada L. George
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madeline Torres
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nancy E. Freitag
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Laty A. Cahoon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
da Silva RJ, Cabo LF, George JL, Cahoon LA, Yang L, Coyne CB, Boyle JP. The trophoblast surface becomes refractory to adhesion by congenitally transmitted Toxoplasma gondii and Listeria monocytogenes during cytotrophoblast to syncytiotrophoblast development. mSphere 2024; 9:e0074823. [PMID: 38771057 PMCID: PMC11332349 DOI: 10.1128/msphere.00748-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 05/22/2024] Open
Abstract
The placenta is a critical barrier against viral, bacterial, and eukaryotic pathogens. For most teratogenic pathogens, the precise molecular mechanisms of placental resistance are still being unraveled. Given the importance of understanding these mechanisms and challenges in replicating trophoblast-pathogen interactions using in vitro models, we tested an existing stem-cell-derived model of trophoblast development for its relevance to infection with Toxoplasma gondii. We grew human trophoblast stem cells (TSCT) under conditions leading to either syncytiotrophoblast (TSSYN) or cytotrophoblast (TSCYT) and infected them with T. gondii. We evaluated T. gondii proliferation and invasion, cell ultrastructure, as well as for transcriptome changes after infection. TSSYNs cells showed similar ultrastructure compared to primary cells and villous explants when analyzed by transmission electron microscopy and scanning electron microscopy (SEM), a resistance to T. gondii adhesion could be visualized on the SEM level. Furthermore, TSSYNs were highly refractory to parasite adhesion and replication, while TSCYTs were not. RNA-seq data on mock-treated and infected cells identified differences between cell types as well as how they responded to T. gondii infection. We also evaluated if TSSC-derived SYNs and CYTs had distinct resistance profiles to another vertically transmitted facultative intracellular pathogen, Listeria monocytogenes. We demonstrate that TSSYNs are highly resistant to L. monocytogenes, while TSCYTs are not. Like T. gondii, TSSYN resistance to L. monocytogenes was at the level of bacterial adhesion. Altogether, our data indicate that stem-cell-derived trophoblasts recapitulate resistance profiles of primary cells to T. gondii and highlight the critical importance of the placental surface in cell-autonomous resistance to teratogens.IMPORTANCECongenital toxoplasmosis can cause a devastating consequence to the fetus. To reach the fetus's tissues, Toxoplasma gondii must cross the placenta barrier. However, how this parasite crosses the placenta and the precise molecular mechanisms of placental resistance to this parasite are still unknown. In this study, we aimed to characterize a new cellular model of human trophoblast stem cells to determine their resistance, susceptibility, and response to T. gondii. Syncytiotrophoblast derived from trophoblast stem cells recapitulate the resistance profile similarly to placenta cells. We also showed that these cells are highly resistant to Listeria monocytogenes, at the level of bacterial adhesion. Our results suggest that resisting pathogen adhesion/attachment may be a generalized mechanism of syncytiotrophoblast resistance, and trophoblast stem cells represent a promising model to investigate cell-intrinsic mechanisms of resistance to pathogen adhesion and replication.
Collapse
Affiliation(s)
- Rafaela J. da Silva
- Department of Biological Sciences, Dietrich School of Arts, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leah F. Cabo
- Department of Biological Sciences, Dietrich School of Arts, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jada L. George
- Department of Biological Sciences, Dietrich School of Arts, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laty A. Cahoon
- Department of Biological Sciences, Dietrich School of Arts, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Liheng Yang
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carolyn B. Coyne
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jon P. Boyle
- Department of Biological Sciences, Dietrich School of Arts, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Di Renzo L, De Angelis ME, Torresi M, Mariani G, Pizzurro F, Mincarelli LF, Esposito E, Oliviero M, Iaccarino D, Di Nocera F, Paduano G, Lucifora G, Cammà C, Ferri N, Pomilio F. Genomic Characterization of Listeria monocytogenes and Other Listeria Species Isolated from Sea Turtles. Microorganisms 2024; 12:817. [PMID: 38674761 PMCID: PMC11052188 DOI: 10.3390/microorganisms12040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous pathogen found both in the environment and food. It can cause listeriosis in a wide range of animals as well as in humans. Investigations on presence, spread and virulence are still limited to terrestrial and human environments. Embracing the One Health Approach, investigating the presence and spread of L. monocytogenes in marine ecosystems and among wildlife, would provide us with useful information for human health. This study investigated the presence of L. monocytogenes and Listeria spp. in two species of sea turtles common in the Mediterranean Sea (Caretta caretta and Chelonia mydas). A total of one hundred and sixty-four carcasses of sea turtles (C. caretta n = 161 and C. mydas n = 3) stranded along the Abruzzo, Molise, Campania, and Calabria coasts, were collected. Brain and fecal samples were taken, enriched, and cultured for the detection of Listeria spp. From the specimens collected, strains of L. monocytogenes (brain n = 1, brain and feces n = 1, multiorgan n = 1 and feces n = 1), L. innocua (feces n = 1 and brain n = 1), and L. ivanovii (brain n = 1) were isolated. Typical colonies were isolated for Whole Genome Sequencing (WGS). Virulence genes, disinfectants/metal resistance, and antimicrobial resistance were also investigated. L. monocytogenes, L. innocua, and L. ivanovii were detected in C. caretta, whilst only L. monocytogenes and L. innocua in C. mydas. Notable among the results is the lack of significant differences in gene distribution between human and sea turtle strains. Furthermore, potentially pathogenic strains of L. monocytogenes were found in sea turtles.
Collapse
Affiliation(s)
- Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
- Centro Studi Cetacei, 65125 Pescara, Italy
| | - Maria Elisabetta De Angelis
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Giulia Mariani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Federica Pizzurro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Luana Fiorella Mincarelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Emanuele Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Maria Oliviero
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Doriana Iaccarino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | | | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| |
Collapse
|
7
|
Alejandro-Navarreto X, Freitag NE. Revisiting old friends: updates on the role of two-component signaling systems in Listeria monocytogenes survival and pathogenesis. Infect Immun 2024; 92:e0034523. [PMID: 38591895 PMCID: PMC11003226 DOI: 10.1128/iai.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Listeria monocytogenes is well recognized for both its broad resistance to stress conditions and its ability to transition from a soil bacterium to an intracellular pathogen of mammalian hosts. The bacterium's impressive ability to adapt to changing environments and conditions requires the rapid sensing of environmental cues and the coordinated response of gene products that enable bacterial growth and survival. Two-component signaling systems (TCSs) have been long recognized for their ability to detect environmental stimuli and transmit those signals into transcriptional responses; however, often the precise nature of the stimulus triggering TCS responses can be challenging to define. L. monocytogenes has up to 16 TCSs that have been recognized based on homology and included in this list are several whose functions remain poorly described. This review highlights the current understanding of the breadth and scope of L. monocytogenes TCS as relates to stress resistance and pathogenesis. Precise signals still often remain elusive, but the gene networks associated with TCSs are providing clues into possible functions.
Collapse
Affiliation(s)
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
George JL, Agbavor C, Cabo LF, Cahoon LA. Streptococcus pneumoniae secretion chaperones PrsA, SlrA, and HtrA are required for competence, antibiotic resistance, colonization, and invasive disease. Infect Immun 2024; 92:e0049023. [PMID: 38226817 PMCID: PMC10863415 DOI: 10.1128/iai.00490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium and a significant health threat with the populations most at risk being children, the elderly, and the immuno-compromised. To colonize and transition into an invasive infectious organism, S. pneumoniae secretes virulence factors that are translocated across the bacterial membrane and destined for surface exposure, attachment to the cell wall, or secretion into the host. The surface exposed protein chaperones PrsA, SlrA, and HtrA facilitate S. pneumoniae protein secretion; however, the distinct roles contributed by each of these secretion chaperones have not been well defined. Tandem Mass-Tagged Mass Spectrometry and virulence, adhesion, competence, and cell wall integrity assays were used to interrogate the individual and collective contributions of PrsA, SlrA, and HtrA to multiple aspects of S. pneumoniae physiology and virulence. PrsA, SlrA, and HtrA were found to play critical roles in S. pneumoniae host cell infection and competence, and the absence of each of these secretion chaperones significantly altered the S. pneumoniae secretome in distinct ways. PrsA and SlrA were additionally found to contribute to cell wall assembly and resistance to cell wall-active antimicrobials and were important for enabling S. pneumoniae host cell adhesion during colonization and invasive infection. These findings serve to further illustrate the pivotal contributions of PrsA, SlrA, and HtrA to S. pneumoniae protein secretion and virulence.
Collapse
Affiliation(s)
- Jada L. George
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Charles Agbavor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leah F. Cabo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laty A. Cahoon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
da Silva RJ, Cabo LF, George JL, Cahoon LA, Yang L, Coyne CB, Boyle JP. Human trophoblast stem cells can be used to model placental susceptibility to Toxoplasma gondii and highlight the critical importance of the trophoblast cell surface in pathogen resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566663. [PMID: 37986837 PMCID: PMC10659356 DOI: 10.1101/2023.11.10.566663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The placenta is a critical barrier against viral, bacterial, and eukaryotic pathogens. For most teratogenic pathogens, the precise molecular mechanisms of placental resistance are still being unraveled. Given the importance to understand these mechanisms and challenges in replicating trophoblast- pathogen interactions using in vitro models, we tested an existing stem-cell derived model of trophoblast development for its relevance to infection with Toxoplasma gondii . We grew human trophoblast stem cells (TS CT ) under conditions leading to either syncytiotrophoblast (TS SYN ) or cytotrophoblast (TS CYT ) and infected them with T. gondii . We evaluated T. gondii proliferation and invasion, cell ultrastructure, as well as for transcriptome changes after infection. TS SYNs cells showed similar ultrastructure compared to primary cells and villous explants when analyzed by TEM and SEM, a resistance to T. gondii adhesion could be visualized on the SEM level. Furthermore, TS SYNs were highly refractory to parasite adhesion and replication, while TS CYT were not. RNA-seq data on mock-treated and infected cells identified differences between cell types as well as how they responded to T. gondii infection. We also evaluated if TS SC -derived SYNs and CYTs had distinct resistance profiles to another vertically transmitted facultative intracellular pathogen, Listeria monocytogenes . We demonstrate that TS SYNs are highly resistant to L. monocytogenes , while TS CYTs are not. Like T. gondii , TS SYN resistance to L. monocytogenes was at the level of bacterial adhesion. Altogether, our data indicate that stem-cell derived trophoblasts recapitulate resistance profiles of primary cells to T. gondii and highlight the critical importance of the placental surface in cell-autonomous resistance to teratogens.
