1
|
Hong Y, Kwak K. Both sides now: evolutionary traits of antigens and B cells in tolerance and activation. Front Immunol 2024; 15:1456220. [PMID: 39185403 PMCID: PMC11341355 DOI: 10.3389/fimmu.2024.1456220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
B cells are the cornerstone of our body's defense system, producing precise antibodies and safeguarding immunological memory for future protection against pathogens. While we have a thorough understanding of how naïve B cells differentiate into plasma or memory B cells, the early B cell response to various antigens-whether self or foreign-remains a thrilling and evolving area of study. Advances in imaging have illuminated the molecular intricacies of B cell receptor (BCR) signaling, yet the dynamic nature of B cell activation continues to reveal new insights based on the nature of antigen exposure. This review explores the evolutionary journey of B cells as they adapt to the unique challenges presented by pathogens. We begin by examining the specific traits of antigens that influence their pathogenic potential, then shift our focus to the distinct characteristics of B cells that counteract these threats. From foundational discoveries to the latest cutting-edge research, we investigate how B cells are effectively activated and distinguish between self and non-self antigens, ensuring a balanced immune response that defends against pathogenic diseases but not self-antigens.
Collapse
Affiliation(s)
- Youngjae Hong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhang N, Shen S, Yang M, He S, Liu C, Li H, Lu T, Liu H, Hu Q, Tang W, Chen Y. Design, Synthesis, and Biological Evaluation of a Novel NIK Inhibitor with Anti-Inflammatory and Hepatoprotective Effects for Sepsis Treatment. J Med Chem 2024; 67:5617-5641. [PMID: 38563549 DOI: 10.1021/acs.jmedchem.3c02266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
NIK plays a crucial role in the noncanonical NF-κB signaling pathway associated with diverse inflammatory and autoimmune diseases. Our study presents compound 54, a novel NIK inhibitor, designed through a structure-based scaffold-hopping approach from the previously identified B022. Compound 54 demonstrates remarkable selectivity and potency against NIK both in vitro and in vivo, effectively suppressing pro-inflammatory cytokines and nitric oxide production. In mouse models, compound 54 protected against LPS-induced systemic sepsis, reducing AST, ALT, and AKP liver injury markers. Additionally, it also attenuates sepsis-induced lung and kidney damage. Mechanistically, compound 54 blocks the noncanonical NF-κB signaling pathway by targeting NIK, preventing p100 to p52 processing. This work reveals a novel class of NIK inhibitors with significant potential for sepsis therapy.
Collapse
Affiliation(s)
- Nanxia Zhang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Mengyu Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Sijie He
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weifang Tang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
3
|
<italic>Salmonella typhimurium</italic> may support cancer treatment: a review. Acta Biochim Biophys Sin (Shanghai) 2023; 55:331-342. [PMID: 36786073 PMCID: PMC10160236 DOI: 10.3724/abbs.2023007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
<p indent="0mm">Antitumour treatments are evolving, including bacteria-mediated cancer therapy which is concurrently an ancient and cutting-edge approach. <italic>Salmonella typhimurium</italic> is a widely studied bacterial species that colonizes tumor tissues, showing oncolytic and immune system-regulating properties. It can be used as a delivery vector for genes and drugs, supporting conventional treatments that lack tumor-targeting abilities. This article summarizes recent evidence on the anticancer mechanisms of <italic>S</italic>. <italic>typhimurium</italic> alone and in combination with other anticancer treatments, suggesting that it may be a suitable approach to disease management. </p>.