Collapse
|
10
|
Karthikeyan R, Gayathri P, Ramasamy S, Suvekbala V, Jagannadham MV, Rajendhran J. Transcriptome responses of intestinal epithelial cells induced by membrane vesicles of Listeria monocytogenes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100185. [PMID: 36942003 PMCID: PMC10023947 DOI: 10.1016/j.crmicr.2023.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Membrane vesicles (MVs) serve as an essential virulence factor in several pathogenic bacteria. The release of MVs by Listeria monocytogenes is only recently recognized; still, the enigmatic role of MVs in pathogenesis is yet to be established. We report the transcriptome response of Caco-2 cells upon exposure to MVs and the L. monocytogenes that leads to observe the up-regulation of autophagy-related genes in the early phase of exposure to MVs. Transcription of inflammatory cytokines is to the peak at the fourth hour of exposure. An array of differentially expressed genes was associated with actin cytoskeleton rearrangement, autophagy, cell cycle arrest, and induction of oxidative stress. At a later time point, transcriptional programs are generated upon interaction with MVs to evade innate immune signals, by modulating the expression of anti-inflammatory genes. KEGG pathway analysis is palpably confirming that MVs appear principally responsible for the induction of immune signaling pathways. Besides, MVs induced the expression of cell cycle regulatory genes, likely responsible for the ability to prolong host cell survival, thus protecting the replicative niche for L. monocytogenes. Notably, we identified several non-coding RNAs (ncRNAs), possibly involved in the regulation of early manipulation of the host gene expression, essential for the persistence of L. monocytogenes.
Collapse
Affiliation(s)
- Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Pratapa Gayathri
- CSIR - Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad 500007, India
| | - Subbiah Ramasamy
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Vemparthan Suvekbala
- EDII-Anna Business Incubation Research Foundation, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli 620024, India
| | - Medicharla V. Jagannadham
- CSIR - Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad 500007, India
- Corresponding authors.
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
- Corresponding authors.
| |
Collapse
|
11
|
Narayanan L, Ozdemir O, Alugubelly N, Ramachandran R, Banes M, Lawrence M, Abdelhamed H. Identification of genetic elements required for Listeria monocytogenes growth under limited nutrient conditions and virulence by a screening of transposon insertion library. Front Microbiol 2022; 13:1007657. [PMID: 36312968 PMCID: PMC9608667 DOI: 10.3389/fmicb.2022.1007657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023] Open
Abstract
Listeria monocytogenes, the causative agent of listeriosis, displays a lifestyle ranging from saprophytes in the soil to pathogenic as a facultative intracellular parasite in host cells. In the current study, a random transposon (Tn) insertion library was constructed in L. monocytogenes strain F2365 and screened to identify genes and pathways affecting in vitro growth and fitness in minimal medium (MM) containing different single carbohydrate as the sole carbon source. About 2,000 Tn-mutants were screened for impaired growth in MM with one of the following carbon sources: glucose, fructose, mannose, mannitol, sucrose, glycerol, and glucose 6-phosphate (G6P). Impaired or abolished growth of L. monocytogenes was observed for twenty-one Tn-mutants with disruptions in genes encoding purine biosynthesis enzymes (purL, purC, purA, and purM), pyrimidine biosynthesis proteins (pyrE and pyrC), ATP synthase (atpI and atpD2), branched-chain fatty acids (BCFA) synthesis enzyme (bkdA1), a putative lipoprotein (LMOF2365_2387 described as LP2387), dUTPase family protein (dUTPase), and two hypothetical proteins. All Tn-mutants, except the atpD2 mutant, grew as efficiently as wild-type strain in a nutrient rich media. The virulence of twenty-one Tn-mutants was assessed in mice at 72 h following intravenous (IV) infection. The most attenuated mutants had Tn insertions in purA, hypothetical protein (LMOf2365_0064 described as HP64), bkdA1, dUTPase, LP2387, and atpD2, confirming the important role of these genes in pathogenesis. Six Tn-mutants were then tested for ability to replicate intracellularly in murine macrophage J774.1 cells. Significant intracellular growth defects were observed in two Tn-mutants with insertions in purA and HP64 genes, suggesting that an intact purine biosynthesis pathway is important for intracellular growth of L. monocytogens. These findings may not be fully generalized to all of L. monocytogenes strains due to their genetic diversity. In conclusion, Tn-mutagenesis identified that biosynthesis of purines, pyrimidines, ATP, and BCFA are important for L. monocytogens pathogenesis. Purine and pyrimidine auxotrophs play an important role in the pathogenicity in other bacterial pathogens, but our study also revealed new proteins essential for both growth in MM and L. monocytogenes strain F2365 virulence.
Collapse
Affiliation(s)
- Lakshmi Narayanan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States,Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Ozan Ozdemir
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Navatha Alugubelly
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Reshma Ramachandran
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States,Department of Poultry Science, Mississippi State University, Mississippi State, MS, United States
| | - Michelle Banes
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Mark Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States,*Correspondence: Hossam Abdelhamed,
| |
Collapse
|
12
|
Cahoon LA, Alejandro‐Navarreto X, Gururaja AN, Light SH, Alonzo F, Anderson WF, Freitag NE. Listeria monocytogenes two component system PieRS regulates secretion chaperones PrsA1 and PrsA2 and enhances bacterial translocation across the intestine. Mol Microbiol 2022; 118:278-293. [PMID: 35943959 PMCID: PMC9545042 DOI: 10.1111/mmi.14967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes (Lm) is a widespread environmental Gram-positive bacterium that can transition into a pathogen following ingestion by a susceptible host. To cross host barriers and establish infection, Lm is dependent upon the regulated secretion and activity of many proteins including PrsA2, a peptidyl-prolyl cis-trans isomerase with foldase activity. PrsA2 contributes to the stability and activity of a number of secreted virulence factors that are required for Lm invasion, replication, and cell-to-cell spread within the infected host. In contrast, a second related secretion chaperone, PrsA1, has thus far no identified contributions to Lm pathogenesis. Here we describe the characterization of a two-component signal transduction system PieRS that regulates the expression of a regulon that includes the secretion chaperones PrsA1 and PrsA2. PieRS regulated gene products are required for bacterial resistance to ethanol exposure and are important for bacterial survival during transit through the gastrointestinal tract. PrsA1 was also found to make a unique contribution to Lm survival in the GI tract, revealing for the first time a non-overlapping requirement for both secretion chaperones PrsA1 and PrsA2 during the process of intra-gastric infection.
Collapse
Affiliation(s)
- Laty A. Cahoon
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | | | - Avinash N. Gururaja
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sam H. Light
- Department of MicrobiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Francis Alonzo
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
| | - Wayne F. Anderson
- Center for Genomics and Infectious Diseases, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Nancy E. Freitag
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
13
|
Hsu CC, Hsu RB, Oon XH, Chen YT, Chen JW, Hsu CH, Kuo YM, Shih YH, Chia JS, Jung CJ. Streptococcus mutans PrsA mediates AtlA secretion contributing to extracellular DNA release and biofilm formation in the pathogenesis of infective endocarditis. Virulence 2022; 13:1379-1392. [PMID: 35876630 PMCID: PMC9377233 DOI: 10.1080/21505594.2022.2105351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of secretion chaperone-regulated virulence proteins in the pathogenesis of infective endocarditis (IE) induced by viridans streptococci such as Streptococcus mutans is unclear. In this study, we investigated the contribution of the foldase protein PrsA, a putative parvulin-type peptidyl-prolyl isomerase, to the pathogenesis of S. mutans-induced IE. We found that a prsA-deficient strain had reduced virulence in terms of formation of vegetation on damaged heart valves, as well as reduced autolysis activity, eDNA release and biofilm formation capacity. The secretion and surface exposure of AtlA in vitro was reduced in the prsA-deficient mutant strain, and complementation of recombinant AtlA in the culture medium restored a wild type biofilm phenotype of the prsA-deficient mutant strain. This result suggests that secretion and surface localization of AtlA is regulated by PrsA during biofilm formation. Together, these results demonstrate that S. mutans PrsA could regulate AtlA-mediated eDNA release to contribute to biofilm formation in the pathogenesis of IE.
Collapse
Affiliation(s)
- Chih-Chieh Hsu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ron-Bin Hsu
- Department of Surgery, Division of Cardiovascular Surgery, National Taiwan University Hospital , College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xoong-Harng Oon
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Tang Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan
| | - Jeng-Wei Chen
- Department of Surgery, Division of Cardiovascular Surgery, National Taiwan University Hospital , College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Che-Hao Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan
| | - Yu-Min Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hsien Shih
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jean-San Chia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiau-Jing Jung
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
The Phosphatase Bph and Peptidyl-Prolyl Isomerase PrsA Are Required for Gelatinase Expression and Activity in Enterococcus faecalis. J Bacteriol 2022; 204:e0012922. [PMID: 35657705 DOI: 10.1128/jb.00129-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecalis is a common commensal bacterium in the gastrointestinal tract as well as a frequent nosocomial pathogen. The secreted metalloprotease gelatinase (GelE) is an important E. faecalis virulence factor that contributes to numerous cellular activities, such as autolysis, biofilm formation, and biofilm-associated antibiotic resistance. Expression of gelE has been extensively studied and is regulated by the Fsr quorum sensing system. Here, we identify two additional factors regulating gelatinase expression and activity in E. faecalis OG1RF. The Bph phosphatase is required for expression of gelE in an Fsr-dependent manner. Additionally, the membrane-anchored protein foldase PrsA is required for GelE activity, but not fsr or gelE gene expression. Disrupting prsA also leads to increased antibiotic sensitivity in biofilms independent of the loss of GelE activity. Together, our results expand the model for gelatinase production in E. faecalis, which has important implications for fundamental studies of GelE function in Enterococcus and also E. faecalis pathogenesis. IMPORTANCE In Enterococcus faecalis, gelatinase (GelE) is a virulence factor that is also important for biofilm formation and interactions with other microbes as well as the host immune system. The long-standing model for GelE production is that the Fsr quorum sensing system positively regulates expression of gelE. Here, we update that model by identifying two additional factors that contribute to gelatinase production. The biofilm-associated Bph phosphatase regulates the expression of gelE through Fsr, and the peptidyl-prolyl isomerase PrsA is required for production of active GelE through an Fsr-independent mechanism. This provides important insight into how regulatory networks outside of the fsr locus coordinate expression of gelatinase.
Collapse
|
15
|
Hem S, Jarocki VM, Baker DJ, Charles IG, Drigo B, Aucote S, Donner E, Burnard D, Bauer MJ, Harris PNA, Wyrsch ER, Djordjevic SP. Genomic analysis of Elizabethkingia species from aquatic environments: Evidence for potential clinical transmission. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100083. [PMID: 34988536 PMCID: PMC8703026 DOI: 10.1016/j.crmicr.2021.100083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of closely related (< 50 SNV) clinical and environmental aquatic Elizabethkingia anophelis isolates. Identification of a provisional novel species Elizabethkingia umaracha. Novel blaGOB and blaB carbapenemases and extended spectrum β-lactamase blaCME alleles identified in Elizabethkingia spp. Analysis of the global phylogeny and pangenome of Elizabethkingia spp. Identification of novel ICE elements carrying uncharacterised genetic cargo in 67 / 94 (71.3%) of the aquatic environments Elizabethkingia spp.
Elizabethkingia species are ubiquitous in aquatic environments, colonize water systems in healthcare settings and are emerging opportunistic pathogens with reports surfacing in 25 countries across six continents. Elizabethkingia infections are challenging to treat, and case fatality rates are high. Chromosomal blaB, blaGOB and blaCME genes encoding carbapenemases and cephalosporinases are unique to Elizabethkingia spp. and reports of concomitant resistance to aminoglycosides, fluoroquinolones and sulfamethoxazole-trimethoprim are known. Here, we characterized whole-genome sequences of 94 Elizabethkingia isolates carrying multiple wide-spectrum metallo-β-lactamase (blaBand blaGOB) and extended-spectrum serine‑β-lactamase (blaCME) genes from Australian aquatic environments and performed comparative phylogenomic analyses against national clinical and international strains. qPCR was performed to quantify the levels of Elizabethkingia species in the source environments. Antibiotic MIC testing revealed significant resistance to carbapenems and cephalosporins but susceptibility to fluoroquinolones, tetracyclines and trimethoprim-sulfamethoxazole. Phylogenetics show that three environmental E. anophelis isolates are closely related to E. anophelis from Australian clinical isolates (∼36 SNPs), and a new species, E. umeracha sp. novel, was discovered. Genomic signatures provide insight into potentially shared origins and a capacity to transfer mobile genetic elements with both national and international isolates.
Collapse
Affiliation(s)
- Sopheak Hem
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Veronica M Jarocki
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Dave J Baker
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich, United Kingdom.,Norwich Medical School, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, United Kingdom
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Sarah Aucote
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Delaney Burnard
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Michelle J Bauer
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Ethan R Wyrsch
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Steven P Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
16
|
Wu ZY, Campeau A, Liu CH, Gonzalez DJ, Yamaguchi M, Kawabata S, Lu CH, Lai CY, Chiu HC, Chang YC. Unique virulence role of post-translocational chaperone PrsA in shaping Streptococcus pyogenes secretome. Virulence 2021; 12:2633-2647. [PMID: 34592883 PMCID: PMC8489961 DOI: 10.1080/21505594.2021.1982501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) is a strict human pathogen causing a broad spectrum of diseases and a variety of autoimmune sequelae. The pathogenesis of GAS infection mostly relies on the production of an extensive network of cell wall-associated and secreted virulence proteins, such as adhesins, toxins, and exoenzymes. PrsA, the only extracellular parvulin-type peptidyl-prolyl isomerase expressed ubiquitously in Gram-positive bacteria, has been suggested to assist the folding and maturation of newly exported proteins to acquire their native conformation and activity. Two PrsA proteins, PrsA1 and PrsA2, have been identified in GAS, but the respective contribution of each PrsA in GAS pathogenesis remains largely unknown. By combining comparative proteomic and phenotypic analysis approaches, we demonstrate that both PrsA isoforms are required to maintain GAS proteome homeostasis and virulence-associated traits in a unique and overlapping manner. The inactivation of both PrsA in GAS caused remarkable impairment in biofilm formation, host adherence, infection-induced cytotoxicity, and in vivo virulence in a murine soft tissue infection model. The concordance of proteomic and phenotypic data clearly features the essential role of PrsA in GAS full virulence.
Collapse
Affiliation(s)
- Zhao-Yi Wu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Anaamika Campeau
- Department of Pharmacology and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Chao-Hsien Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - David J. Gonzalez
- Department of Pharmacology and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Chieh-Hsien Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chian-Yu Lai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Shi D, Anwar TM, Pan H, Chai W, Xu S, Yue M. Genomic Determinants of Pathogenicity and Antimicrobial Resistance for 60 Global Listeria monocytogenes Isolates Responsible for Invasive Infections. Front Cell Infect Microbiol 2021; 11:718840. [PMID: 34778102 PMCID: PMC8579135 DOI: 10.3389/fcimb.2021.718840] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes remains a significant public health threat, causing invasive listeriosis manifested as septicemia, meningitis, and abortion, with up to 30% of cases having a fatal outcome. Tracking the spread of invasive listeriosis requires an updated knowledge for virulence factors (VFs) and antimicrobial resistance features, which is an essential step toward its clinical diagnosis and treatment. Taking advantage of high-throughput genomic sequencing, we proposed that the differential genes based on the pathogenomic composition could be used to evaluate clinical observations and therapeutic options for listeriosis. Here, we performed the comparative genomic analysis of 60 strains from five continents with a diverse range of sources, representing serotypes 1/2a, 1/2b, 1/2c, and 4b, comprising lineage I and lineage II and including 13 newly contributed Chinese isolates from clinical cases. These strains were associated with globally distributed clonal groups linked with confirmed foodborne listeriosis outbreak and sporadic cases. We found that L. monocytogenes strains from clonal complex (CC) CC8, CC7, CC9, and CC415 carried most of the adherence and invasive genes. Conversely, CC1, CC2, CC4, and CC6 have the least number of adherence and invasive genes. Additionally, Listeria pathogenicity island-1 (LIPI-1), LIPI-2, intracellular survival, surface anchoring, and bile salt resistance genes were detected in all isolates. Importantly, LIPI-3 genes were harbored in CC3, CC224, and ST619 of the Chinese isolates and in CC1, CC4, and CC6 of other worldwide isolates. Notably, Chinese isolates belonging to CC14 carried antibiotic resistance genes (ARGs) against β-lactams (blaTEM-101, blaTEM-105) and macrolide (ermC-15), whereas CC7 and CC8 isolates harbored ARGs against aminoglycoside (aadA10_2, aadA6_1), which may pose a threat to therapeutic efficacy. Phylogenomic analysis showed that CC8, CC7, and CC5 of Chinese isolates, CC8 (Swiss and Italian isolates), and CC5 and CC7 (Canadian isolates) are closely clustered together and belonged to the same CC. Additionally, CC381 and CC29 of Chinese isolates shared the same genomic pattern as CC26 of Swiss isolate and CC37 of Canadian isolate, respectively, indicating strong phylogenomic relation between these isolates. Collectively, this study highlights considerable clonal diversity with well-recognized virulence and antimicrobial-resistant determinants among Chinese and worldwide isolates that stress to design improved strategies for clinical therapies.
Collapse
Affiliation(s)
- Dawei Shi
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Tanveer Muhammad Anwar
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Hang Pan
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Wenqin Chai
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Sihong Xu
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
18
|
Halladin DK, Ortega FE, Ng KM, Footer MJ, Mitić NS, Malkov SN, Gopinathan A, Huang KC, Theriot JA. Entropy-driven translocation of disordered proteins through the Gram-positive bacterial cell wall. Nat Microbiol 2021; 6:1055-1065. [PMID: 34326523 DOI: 10.1038/s41564-021-00942-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
In Gram-positive bacteria, a thick cross-linked cell wall separates the membrane from the extracellular space. Some surface-exposed proteins, such as the Listeria monocytogenes actin nucleation-promoting factor ActA, remain associated with the bacterial membrane but somehow thread through tens of nanometres of cell wall to expose their amino terminus to the exterior. Here, we report that entropy enables the translocation of disordered transmembrane proteins through the Gram-positive cell wall. We build a physical model, which predicts that the entropic constraint imposed by a thin periplasm is sufficient to drive the translocation of an intrinsically disordered protein such as ActA across a porous barrier similar to a peptidoglycan cell wall. We experimentally validate our model and show that ActA translocation depends on the cell-envelope dimensions and disordered-protein length, and that translocation is reversible. We also show that disordered regions of eukaryotic proteins can translocate Gram-positive cell walls via entropy. We propose that entropic forces are sufficient to drive the translocation of specific proteins to the outer surface.