Collapse
|
4
|
Transcriptome Analysis Reveals the Multiple Functions of pBD2 in IPEC-J2 Cells against E. coli. Int J Mol Sci 2022; 23:ijms23179754. [PMID: 36077151 PMCID: PMC9456188 DOI: 10.3390/ijms23179754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Defensins play an important role in fighting bacteria, and are a good candidate for bactericidal agents. However, the function and mechanism of defensins in regulating host responses against bacteria is unclear. In this study, transcriptome analysis was used to study the comprehensive functions of pBD2 in IPEC-J2 cells against E. coli. In total, 230 differentially expressed genes (DEGs) were identified in IPEC-J2 cells between the control and E. coli groups, and were found by KEGG analysis to be involved in many signaling pathways related to immunity. Furthermore, 812 DEGs were observed between E. coli and E. coli +pBD2 groups, involved in the ribosome, oxidative phosphorylation, and certain disease pathways. Among these, 94 overlapping DEGs were in the two DEG groups, and 85 DEGs were reverse expression, which is involved in microRNA in cancer, while PTEN and CDC6 were key genes according to PPI net analysis. The results of qRT-PCR verified those of RNA-seq. The results indicated that pBD2 plays an important role against E. coli by acting on the genes related to immune response, cell cycle, ribosomes, oxidative phosphorylation, etc. The results provide new insights into the potential function and mechanism of pBD2 against E. coli. Meanwhile, this study provides a certain theoretical basis for research and the development of novel peptide drugs.
Collapse
|
5
|
Al-Saafeen BH, Fernandez-Cabezudo MJ, al-Ramadi BK. Integration of Salmonella into Combination Cancer Therapy. Cancers (Basel) 2021; 13:cancers13133228. [PMID: 34203478 PMCID: PMC8269432 DOI: 10.3390/cancers13133228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Despite significant advances in the development of new treatments, cancer continues to be a major public health concern due to the high mortality associated with the disease. The introduction of immunotherapy as a new modality for cancer treatment has led to unprecedented clinical responses, even in terminal cancer patients. However, for reasons that remain largely unknown, the percentage of patients who respond to this treatment remains rather modest. In the present article, we highlight the potential of using attenuated Salmonella strains in cancer treatment, particularly as a means to enhance therapeutic efficacy of other cancer treatments, including immunotherapy, chemotherapy, and radiotherapy. The challenges associated with the clinical application of Salmonella in cancer therapy are discussed. An increased understanding of the potential of Salmonella bacteria in combination cancer therapy may usher in a major breakthrough in its clinical application, resulting in more favorable and durable outcomes. Abstract Current modalities of cancer treatment have limitations related to poor target selectivity, resistance to treatment, and low response rates in patients. Accumulating evidence over the past few decades has demonstrated the capacity of several strains of bacteria to exert anti-tumor activities. Salmonella is the most extensively studied entity in bacterial-mediated cancer therapy, and has a good potential to induce direct tumor cell killing and manipulate the immune components of the tumor microenvironment in favor of tumor inhibition. In addition, Salmonella possesses some advantages over other approaches of cancer therapy, including high tumor specificity, deep tissue penetration, and engineering plasticity. These aspects underscore the potential of utilizing Salmonella in combination with other cancer therapeutics to improve treatment effectiveness. Herein, we describe the advantages that make Salmonella a good candidate for combination cancer therapy and summarize the findings of representative studies that aimed to investigate the therapeutic outcome of combination therapies involving Salmonella. We also highlight issues associated with their application in clinical use.
Collapse
Affiliation(s)
- Besan H. Al-Saafeen
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
- Correspondence:
| |
Collapse
|
6
|
Knowles A, Campbell S, Cross N, Stafford P. Bacterial Manipulation of the Integrated Stress Response: A New Perspective on Infection. Front Microbiol 2021; 12:645161. [PMID: 33967983 PMCID: PMC8100032 DOI: 10.3389/fmicb.2021.645161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Host immune activation forms a vital line of defence against bacterial pathogenicity. However, just as hosts have evolved immune responses, bacteria have developed means to escape, hijack and subvert these responses to promote survival. In recent years, a highly conserved group of signalling cascades within the host, collectively termed the integrated stress response (ISR), have become increasingly implicated in immune activation during bacterial infection. Activation of the ISR leads to a complex web of cellular reprogramming, which ultimately results in the paradoxical outcomes of either cellular homeostasis or cell death. Therefore, any pathogen with means to manipulate this pathway could induce a range of cellular outcomes and benefit from favourable conditions for long-term survival and replication. This review aims to outline what is currently known about bacterial manipulation of the ISR and present key hypotheses highlighting areas for future research.