Collapse
Affiliation(s)
- David K Halladin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Fabian E Ortega
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katharine M Ng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Matthew J Footer
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Nenad S Mitić
- Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
| | - Saša N Malkov
- Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
| | - Ajay Gopinathan
- Department of Physics, University of California, Merced, CA, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Julie A Theriot
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
An mRNA-mRNA Interaction Couples Expression of a Virulence Factor and Its Chaperone in Listeria monocytogenes. Cell Rep 2021; 30:4027-4040.e7. [PMID: 32209466 PMCID: PMC8722363 DOI: 10.1016/j.celrep.2020.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/27/2020] [Accepted: 02/28/2020] [Indexed: 01/21/2023] Open
Abstract
Bacterial pathogens often employ RNA regulatory elements located in the 5' untranslated regions (UTRs) to control gene expression. Using a comparative structural analysis, we examine the structure of 5' UTRs at a global scale in the pathogenic bacterium Listeria monocytogenes under different conditions. In addition to discovering an RNA thermoswitch and detecting simultaneous interaction of ribosomes and small RNAs with mRNA, we identify structural changes in the 5' UTR of an mRNA encoding the post-translocation chaperone PrsA2 during infection conditions. We demonstrate that the 5' UTR of the prsA2 mRNA base pairs with the 3' UTR of the full-length hly mRNA encoding listeriolysin O, thus preventing RNase J1-mediated degradation of the prsA2 transcript. Mutants lacking the hly-prsA2 interaction exhibit reduced virulence properties. This work highlights an additional level of RNA regulation, where the mRNA encoding a chaperone is stabilized by the mRNA encoding its substrate.
Collapse
|
20
|
Staphylococcus aureus Trigger Factor Is Involved in Biofilm Formation and Cooperates with the Chaperone PpiB. J Bacteriol 2021; 203:JB.00681-20. [PMID: 33468596 DOI: 10.1128/jb.00681-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes that assist in protein folding around proline-peptide bonds, and they often possess chaperone activity. Staphylococcus aureus encodes three PPIases, i.e., PrsA, PpiB, and trigger factor (TF). Previous work by our group demonstrated a role for both PrsA and PpiB in S. aureus; however, TF remains largely unstudied. Here, we identify a role for TF in S. aureus biofilm formation and demonstrate cooperation between TF and the cytoplasmic PPIase PpiB. Mutation of the tig gene (encoding TF) led to reduced biofilm development in vitro but no significant attenuation of virulence in a mouse model of infection. To investigate whether TF possesses chaperone activity, we analyzed the ability of a tig mutant to survive acid and base stress. While there was no significant decrease for a tig mutant, a ppiB tig double mutant exhibited significant decreases in cell viability after acid and base challenges. We then demonstrated that a ppiB tig double mutant had exacerbated phenotypes in vitro and in vivo, compared to either single mutant. Finally, in vivo immunoprecipitation of epitope-tagged PpiB revealed that PpiB interacted with 4 times the number of proteins when TF was absent from the cell, suggesting that it may be compensating for the loss of TF. Interestingly, the only proteins found to interact with TF were TF itself, fibronectin-binding protein B (FnBPB), and the chaperone protein ClpB. Collectively, these results support the first phenotype for S. aureus TF and demonstrate a greater network of cooperation between chaperone proteins in Staphylococcus aureus IMPORTANCE S. aureus encodes a large number of virulence factors that aid the bacterium in survival and pathogenesis. These virulence factors have a wide variety of functions; however, they must all be properly secreted in order to be functional. Bacterial chaperone proteins often assist in secretion by trafficking proteins to secretion machinery or assisting in proper protein folding. Here, we report that the S. aureus chaperone TF contributes to biofilm formation and cooperates with the chaperone PpiB to regulate S. aureus virulence processes. These data highlight the first known role for TF in S. aureus and suggest that S. aureus chaperone proteins may be involved in a greater regulatory network in the cell.
Collapse
|
21
|
Menendez-Gil P, Toledo-Arana A. Bacterial 3'UTRs: A Useful Resource in Post-transcriptional Regulation. Front Mol Biosci 2021; 7:617633. [PMID: 33490108 PMCID: PMC7821165 DOI: 10.3389/fmolb.2020.617633] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Bacterial messenger RNAs (mRNAs) are composed of 5′ and 3′ untranslated regions (UTRs) that flank the coding sequences (CDSs). In eukaryotes, 3′UTRs play key roles in post-transcriptional regulatory mechanisms. Shortening or deregulation of these regions is associated with diseases such as cancer and metabolic disorders. Comparatively, little is known about the functions of 3′UTRs in bacteria. Over the past few years, 3′UTRs have emerged as important players in the regulation of relevant bacterial processes such as virulence, iron metabolism, and biofilm formation. This MiniReview is an update for the different 3′UTR-mediated mechanisms that regulate gene expression in bacteria. Some of these include 3′UTRs that interact with the 5′UTR of the same transcript to modulate translation, 3′UTRs that are targeted by specific ribonucleases, RNA-binding proteins and small RNAs (sRNAs), and 3′UTRs that act as reservoirs of trans-acting sRNAs, among others. In addition, recent findings regarding a differential evolution of bacterial 3′UTRs and its impact in the species-specific expression of orthologous genes are also discussed.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
22
|
Deletion of a Peptidylprolyl Isomerase Gene Results in the Inability of Caldicellulosiruptor bescii To Grow on Crystalline Cellulose without Affecting Protein Glycosylation or Growth on Soluble Substrates. Appl Environ Microbiol 2020; 86:AEM.00909-20. [PMID: 32769195 DOI: 10.1128/aem.00909-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
Caldicellulosiruptor bescii secretes a large number of complementary multifunctional enzymes with unique activities for biomass deconstruction. The most abundant enzymes in the C. bescii secretome are found in a unique gene cluster containing a glycosyl transferase (GT39) and a putative peptidyl prolyl cis-trans isomerase. Deletion of the glycosyl transferase in this cluster resulted in loss of detectable protein glycosylation in C. bescii, and its activity has been shown to be responsible for the glycosylation of the proline-threonine rich linkers found in many of the multifunctional cellulases. The presence of a putative peptidyl prolyl cis-trans isomerase within this gene cluster suggested that it might also play a role in cellulase modification. Here, we identify this gene as a putative prsA prolyl cis-trans isomerase. Deletion of prsA2 leads to the inability of C. bescii to grow on insoluble substrates such as Avicel, the model cellulose substrate, while exhibiting no differences in phenotype with the wild-type strain on soluble substrates. Finally, we provide evidence that the prsA2 gene is likely needed to increase solubility of multifunctional cellulases and that this unique gene cluster was likely acquired by members of the Caldicellulosiruptor genus with a group of genes to optimize the production and activity of multifunctional cellulases.IMPORTANCE Caldicellulosiruptor has the ability to digest complex plant biomass without pretreatment and have been engineered to convert biomass, a sustainable, carbon neutral substrate, to fuels. Their strategy for deconstructing plant cell walls relies on an interesting class of cellulases consisting of multiple catalytic modules connected by linker regions and carbohydrate binding modules. The best studied of these enzymes, CelA, has a unique deconstruction mechanism. CelA is located in a cluster of genes that likely allows for optimal expression, secretion, and activity. One of the genes in this cluster is a putative isomerase that modifies the CelA protein. In higher eukaryotes, these isomerases are essential for the proper folding of glycoproteins in the endoplasmic reticulum, but little is known about the role of isomerization in cellulase activity. We show that the stability and activity of CelA is dependent on the activity of this isomerase.
Collapse
|
23
|
Shome A, Sarkhel R, Apoorva S, Nair SS, Chauhan TKS, Bhure SK, Mahawar M. Role of protein repair enzymes in oxidative stress survival and virulence of Salmonella. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01597-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Purpose
Proteins are the principal biomolecules in bacteria that are affected by the oxidants produced by the phagocytic cells. Most of the protein damage is irreparable though few unfolded proteins and covalently modified amino acids can be repaired by chaperones and repair enzymes respectively. This study reviews the three protein repair enzymes, protein l-isoaspartyl O-methyl transferase (PIMT), peptidyl proline cis-trans isomerase (PPIase), and methionine sulfoxide reductase (MSR).
Methods
Published articles regarding protein repair enzymes were collected from Google Scholar and PubMed. The information obtained from the research articles was analyzed and categorized into general information about the enzyme, mechanism of action, and role played by the enzymes in bacteria. Special emphasis was given to the importance of these enzymes in Salmonella Typhimurium.
Results
Protein repair is the direct and energetically preferred way of replenishing the cellular protein pool without translational synthesis. Under the oxidative stress mounted by the host during the infection, protein repair becomes very crucial for the survival of the bacterial pathogens. Only a few covalent modifications of amino acids are reversible by the protein repair enzymes, and they are highly specific in activity. Deletion mutants of these enzymes in different bacteria revealed their importance in the virulence and oxidative stress survival.
Conclusion
PIMT repairs isoaspartate residues, PPiase catalyzes the conversion of cis-trans forms of proline residues, while MSR repairs oxidized methionine (Met) residues in the proteins. These repair enzymes maintain the activities of the target protein(s), thus aid in bacterial survival and virulence. The interventions which can interfere with this mechanism could be used for the development of novel therapeutics.