Collapse
Affiliation(s)
- Alex Knowles
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Susan Campbell
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Neil Cross
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Prachi Stafford
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
7
|
Li Y, Sun Y, Diao F, Ruan Y, Chen G, Tang T, Liu Y, Zhou H, Lin W, Dong M, Liu T, Mei Q, Cai D. Jiaolong capsule protects SD rats against 2,4,6-trinitrobenzene sulfonic acid induced colitis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113716. [PMID: 33352238 DOI: 10.1016/j.jep.2020.113716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiaolong capsule (JLC) was approved for the therapy of gastrointestinal diseases by the State Food and Drug Administration (SFDA) of China. It has a satisfactory curative effect in the treatment of patients with inflammatory bowel disease, however, the mechanism remains to be elucidated. AIM OF THE STUDY In current study, the effects and possible mechanisms of JLC on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis were investigated. MATERIALS AND METHODS Sulfasalazine and JLC were administrated orally and initialized 6 h after TNBS enema, once a day for seven consecutive days. The effect of JLC on intestinal microbial populations and LPS/TLR-4/NF-κB pathway was observed and assessed. Thirty female SD rats were distributed into six groups randomly and equally, namely, control, TNBS, TNBS + sulfasalazine (625 mg/kg), and TNBS + three different doses of JLC (25, 50, and 100 mg/kg) groups. RESULTS The effect of JLC on restoring normal structures of colorectum and repairing colonic damage were superior to that of sulfasalazine. JLC showed a positive effect in re-balancing intestinal bacteria population of colitis, and suppressed the activation of LPS/TLR-4/NF-κB pathway. CONCLUSION The results suggest that JLC demonstrated a beneficial effect on treating colitis in a rat model. The possible mechanisms may be through the regulatory effect of intestinal commensal bacteria and down-regulation of LPS/TLR-4/NF-κB pathway.
Collapse
Affiliation(s)
- Yuhua Li
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, PR China; Laboratory of Oncological Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, PR China.
| | - Fanrong Diao
- Department of Cardiology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, PR China.
| | - Yiming Ruan
- The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, PR China.
| | - Gui'e Chen
- The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, PR China.
| | - Tianle Tang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, PR China.
| | - Yongsheng Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, PR China.
| | - Huiping Zhou
- The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, PR China.
| | - Wenming Lin
- The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, PR China.
| | - Mingzhi Dong
- Xi'an Zhengda Pharmaceutical Co., Ltd., Xi'an, 710072, Shaanxi, PR China.
| | - Tieming Liu
- Xi'an Zhengda Pharmaceutical Co., Ltd., Xi'an, 710072, Shaanxi, PR China.
| | - Qibing Mei
- Laboratory of Oncological Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, PR China.
| | - De Cai
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, PR China.
| |
Collapse
|
8
|
Han SJ, Williams RM, Kim M, Heller DA, D'Agati V, Schmidt-Supprian M, Lee HT. Renal proximal tubular NEMO plays a critical role in ischemic acute kidney injury. JCI Insight 2020; 5:139246. [PMID: 32941183 PMCID: PMC7566738 DOI: 10.1172/jci.insight.139246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
We determined that renal proximal tubular (PT) NF-κB essential modulator (NEMO) plays a direct and critical role in ischemic acute kidney injury (AKI) using mice lacking renal PT NEMO and by targeted renal PT NEMO inhibition with mesoscale nanoparticle-encapsulated NEMO binding peptide (NBP MNP). We subjected renal PT NEMO-deficient mice, WT mice, and C57BL/6 mice to sham surgery or 30 minutes of renal ischemia and reperfusion (IR). C57BL/6 mice received NBP MNP or empty MNP before renal IR injury. Mice treated with NBP MNP and mice deficient in renal PT NEMO were protected against ischemic AKI, having decreased renal tubular necrosis, inflammation, and apoptosis compared with control MNP-treated or WT mice, respectively. Recombinant peptidylarginine deiminase type 4 (rPAD4) targeted kidney PT NEMO to exacerbate ischemic AKI in that exogenous rPAD4 exacerbated renal IR injury in WT mice but not in renal PT NEMO-deficient mice. Furthermore, rPAD4 upregulated proinflammatory cytokine mRNA and NF-κB activation in freshly isolated renal proximal tubules from WT mice but not from PT NEMO-deficient mice. Taken together, our studies suggest that renal PT NEMO plays a critical role in ischemic AKI by promoting renal tubular inflammation, apoptosis, and necrosis.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Ryan M Williams
- Department of Biomedical Engineering, City College of New York, New York, New York, USA
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Daniel A Heller
- Department of Molecular Pharmacology & Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| |
Collapse
|
9
|
Pradhan D, Pradhan J, Mishra A, Karmakar K, Dhiman R, Chakravortty D, Negi VD. Immune modulations and survival strategies of evolved hypervirulent Salmonella Typhimurium strains. Biochim Biophys Acta Gen Subj 2020; 1864:129627. [PMID: 32360143 DOI: 10.1016/j.bbagen.2020.129627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Evolving multidrug-resistance and hypervirulence in Salmonella is due to multiple host-pathogen, and non-host environmental interactions. Previously we had studied Salmonella adaptation upon repeated exposure in different in-vitro and in-vivo environmental conditions. This study deals with the mechanistic basis of hypervirulence of the passaged hypervirulent Salmonella strains reported previously. METHODS Real-time PCR, flow cytometry, western blotting, and confocal microscopy were employed to check the alteration of signaling pathways by the hypervirulent strains. The hypervirulence was also looked in-vivo in the Balb/c murine model system. RESULTS The hypervirulent strains altered cytokine production towards anti-inflammatory response via NF-κB and Akt-NLRC4 signaling in RAW-264.7 and U-937 cells. They also impaired lysosome number, as well as co-localization with the lysosome as compared to unpassaged WT-STM. In Balb/c mice also they caused decreased antimicrobial peptides, reduced nitric oxide level, altered cytokine production, and reduced CD4+ T cell population leading to increased organ burden. CONCLUSIONS Hypervirulent Salmonella strains infection resulted in an anti-inflammatory environment by upregulating IL-10 and down-regulating IL-1β expression. They also evaded lysosomal degradation for their survival. With inhibition of NF-κB and Akt signaling, cytokine expression, lysosome number, as well as the bacterial burden was reverted, indicating the infection mediated immune modulation by the hypervirulent Salmonella strains through these pathways. GENERAL SIGNIFICANCE Understanding the mechanism of adaptation can provide better disease prognosis by either targeting the bacterial gene or by strengthening the host immune system that might ultimately help in controlling salmonellosis.