Collapse
|
24
|
Scheuplein NJ, Bzdyl NM, Kibble EA, Lohr T, Holzgrabe U, Sarkar-Tyson M. Targeting Protein Folding: A Novel Approach for the Treatment of Pathogenic Bacteria. J Med Chem 2020; 63:13355-13388. [PMID: 32786507 DOI: 10.1021/acs.jmedchem.0c00911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infectious diseases are a major cause of morbidity and mortality worldwide, exacerbated by increasing antibiotic resistance in many bacterial species. The development of drugs with new modes of action is essential. A leading strategy is antivirulence, with the aim to target bacterial proteins that are important in disease causation and progression but do not affect growth, resulting in reduced selective pressure for resistance. Immunophilins, a superfamily of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes have been shown to be important for virulence in a broad-spectrum of pathogenic bacteria. This Perspective will provide an overview of the recent advances made in understanding the role of each immunophilin family, cyclophilins, FK506 binding proteins (FKBPs), and parvulins in bacteria. Inhibitor design and medicinal chemistry strategies for development of novel drugs against bacterial FKBPs will be discussed. Furthermore, drugs against human cyclophilins and parvulins will be reviewed in their current indication as antiviral and anticancer therapies.
Collapse
Affiliation(s)
- Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia.,School of Veterinary and Life Sciences, Murdoch University, 6150 Murdoch, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| |
Collapse
|
25
|
Homburgvirus LP-018 Has a Unique Ability to Infect Phage-Resistant Listeria monocytogenes. Viruses 2019; 11:v11121166. [PMID: 31861087 PMCID: PMC6950383 DOI: 10.3390/v11121166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022] Open
Abstract
Listeria phage LP-018 is the only phage from a diverse collection of 120 phages able to form plaques on a phage-resistant Listeria monocytogenes strain lacking rhamnose in its cell wall teichoic acids. The aim of this study was to characterize phage LP-018 and to identify what types of mutations can confer resistance to LP-018. Whole genome sequencing and transmission electron microscopy revealed LP-018 to be a member of the Homburgvirus genus. One-step-growth curve analysis of LP-018 revealed an eclipse period of ~60-90 min and a burst size of ~2 PFU per infected cell. Despite slow growth and small burst size, LP-018 can inhibit the growth of Listeria monocytogenes at a high multiplicity of infection. Ten distinct LP-018-resistant mutants were isolated from infected Listeria monocytogenes 10403S and characterized by whole genome sequencing. In each mutant, a single mutation was identified in either the LMRG_00278 or LMRG_01613 encoding genes. Interesting, LP-018 was able to bind to a representative phage-resistant mutant with a mutation in each gene, suggesting these mutations confer resistance through a mechanism independent of adsorption inhibition. Despite forming plaques on the rhamnose deficient 10403S mutant, LP-018 showed reduced binding efficiency, and we did not observe inhibition of the strain under the conditions tested. Two mutants of LP-018 were also isolated and characterized, one with a single SNP in a gene encoding a BppU domain protein that likely alters its host range. LP-018 is shown to be a unique Listeria phage that, with additional evaluation, may be useful in biocontrol applications that aim to reduce the emergence of phage resistance.
Collapse
|
26
|
PrsA contributes to Streptococcus suis serotype 2 pathogenicity by modulating secretion of selected virulence factors. Vet Microbiol 2019; 236:108375. [PMID: 31500724 DOI: 10.1016/j.vetmic.2019.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Abstract
Streptococcus suis serotype 2 (S. suis 2) is a major zoonotic pathogen. Parvulin-type peptidyl-prolyl isomerase (PrsA) in S. suis 2 is found surface-associated, pro-inflammatory and cytotoxic. To further explore the roles of PrsA in S. suis 2 infection, we constructed a prsA deletion mutant (ΔprsA) and a complemented strain (CΔprsA). The ΔprsA mutant showed increased length of bacterial chains and decreased growth. Deletion of prsA increased bacterial adhesion to host epithelial cells but with weakened invasion. The ΔprsA mutant had reduced survival in RAW264.7 macrophages and pig whole blood, and significantly attenuated in virulence to mice. All these phenotypes of the mutant could be reversed largely to the levels of its parental strain by gene complementation. Western blotting revealed that suilysin was markedly reduced both in surface-associated (SAP) and secreted fractions (SecP) of ΔprsA, which might be responsible for reduced hemolytic activity. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase were significantly increased in both SAP and SecP fractions as a result of prsA deletion. Increased adhesion of the ΔprsA mutant to bEND.3 cells was prevented using polyclonal antibodies against GAPDH and enolase. Overall, we propose that S. suis 2 deploys PrsA to control translocation of important virulence factors, thereby favoring its survival in the host with enhanced pathogenicity by compromising its interactions with the host cells. Further investigation is required to find out how PrsA modulates protein translocation to benefit S. suis infection and if there are other S. suis 2 substrates of potential virulence regulated by PrsA.
Collapse
|
27
|
Johansson J, Freitag NE. Regulation of Listeria monocytogenes Virulence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0064-2019. [PMID: 31441398 PMCID: PMC10957223 DOI: 10.1128/microbiolspec.gpp3-0064-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Whereas obligate human and animal bacterial pathogens may be able to depend upon the warmth and relative stability of their chosen replication niche, environmental bacteria such as Listeria monocytogenes that harbor the ability to replicate both within animal cells and in the outside environment must maintain the capability to manage life under a variety of disparate conditions. Bacterial life in the outside environment requires adaptation to wide ranges of temperature, available nutrients, and physical stresses such as changes in pH and osmolarity as well as desiccation. Following ingestion by a susceptible animal host, the bacterium must adapt to similar changes during transit through the gastrointestinal tract and overcome a variety of barriers associated with host innate immune responses. Rapid alteration of patterns of gene expression and protein synthesis represent one strategy for quickly adapting to a dynamic host landscape. Here, we provide an overview of the impressive variety of strategies employed by the soil-dwelling, foodborne, mammalian pathogen L. monocytogenes to straddle diverse environments and optimize bacterial fitness both inside and outside host cells.
Collapse
Affiliation(s)
- Jörgen Johansson
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago IL
| |
Collapse
|
28
|
Keogh RA, Zapf RL, Trzeciak E, Null GG, Wiemels RE, Carroll RK. Novel Regulation of Alpha-Toxin and the Phenol-Soluble Modulins by Peptidyl-Prolyl cis/trans Isomerase Enzymes in Staphylococcus aureus. Toxins (Basel) 2019; 11:toxins11060343. [PMID: 31208155 PMCID: PMC6628628 DOI: 10.3390/toxins11060343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes that catalyze the cis-to-trans isomerization around proline bonds, allowing proteins to fold into their correct confirmation. Previously, we identified two PPIase enzymes in Staphylococcus aureus (PpiB and PrsA) that are involved in the regulation of virulence determinants and have shown that PpiB contributes to S. aureus virulence in a murine abscess model of infection. Here, we further examine the role of these PPIases in S. aureus virulence and, in particular, their regulation of hemolytic toxins. Using murine abscess and systemic models of infection, we show that a ppiB mutant in a USA300 background is attenuated for virulence but that a prsA mutant is not. Deletion of the ppiB gene leads to decreased bacterial survival in macrophages and nasal epithelial cells, while there is no significant difference when prsA is deleted. Analysis of culture supernatants reveals that a ppiB mutant strain has reduced levels of the phenol-soluble modulins and that both ppiB and prsA mutants have reduced alpha-toxin activity. Finally, we perform immunoprecipitation to identify cellular targets of PpiB and PrsA. Results suggest a novel role for PpiB in S. aureus protein secretion. Collectively, our results demonstrate that PpiB and PrsA influence S. aureus toxins via distinct mechanisms, and that PpiB but not PrsA contributes to disease.
Collapse
Affiliation(s)
- Rebecca A Keogh
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Rachel L Zapf
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Emily Trzeciak
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Gillian G Null
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Richard E Wiemels
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
- The Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
29
|
Kumawat M, Singh PK, Rananaware SR, Ahlawat S. Comparative evaluation of structure and characteristic of peptidyl-prolyl cis-trans isomerase proteins and their function in Salmonella Typhimurium stress responses and virulence. Folia Microbiol (Praha) 2019; 65:161-171. [PMID: 31111418 DOI: 10.1007/s12223-019-00717-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/30/2019] [Indexed: 01/19/2023]
Abstract
Peptidyl-prolyl cis-trans isomerases (PPIase) exhibit chaperone activity and assist in protein folding by increasing the rate of cis-trans transition on proline-peptide bonds. The current study aimed to identify and characterize three genes, ppiA, ppiB, and ppiC, which encode proteins of the PPIase family in the bacterium Salmonella enterica serovar Typhimurium. Salmonella Typhimurium is a facultative intracellular zoonotic pathogen that causes food- and water-borne gastroenteritis in humans (leading to bacteremia in immune-compromised subjects). Recombinant clones for the three genes were constructed and sequenced and the sequences submitted to NCBI GenBank. Three-dimensional structures for the corresponding proteins were predicted by comparative modeling. A maximum-likelihood phylogenetic gene tree constructed for the three genes showed a low evolutionary mean diversity, indicating strong evolutionary conservation. Further, single-gene deletion mutant strains, generated for the respective genes, were observed to be more susceptible to the stationary phase of growth and heat stress conditions and showed reduced survival within macrophage cells line. The present study thus indicates that ppiA, ppiB, and ppiC genes are conserved among Salmonella genome, are critical for the growth of Salmonella Typhimurium in the examined stress conditions, and may play a role in its responses and virulence.