Collapse
Affiliation(s)
- Diana Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Jasmin Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India; Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar, west Bengal 736165, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
10
|
Henry KL, Kellner D, Bajrami B, Anderson JE, Beyna M, Bhisetti G, Cameron T, Capacci AG, Bertolotti-Ciarlet A, Feng J, Gao B, Hopkins B, Jenkins T, Li K, May-Dracka T, Murugan P, Wei R, Zeng W, Allaire N, Buckler A, Loh C, Juhasz P, Lucas B, Ennis KA, Vollman E, Cahir-McFarland E, Hett EC, Ols ML. CDK12-mediated transcriptional regulation of noncanonical NF-κB components is essential for signaling. Sci Signal 2018; 11:eaam8216. [PMID: 30065029 DOI: 10.1126/scisignal.aam8216] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Members of the family of nuclear factor κB (NF-κB) transcription factors are critical for multiple cellular processes, including regulating innate and adaptive immune responses, cell proliferation, and cell survival. Canonical NF-κB complexes are retained in the cytoplasm by the inhibitory protein IκBα, whereas noncanonical NF-κB complexes are retained by p100. Although activation of canonical NF-κB signaling through the IκBα kinase complex is well studied, few regulators of the NF-κB-inducing kinase (NIK)-dependent processing of noncanonical p100 to p52 and the subsequent nuclear translocation of p52 have been identified. We discovered a role for cyclin-dependent kinase 12 (CDK12) in transcriptionally regulating the noncanonical NF-κB pathway. High-content phenotypic screening identified the compound 919278 as a specific inhibitor of the lymphotoxin β receptor (LTβR), and tumor necrosis factor (TNF) receptor superfamily member 12A (FN14)-dependent nuclear translocation of p52, but not of the TNF-α receptor-mediated nuclear translocation of p65. Chemoproteomics identified CDK12 as the target of 919278. CDK12 inhibition by 919278, the CDK inhibitor THZ1, or siRNA-mediated knockdown resulted in similar global transcriptional changes and prevented the LTβR- and FN14-dependent expression of MAP3K14 (which encodes NIK) as well as NIK accumulation by reducing phosphorylation of the carboxyl-terminal domain of RNA polymerase II. By coupling a phenotypic screen with chemoproteomics, we identified a pathway for the activation of the noncanonical NF-κB pathway that could serve as a therapeutic target in autoimmunity and cancer.
Collapse
Affiliation(s)
- Kate L Henry
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - John E Anderson
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - Tom Cameron
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Jun Feng
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Benbo Gao
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Kejie Li
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Ru Wei
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Weike Zeng
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Norm Allaire
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Alan Buckler
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | - Peter Juhasz
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Brian Lucas
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | | | - Erik C Hett
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
11
|
Li BX, Wang HB, Qiu MZ, Luo QY, Yi HJ, Yan XL, Pan WT, Yuan LP, Zhang YX, Xu JH, Zhang L, Yang DJ. Novel smac mimetic APG-1387 elicits ovarian cancer cell killing through TNF-alpha, Ripoptosome and autophagy mediated cell death pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018. [PMID: 29530056 PMCID: PMC5848599 DOI: 10.1186/s13046-018-0703-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Ovarian cancer is a deadly disease. Inhibitors of apoptosis proteins (IAPs) are key regulators of apoptosis and are frequently dysregulated in ovarian cancer. Overexpression of IAPs proteins has been correlated with tumorigenesis, treatment resistance and poor prognosis. Reinstalling functional cell death machinery by pharmacological inhibition of IAPs proteins may represent an attractive therapeutic strategy for treatment of ovarian cancer. Methods CCK-8 and colony formation assay was performed to examine cytotoxic activity. Apoptosis was analyzed by fluorescence microscopy, flow cytometry and TUNEL assay. Elisa assay was used to determine TNFα protein. Caspase activity assay was used for caspase activation evaluation. Immunoprecipitation and siRNA interference were carried out for functional analysis. Western blotting analysis were carried out to test protein expression. Ovarian cancer cell xenograft nude mice model was used for in vivo efficacy evaluation. Results APG-1387 demonstrated potent inhibitory effect on ovarian cancer cell growth and clonogenic cell survival. APG-1387 induced RIP1- and TNFα-dependent apoptotic cell death in ovarian cancer through downregulation of IAPs proteins and induction of caspase-8/FADD/RIP1 complex, which drives caspase-8 activation. NF-κB signaling pathway was activated upon APG-1387 treatment and RIP1 contributed to NF-κB activation. APG-1387 induced cytoprotective autophagy while triggering apoptosis in ovarian cancer cells and inhibition of autophagy enhanced APG-1387-induced apoptotic cell death. APG-1387 exhibited potent antitumor activity against established human ovarian cancer xenografts. Conclusions Our results demonstrate that APG-1387 targets IAPs proteins to potently elicit apoptotic cell death in vitro and in vivo, and provide mechanistic and applicable rationale for future clinical evaluation of APG-1387 in ovarian cancer.
Collapse
Affiliation(s)
- Bao-Xia Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Heng-Bang Wang
- Department of Pharmacology, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China.,Ascentage Pharma Group Corp., Ltd., Taizhou, 225309, China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Qiu-Yun Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Han-Jie Yi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiang-Lei Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Tao Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lu-Ping Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yu-Xin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jian-Hua Xu
- Department of Pharmacology, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China.
| | - Lin Zhang
- Departments of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| | - Da-Jun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. .,Ascentage Pharma Group Corp., Ltd., Taizhou, 225309, China.
| |
Collapse
|
12
|
Nfkb1 activation by the E26 transformation-specific transcription factors PU.1 and Spi-B promotes Toll-like receptor-mediated splenic B cell proliferation. Mol Cell Biol 2015; 35:1619-32. [PMID: 25733685 DOI: 10.1128/mcb.00117-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022] Open
Abstract
Generation of antibodies against T-independent and T-dependent antigens requires Toll-like receptor (TLR) engagement on B cells for efficient responses. However, the regulation of TLR expression and responses in B cells is not well understood. PU.1 and Spi-B (encoded by Sfpi1 and Spib, respectively) are transcription factors of the E26 transformation-specific (ETS) family and are important for B cell development and function. It was found that B cells from mice knocked out for Spi-B and heterozygous for PU.1 (Sfpi1(+/-) Spib(-/-) [PUB] mice) proliferated poorly in response to TLR ligands compared to wild-type (WT) B cells. The NF-κB family member p50 (encoded by Nfkb1) is required for lipopolysaccharide (LPS) responsiveness in mice. PUB B cells expressed reduced Nfkb1 mRNA transcripts and p50 protein. The Nfkb1 promoter was regulated directly by PU.1 and Spi-B, as shown by reporter assays and chromatin immunoprecipitation analysis. Occupancy of the Nfkb1 promoter by PU.1 was reduced in PUB B cells compared to that in WT B cells. Finally, infection of PUB B cells with a retroviral vector encoding p50 substantially restored proliferation in response to LPS. We conclude that Nfkb1 transcriptional activation by PU.1 and Spi-B promotes TLR-mediated B cell proliferation.
Collapse
|
13
|
Williams K, Gokulan K, Shelman D, Akiyama T, Khan A, Khare S. Cytotoxic Mechanism ofCytolethal Distending Toxinin NontyphoidalSalmonellaSerovar (SalmonellaJaviana) During Macrophage Infection. DNA Cell Biol 2015; 34:113-24. [DOI: 10.1089/dna.2014.2602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Katherine Williams
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Diamond Shelman
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Tatsuya Akiyama
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Ashraf Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
14
|
Allen IC, McElvania-TeKippe E, Wilson JE, Lich JD, Arthur JC, Sullivan JT, Braunstein M, Ting JPY. Characterization of NLRP12 during the in vivo host immune response to Klebsiella pneumoniae and Mycobacterium tuberculosis. PLoS One 2013; 8:e60842. [PMID: 23577168 PMCID: PMC3618512 DOI: 10.1371/journal.pone.0060842] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 03/05/2013] [Indexed: 01/12/2023] Open
Abstract
The majority of nucleotide binding domain leucine rich repeats-containing (NLR) family members has yet to be functionally characterized. Of the described NLRs, most are considered to be proinflammatory and facilitate IL-1β production. However, a newly defined sub-group of NLRs that function as negative regulators of inflammation have been identified based on their abilities to attenuate NF-κB signaling. NLRP12 (Monarch-1) is a prototypical member of this sub-group that negatively regulates both canonical and noncanonical NF-κB signaling in biochemical assays and in colitis and colon cancer models. The role of NLRP12 in infectious diseases has not been extensively studied. Here, we characterized the