Collapse
Affiliation(s)
- Manoj Kumawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India. .,Department of Biochemistry & Biochemical Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.
| | - Piyush Kumar Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, 243122, India
| | | | - Sushma Ahlawat
- Department of Biochemistry & Biochemical Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.
| |
Collapse
|
30
|
Ünal CM, Berges M, Smit N, Schiene-Fischer C, Priebe C, Strowig T, Jahn D, Steinert M. PrsA2 (CD630_35000) of Clostridioides difficile Is an Active Parvulin-Type PPIase and a Virulence Modulator. Front Microbiol 2018; 9:2913. [PMID: 30564207 PMCID: PMC6288519 DOI: 10.3389/fmicb.2018.02913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is the main cause for nosocomial antibiotic associated diarrhea and has become a major burden for the health care systems of industrial countries. Its main virulence factors, the small GTPase glycosylating toxins TcdA and TcdB, are extensively studied. In contrast, the contribution of other factors to development and progression of C. difficile infection (CDI) are only insufficiently understood. Many bacterial peptidyl-prolyl-cis/trans-isomerases (PPIases) have been described in the context of virulence. Among them are the parvulin-type PrsA-like PPIases of Gram-positive bacteria. On this basis, we identified CD630_35000 as the PrsA2 homolog in C. difficile and conducted its enzymatic and phenotypic characterization in order to assess its involvement during C. difficile infection. For this purpose, wild type CdPrsA2 and mutant variants carrying amino acid exchanges mainly in the PPIase domain were recombinantly produced. Recombinant CdPrsA2 showed PPIase activity toward the substrate peptide Ala-Xaa-Pro-Phe with a preference for positively charged amino acids preceding the proline residue. Mutation of conserved residues in its active site pocket impaired the enzymatic activity. A PrsA2 deficient mutant was generated in the C. difficile 630Δerm background using the ClosTron technology. Inactivation of prsA2 resulted in a reduced germination rate in response to taurocholic acid, and in a slight increase in resistance to the secondary bile acids LCA and DCA. Interestingly, in the absence of PrsA2 colonization of mice by C. difficile 630 was significantly reduced. We concluded that CdPrsA2 is an active PPIase that acts as a virulence modulator by influencing crucial processes like sporulation, germination and bile acid resistance resulting in attenuated mice colonization.
Collapse
Affiliation(s)
- Can Murat Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Türk-Alman Üniversitesi, Moleküler Biyoteknoloji Bölümü, Istanbul, Turkey
| | - Mareike Berges
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nathiana Smit
- Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Cordelia Schiene-Fischer
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Christina Priebe
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Till Strowig
- Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Dieter Jahn
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany
| |
Collapse
|
31
|
The Intracellular Cyclophilin PpiB Contributes to the Virulence of Staphylococcus aureus Independently of Its Peptidyl-Prolyl cis/trans Isomerase Activity. Infect Immun 2018; 86:IAI.00379-18. [PMID: 30104214 DOI: 10.1128/iai.00379-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022] Open
Abstract
The Staphylococcus aureus cyclophilin PpiB is an intracellular peptidyl prolyl cis/trans isomerase (PPIase) that has previously been shown to contribute to secreted nuclease and hemolytic activity. In this study, we investigated the contribution of PpiB to S. aureus virulence. Using a murine abscess model of infection, we demonstrated that a ppiB mutant is attenuated for virulence. We went on to investigate the mechanism through which PpiB protein contributes to virulence, in particular the contribution of PpiB PPIase activity. We determined the amino acid residues that are important for PpiB PPIase activity and showed that a single amino acid substitution (F64A) completely abrogates PPIase activity. Using purified PpiB F64A protein in vitro, we showed that PPIase activity only partially contributes to Nuc refolding and that PpiB also possesses PPIase-independent activity. Using allelic exchange, we introduced the F64A substitution onto the S. aureus chromosome, generating a strain that produces enzymatically inactive PpiB. Analysis of the PpiB F64A strain revealed that PPIase activity is not required for hemolysis of human blood or virulence in a mouse. Together, these results demonstrate that PpiB contributes to S. aureus virulence via a mechanism unrelated to prolyl isomerase activity.
Collapse
|
32
|
Osborne SE, Brumell JH. Listeriolysin O: from bazooka to Swiss army knife. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630160 DOI: 10.1098/rstb.2016.0222] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Listeria monocytogenes (Lm) is a Gram-positive facultative intracellular pathogen. Infections in humans can lead to listeriosis, a systemic disease with a high mortality rate. One important mechanism of Lm dissemination involves cell-to-cell spread after bacteria have entered the cytosol of host cells. Listeriolysin O (LLO; encoded by the hly gene) is a virulence factor present in Lm that plays a central role in the cell-to-cell spread process. LLO is a member of the cholesterol-dependent cytolysin (CDC) family of toxins that were initially thought to promote disease largely by inducing cell death and tissue destruction-essentially acting like a 'bazooka'. This view was supported by structural studies showing CDCs can form large pores in membranes. However, it is now appreciated that LLO has many subtle activities during Lm infection of host cells, and many of these likely do not involve large pores, but rather small membrane perforations. It is also appreciated that membrane repair pathways of host cells play a major role in limiting membrane damage by LLO and other toxins. LLO is now thought to represent a 'Swiss army knife', a versatile tool that allows Lm to induce many membrane alterations and cellular responses that promote bacterial dissemination during infection.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Suzanne E Osborne
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8 .,Sickkids IBD Centre, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
33
|
An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease. J Bacteriol 2016; 199:JB.00453-16. [PMID: 27795319 DOI: 10.1128/jb.00453-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen that relies on a large repertoire of secreted and cell wall-associated proteins for pathogenesis. Consequently, the ability of the organism to cause disease is absolutely dependent on its ability to synthesize and successfully secrete these proteins. In this study, we investigate the role of peptidyl-prolyl cis/trans isomerases (PPIases) on the activity of the S. aureus secreted virulence factor nuclease (Nuc). We identify a staphylococcal cyclophilin-type PPIase (PpiB) that is required for optimal activity of Nuc. Disruption of ppiB results in decreased nuclease activity in culture supernatants; however, the levels of Nuc protein are not altered, suggesting that the decrease in activity results from misfolding of Nuc in the absence of PpiB. We go on to demonstrate that PpiB exhibits PPIase activity in vitro, is localized to the bacterial cytosol, and directly interacts with Nuc in vitro to accelerate the rate of Nuc refolding. Finally, we demonstrate an additional role for PpiB in S. aureus hemolysis and demonstrate that the S. aureus parvulin-type PPIase PrsA also plays a role in the activity of secreted virulence factors. The deletion of prsA leads to a decrease in secreted protease and phospholipase activity, similar to that observed in other Gram-positive pathogens. Together, these results demonstrate, for the first time to our knowledge, that PPIases play an important role in the secretion of virulence factors in S. aureus IMPORTANCE: Staphylococcus aureus is a highly dangerous bacterial pathogen capable of causing a variety of infections throughout the human body. The ability of S. aureus to cause disease is largely due to an extensive repertoire of secreted and cell wall-associated proteins, including adhesins, toxins, exoenzymes, and superantigens. These virulence factors, once produced, are typically transported across the cell membrane by the secretory (Sec) system in a denatured state. Consequently, once outside the cell, they must refold into their active form. This step often requires the assistance of bacterial folding proteins, such as PPIases. In this work, we investigate the role of PPIases in S. aureus and uncover a cyclophilin-type enzyme that assists in the folding/refolding of staphylococcal nuclease.
Collapse
|
34
|
Jiang X, Yang Y, Zhou J, Zhu L, Gu Y, Zhang X, Li X, Fang W. Roles of the Putative Type IV-like Secretion System Key Component VirD4 and PrsA in Pathogenesis of Streptococcus suis Type 2. Front Cell Infect Microbiol 2016; 6:172. [PMID: 27995095 PMCID: PMC5133265 DOI: 10.3389/fcimb.2016.00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
Streptococcus suis type 2 (SS2) is a zoonotic pathogen causing septic infection, meningitis and pneumonia in pigs and humans. SS2 may cause streptococcal toxic shock syndrome (STSS) probably due to excessive release of inflammatory cytokines. A previous study indicated that the virD4 gene in the putative type IV-like secretion system (T4SS) within the 89K pathogenicity island specific for recent epidemic strains contributed to the development of STSS. However, the functional basis of VirD4 in STSS remains unclear. Here we show that deletion of virD4 led to reduced virulence as shown by about 65% higher LD50, lower bacterial load in liver and brain, and lower level of expression of inflammatory cytokines in mice and cell lines than its parent strain. The ΔVirD4 mutant was more easily phagocytosed, suggesting its role as an anti-phagocytic factor. Oxidative stress that mimic bacterial exposure to respiratory burst of phagocytes upregulated expression of virD4. Proteomic analysis identified 10 secreted proteins of significant differences between the parent and mutant strains under oxidative stress, including PrsA, a peptidyl-prolyl isomerase. The SS2 PrsA expressed in E. coli caused a dose-dependent cell death and increased expression of proinflammatory IL-1β, IL-6 and TNF-α in murine macrophage cells. Our data provide novel insights into the contribution of the VirD4 factor to STSS pathogenesis, possibly via its anti-phagocytic activity, upregulation of its expression upon oxidative stress and its involvement in increased secretion of PrsA as a cell death inducer and proinflammatory effector.
Collapse
Affiliation(s)
- Xiaowu Jiang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Yunkai Yang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Jingjing Zhou
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Lexin Zhu
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Yuanxing Gu
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Xiaoyan Zhang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Xiaoliang Li
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine Zhejiang, China
| |
Collapse
|
35
|
Secretion Chaperones PrsA2 and HtrA Are Required for Listeria monocytogenes Replication following Intracellular Induction of Virulence Factor Secretion. Infect Immun 2016; 84:3034-46. [PMID: 27481256 DOI: 10.1128/iai.00312-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes transitions from an environmental organism to an intracellular pathogen following its ingestion by susceptible mammalian hosts. Bacterial replication within the cytosol of infected cells requires activation of the central virulence regulator PrfA followed by a PrfA-dependent induction of secreted virulence factors. The PrfA-induced secreted chaperone PrsA2 and the chaperone/protease HtrA contribute to the folding and stability of select proteins translocated across the bacterial membrane. L. monocytogenes strains that lack both prsA2 and htrA exhibit near-normal patterns of growth in broth culture but are severely attenuated in vivo We hypothesized that, in the absence of PrsA2 and HtrA, the increase in PrfA-dependent protein secretion that occurs following bacterial entry into the cytosol results in misfolded proteins accumulating at the bacterial membrane with a subsequent reduction in intracellular bacterial viability. Consistent with this hypothesis, the introduction of a constitutively activated allele of prfA (prfA*) into ΔprsA2 ΔhtrA strains was found to essentially inhibit bacterial growth at 37°C in broth culture. ΔprsA2 ΔhtrA strains were additionally found to be defective for cell invasion and vacuole escape in selected cell types, steps that precede full PrfA activation. These data establish the essential requirement for PrsA2 and HtrA in maintaining bacterial growth under conditions of PrfA activation. In addition, chaperone function is required for efficient bacterial invasion and rapid vacuole lysis within select host cell types, indicating roles for PrsA2/HtrA prior to cytosolic PrfA activation and the subsequent induction of virulence factor secretion.
Collapse
|
36
|
Ikolo F, Zhang M, Harrington DJ, Robinson C, Waller AS, Sutcliffe IC, Black GW. Characterisation of SEQ0694 (PrsA/PrtM) of Streptococcus equi as a functional peptidyl-prolyl isomerase affecting multiple secreted protein substrates. MOLECULAR BIOSYSTEMS 2016; 11:3279-86. [PMID: 26466087 DOI: 10.1039/c5mb00543d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptidyl-prolyl isomerase (PPIase) lipoproteins have been shown to influence the virulence of a number of Gram-positive bacterial human and animal pathogens, most likely through facilitating the folding of cell envelope and secreted virulence factors. Here, we used a proteomic approach to demonstrate that the Streptococcus equi PPIase SEQ0694 alters the production of multiple secreted proteins, including at least two putative virulence factors (FNE and IdeE2). We demonstrate also that, despite some unusual sequence features, recombinant SEQ0694 and its central parvulin domain are functional PPIases. These data add to our knowledge of the mechanisms by which lipoprotein PPIases contribute to the virulence of streptococcal pathogens.
Collapse
Affiliation(s)
- Felicia Ikolo
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK. and Department of Biochemistry, School of Medicine, St. George's University, True Blue, St. George's, Grenada
| | - Meng Zhang
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| | - Dean J Harrington
- Division of Biomedical Science, School of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Carl Robinson
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Andrew S Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Iain C Sutcliffe
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| | - Gary W Black
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
37
|
Cahoon LA, Freitag NE, Prehna G. A structural comparison of Listeria monocytogenes protein chaperones PrsA1 and PrsA2 reveals molecular features required for virulence. Mol Microbiol 2016; 101:42-61. [PMID: 27007641 PMCID: PMC4925323 DOI: 10.1111/mmi.13367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 12/26/2022]
Abstract
Listeria monocytogenes is a Gram-positive environmental bacterium that lives within soil but transitions into a pathogen upon contact with a mammalian host. The transition of L. monocytogenes from soil dweller to cytosolic pathogen is dependent upon secreted virulence factors that mediate cell invasion and intracellular growth. PrsA1 and PrsA2 are secreted bacterial lipoprotein chaperones that contribute to the folding of proteins translocated across the bacterial membrane; PrsA2 is required for L. monocytogenes virulence, whereas the function of PrsA1 remains to be determined. We have solved an X-ray crystal structure of PrsA1 and have used this model to guide comparison structure-based mutagenesis studies with PrsA2. Targeted mutagenesis of PrsA2 demonstrates that oligomerization of PrsA2 as well as molecular features of the foldase domain are required for protein secretion and virulence, whereas a functional role was uncovered for PrsA1 in bacterial resistance to alcohol. Interestingly, PrsA2 membrane localization is not required for all PrsA2-dependent activities, suggesting that the lipoprotein retains function when released from the bacterial cell. PrsA chaperones are thus multifaceted proteins with distinct domains adapted to accommodate the functional needs of a diverse array of secreted substrates.
Collapse
Affiliation(s)
- Laty A. Cahoon
- Department of Microbiology and Immunology, University of Illinois at Chicago
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago
| | - Gerd Prehna
- Department of Microbiology and Immunology, University of Illinois at Chicago
- Center for Structural Biology Research Resources Center, University of Illinois at Chicago
| |
Collapse
|
38
|
Humbert MV, Almonacid Mendoza HL, Jackson AC, Hung MC, Bielecka MK, Heckels JE, Christodoulides M. Vaccine potential of bacterial macrophage infectivity potentiator (MIP)-like peptidyl prolyl cis/trans isomerase (PPIase) proteins. Expert Rev Vaccines 2015; 14:1633-49. [PMID: 26468663 DOI: 10.1586/14760584.2015.1095638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Peptidyl prolyl cis/trans isomerases (PPIases) are a superfamily of proteins ubiquitously distributed among living organisms, which function primarily to assist the folding and structuring of unfolded and partially folded polypeptide chains and proteins. In this review, we focus specifically on the Macrophage Infectivity Potentiator (MIP)-like PPIases, which are members of the immunophilin family of FK506-binding proteins (FKBP). MIP-like PPIases have accessory roles in virulence and are candidates for inclusion in vaccines protective against both animal and human bacterial pathogens. A structural vaccinology approach obviates any issues over molecular mimicry and potential cross-reactivity with human FKBP proteins and studies with a representative antigen, the Neisseria meningitidis-MIP, support this strategy. Moreover, a dual approach of vaccination and drug targeting could be considered for controlling bacterial infectious diseases of humans and animals.
Collapse
Affiliation(s)
- María Victoria Humbert
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - Hannia L Almonacid Mendoza
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - Alexandra C Jackson
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - Miao-Chiu Hung
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - Magdalena K Bielecka
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - John E Heckels
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - Myron Christodoulides
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| |
Collapse
|
39
|
Identification of Conserved and Species-Specific Functions of the Listeria monocytogenes PrsA2 Secretion Chaperone. Infect Immun 2015. [PMID: 26216425 DOI: 10.1128/iai.00504-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen that relies on the regulated secretion and activity of a variety of proteins that sustain life within diverse environments. PrsA2 has recently been identified as a secreted peptidyl-prolyl cis/trans isomerase and chaperone that is dispensable for bacterial growth in broth culture but essential for L. monocytogenes virulence. Following host infection, PrsA2 contributes to the proper folding and activity of secreted proteins that are required for bacterial replication within the host cytosol and for bacterial spread to adjacent cells. PrsA2 is one member of a family of Gram-positive secretion chaperones that appear to play important roles in bacterial physiology; however, it is not known how these proteins recognize their substrate proteins or the degree to which their function is conserved across diverse Gram-positive species. We therefore examined PrsA proteins encoded by a variety of Gram-positive bacteria for functional complementation of L. monocytogenes mutants lacking prsA2. PrsA homologues encoded by Bacillus subtilis, Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus mutans, Staphylococcus aureus, and Lactococcus lactis were examined for functional complementation of a variety of L. monocytogenes PrsA2-associated phenotypes central to L. monocytogenes pathogenesis and bacterial cell physiology. Our results indicate that while selected aspects of PrsA2 function are broadly conserved among diverse Gram-positive bacteria, PrsA2 exhibits unique specificity for L. monocytogenes target proteins required for pathogenesis. The L. monocytogenes PrsA2 chaperone thus appears evolutionarily optimized for virulence factor secretion within the host cell cytosol while still maintaining aspects of activity relevant to more general features of Gram-positive protein translocation.
Collapse
|
40
|
Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 2015; 78:544-71. [PMID: 25184565 DOI: 10.1128/mmbr.00015-14] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted.
Collapse
|
41
|
Xayarath B, Alonzo F, Freitag NE. Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLoS Pathog 2015; 11:e1004707. [PMID: 25822753 PMCID: PMC4379056 DOI: 10.1371/journal.ppat.1004707] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/26/2015] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
42
|
Jakob RP, Koch JR, Burmann BM, Schmidpeter PAM, Hunkeler M, Hiller S, Schmid FX, Maier T. Dimeric Structure of the Bacterial Extracellular Foldase PrsA. J Biol Chem 2014; 290:3278-92. [PMID: 25525259 DOI: 10.1074/jbc.m114.622910] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Secretion of proteins into the membrane-cell wall space is essential for cell wall biosynthesis and pathogenicity in Gram-positive bacteria. Folding and maturation of many secreted proteins depend on a single extracellular foldase, the PrsA protein. PrsA is a 30-kDa protein, lipid anchored to the outer leaflet of the cell membrane. The crystal structure of Bacillus subtilis PrsA reveals a central catalytic parvulin-type prolyl isomerase domain, which is inserted into a larger composite NC domain formed by the N- and C-terminal regions. This domain architecture resembles, despite a lack of sequence conservation, both trigger factor, a ribosome-binding bacterial chaperone, and SurA, a periplasmic chaperone in Gram-negative bacteria. Two main structural differences are observed in that the N-terminal arm of PrsA is substantially shortened relative to the trigger factor and SurA and in that PrsA is found to dimerize in a unique fashion via its NC domain. Dimerization leads to a large, bowl-shaped crevice, which might be involved in vivo in protecting substrate proteins from aggregation. NMR experiments reveal a direct, dynamic interaction of both the parvulin and the NC domain with secretion propeptides, which have been implicated in substrate targeting to PrsA.
Collapse
Affiliation(s)
- Roman P Jakob
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Johanna R Koch
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Björn M Burmann
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Philipp A M Schmidpeter
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Moritz Hunkeler
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Sebastian Hiller
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Franz X Schmid
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Timm Maier
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| |
Collapse
|
43
|
Peptidylprolyl cis–trans isomerases of Legionella pneumophila: virulence, moonlighting and novel therapeutic targets. Biochem Soc Trans 2014; 42:1728-33. [DOI: 10.1042/bst20140202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Legionella pneumophila, typically a parasite of free-living protozoa, can also replicate in human alveolar macrophages and lung epithelial cells causing Legionnaires’ disease in humans, a severe atypical pneumonia. The pathogen encodes six peptidylprolyl cis–trans isomerases (PPIases), which generally accelerate folding of prolyl peptide bonds, and influence protein folding. PPIases can be divided into three classes, cyclophilins, parvulins and FK506-binding proteins (FKBPs). They contribute to a multitude of cellular functions including bacterial virulence. In the present review, we provide an overview of L. pneumophila PPIases, discussing their known and anticipated functions as well as moonlighting phenomena. By taking the example of the macrophage infectivity potentiator (Mip) of L. pneumophila, we highlight the potential of PPIases as promising drug targets.
Collapse
|
44
|
Misra SK, Moussan Désirée Aké F, Wu Z, Milohanic E, Cao TN, Cossart P, Deutscher J, Monnet V, Archambaud C, Henry C. Quantitative proteome analyses identify PrfA-responsive proteins and phosphoproteins in Listeria monocytogenes. J Proteome Res 2014; 13:6046-57. [PMID: 25383790 DOI: 10.1021/pr500929u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein phosphorylation is a major mechanism of signal transduction in bacteria. Here, we analyzed the proteome and phosphoproteome of a wild-type strain of the food-borne pathogen Listeria monocytogenes that was grown in either chemically defined medium or rich medium containing glucose. We then compared these results with those obtained from an isogenic prfA* mutant that produced a constitutively active form of PrfA, the main transcriptional activator of virulence genes. In the prfA* mutant grown in rich medium, we identified 256 peptides that were phosphorylated on serine (S), threonine (T), or tyrosine (Y) residues, with a S/T/Y ratio of 155:75:12. Strikingly, we detected five novel phosphosites on the virulence protein ActA. This protein was known to be phosphorylated by a cellular kinase in the infected host, but phosphorylation by a listerial kinase had not previously been reported. Unexpectedly, SILAC experiments with the prfA* mutant grown in chemically defined medium revealed that, in addition to previously described PrfA-regulated proteins, several other proteins were significantly overproduced, among them were several proteins involved in purine biosynthesis. This work provides new information for our understanding of the correlation among protein phosphorylation, virulence mechanisms, and carbon metabolism.
Collapse
|
45
|
Xayarath B, Freitag NE. Optimizing the balance between host and environmental survival skills: lessons learned from Listeria monocytogenes. Future Microbiol 2014; 7:839-52. [PMID: 22827306 DOI: 10.2217/fmb.12.57] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Environmental pathogens - organisms that survive in the outside environment but maintain the capacity to cause disease in mammals - navigate the challenges of life in habitats that range from water and soil to the cytosol of host cells. The bacterium Listeria monocytogenes has served for decades as a model organism for studies of host-pathogen interactions and for fundamental paradigms of cell biology. This ubiquitous saprophyte has recently become a model for understanding how an environmental bacterium switches to life within human cells. This review describes how L. monocytogenes balances life in disparate environments with the help of a critical virulence regulator known as PrfA. Understanding L. monocytogenes survival strategies is important for gaining insight into how environmental microbes become pathogens.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
46
|
Carvalho F, Sousa S, Cabanes D. How Listeria monocytogenes organizes its surface for virulence. Front Cell Infect Microbiol 2014; 4:48. [PMID: 24809022 PMCID: PMC4010754 DOI: 10.3389/fcimb.2014.00048] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/02/2014] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work “behind the frontline”, either supporting virulence effectors or ensuring the survival of the bacterium within its host.
Collapse
Affiliation(s)
- Filipe Carvalho
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| |
Collapse
|
47
|
Cahoon LA, Freitag NE. Listeria monocytogenes virulence factor secretion: don't leave the cell without a chaperone. Front Cell Infect Microbiol 2014; 4:13. [PMID: 24575392 PMCID: PMC3921577 DOI: 10.3389/fcimb.2014.00013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/25/2014] [Indexed: 11/13/2022] Open
Abstract
In Gram-positive bacteria, the secretion of proteins requires translocation of polypeptides across the bacterial membrane into the highly charged environment of the membrane-cell wall interface. Here, proteins must be folded and often further delivered across the matrix of the cell wall. While many aspects of protein secretion have been well studied in Gram-negative bacteria which possess both an inner and outer membrane, generally less attention has been given to the mechanics of protein secretion across the single cell membrane of Gram-positive bacteria. In this review, we focus on the role of a post-translocation secretion chaperone in Listeria monocytogenes known as PrsA2, and compare what is known regarding PrsA2 with PrsA homologs in other Gram-positive bacteria. PrsA2 is a member of a family of membrane-associated lipoproteins that contribute to the folding and stability of secreted proteins as they cross the bacterial membrane. PrsA2 contributes to the integrity of the L. monocytogenes cell wall as well as swimming motility and bacterial resistance to osmotic stress; however its most critical role may be its requirement for L. monocytogenes virulence and viability within host cells. A better understanding of the role of PrsA2 and PrsA-like homologs will provide insight into the dynamics of protein folding and stability in Gram-positive bacteria and may result in new strategies for optimizing protein secretion as well as inhibiting the production of virulence factors.
Collapse
Affiliation(s)
- Laty A Cahoon
- Department of Microbiology and Immunology, University of Illinois at Chicago Chicago, IL, USA
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
48
|
Membrane chaperone SecDF plays a role in the secretion of Listeria monocytogenes major virulence factors. J Bacteriol 2013; 195:5262-72. [PMID: 24056100 DOI: 10.1128/jb.00697-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive human intracellular pathogen that infects diverse mammalian cells. Upon invasion, L. monocytogenes secretes multiple virulence factors that target host cellular processes and promote infection. It has been presumed, but was not empirically established, that the Sec translocation system is the primary mediator of this secretion. Here, we validate an important role for SecDF, a component of the Sec system, in the secretion of several critical L. monocytogenes virulence factors. A ΔsecDF mutant is demonstrated to exhibit impaired membrane translocation of listeriolysin O (LLO), PlcA, PlcB, and ActA, factors that mediate L. monocytogenes phagosomal escape and spread from cell to cell. This impaired translocation was monitored by accumulation of the factors on the bacterial membrane and by reduced activity upon secretion. This defect in secretion is shown to be associated with a severe intracellular growth defect of the ΔsecDF mutant in macrophages and a less virulent phenotype in mice, despite normal growth in laboratory medium. We further show that SecDF is upregulated when the bacteria reside in macrophage phagosomes and that it is necessary for efficient phagosomal escape. Taken together, these data support the premise that SecDF plays a role as a chaperone that facilitates the translocation of L. monocytogenes virulence factors during infection.
Collapse
|
49
|
Involvement of peptidylprolyl cis/trans isomerases in Enterococcus faecalis virulence. Infect Immun 2012; 80:1728-35. [PMID: 22331431 DOI: 10.1128/iai.06251-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Peptidylprolyl cis/trans isomerases (PPIases) are enzymes involved in protein folding. Analysis of the genome sequence of Enterococcus faecalis V583 allowed for identification of 3 PPIases carrying genes. ef2898 encodes an intracellular PPIase which was not shown to be important for the E. faecalis stress response or virulence. The other two PPIases, the parvulin family rotamase EF0685 and the cyclophilin family member EF1534, are expected to be surface-exposed proteins. They were shown to be important for virulence and resistance to NaCl. A Δef0685 Δef1534 mutant was also more resistant to oxidative stress, was able to grow under a high manganese concentration, and showed altered resistance to ampicillin and quinolone antibiotics.
Collapse
|
50
|
Posttranslocation chaperone PrsA2 regulates the maturation and secretion of Listeria monocytogenes proprotein virulence factors. J Bacteriol 2011; 193:5961-70. [PMID: 21908675 DOI: 10.1128/jb.05307-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PrsA2 is a conserved posttranslocation chaperone and a peptidyl prolyl cis-trans isomerase (PPIase) that contributes to the virulence of the Gram-positive intracellular pathogen Listeria monocytogenes. One of the phenotypes associated with a prsA2 mutant is decreased activity of the broad-range phospholipase C (PC-PLC). PC-PLC is made as a proenzyme whose maturation is mediated by a metalloprotease (Mpl). The proforms of PC-PLC and Mpl accumulate at the membrane-cell wall interface until a decrease in pH triggers their maturation and rapid secretion into the host cell. In this study, we examined the mechanism by which PrsA2 regulates the activity of PC-PLC. We observed that in the absence of PrsA2, the proenzymes are secreted at physiological pH and do not mature upon a decrease in pH. The sensitivity of the prsA2 mutant to cell wall hydrolases was modified. However, no apparent changes in cell wall porosity were detected. Interestingly, synthesis of PC-PLC in the absence of its propeptide lead to the secretion of a fully active enzyme in the cytosol of host cells independent of PrsA2, indicating that neither the propeptide of PC-PLC nor PrsA2 is required for native folding of the catalytic domain, although both influence secretion of the enzyme. Taken together, these results suggest that PrsA2 regulates compartmentalization of Mpl and PC-PLC, possibly by influencing cell wall properties and interacting with the PC-PLC propeptide. Moreover, the ability of these proproteins to respond to a decrease in pH during intracellular growth depends on their localization at the membrane-cell wall interface.
Collapse
|