innate immune response of Nlrp12−/− mice following airway exposure to LPS, Klebsiella pneumoniae and Mycobacterium tuberculosis. In response to E. coli LPS, Nlrp12−/− mice showed a slight decrease in IL-1β and increase in IL-6 production, but these levels were not statistically significant. During K. pneumoniae infection, we observed subtle differences in cytokine levels and significantly reduced numbers of monocytes and lymphocytes in Nlrp12−/− mice. However, the physiological relevance of these findings is unclear as no overt differences in the development of lung disease were observed in the Nlrp12−/− mice. Likewise, Nlrp12−/− mice demonstrated pathologies similar to those observed in the wild type mice following M. tuberculosis infection. Together, these data suggest that NLRP12 does not significantly contribute to the in vivo host innate immune response to LPS stimulation, Klebsiella pneumonia infection or Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Irving C. Allen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (ICA); (JPYT)
| | - Erin McElvania-TeKippe
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Justin E. Wilson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John D. Lich
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan T. Sullivan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Miriam Braunstein
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jenny P. Y. Ting
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (ICA); (JPYT)
| |
Collapse
|
15
|
Tully JE, Nolin JD, Guala AS, Hoffman SM, Roberson EC, Lahue KG, van der Velden J, Anathy V, Blackwell TS, Janssen-Heininger YMW. Cooperation between classical and alternative NF-κB pathways regulates proinflammatory responses in epithelial cells. Am J Respir Cell Mol Biol 2012; 47:497-508. [PMID: 22652196 DOI: 10.1165/rcmb.2012-0014oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The transcription factor NF-κB has been causally linked to inflammatory lung diseases. Recent studies have unraveled the complexity of NF-κB activation by identifying two parallel activation pathways: the classical NF-κB pathway, which is controlled by IκB kinase complex-β (IKKβ) and RelA/p50, and the alternative pathway, which is controlled by IKKα and RelB/p52. The alternative pathway regulates adaptive immune responses and lymphoid development, yet its role in the regulation of innate immune responses remains largely unknown. In this study, we determined the relevance of the alternative NF-κB pathway in proinflammatory responses in lung epithelial cells. The exposure of C10 murine alveolar lung epithelial cells to diverse stimuli, or primary murine tracheal epithelial cells to LPS, resulted in the activation of both NF-κB pathways, based on the nuclear translocation of RelA, p50, RelB, and p52. Increases in the nuclear content of RelA occurred rapidly, but transiently, whereas increases in nuclear RelB content were protracted. The small interfering (si) RNA-mediated knockdown of IKKα, RelA, or RelB resulted in decreases of multiple LPS-induced proinflammatory cytokines. Surprisingly, the siRNA ablation of IKKα or RelB led to marked increases in the production of IL-6 in response to LPS. The simultaneous expression of constitutively active (CA)-IKKα and CA-IKKβ caused synergistic increases in proinflammatory mediators. Lastly, the disruption of the IKK signalsome inhibited the activation of both NF-κB pathways. These results demonstrate that the coordinated activation of both NF-κB pathways regulates the magnitude and nature of proinflammatory responses in lung epithelial cells.
Collapse
Affiliation(s)
- Jane E Tully
- Health Sciences Research Facility, Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bhattacharyya S, Borthakur A, Dudeja PK, Tobacman JK. Lipopolysaccharide-induced activation of NF-κB non-canonical pathway requires BCL10 serine 138 and NIK phosphorylations. Exp Cell Res 2010; 316:3317-27. [PMID: 20466000 PMCID: PMC2963716 DOI: 10.1016/j.yexcr.2010.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/03/2010] [Accepted: 05/03/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS B-cell lymphoma/leukemia (BCL)-10 and reactive oxygen species mediate two pathways of NF-κB (RelA) activation by lipopolysaccharide (LPS) in human colonic epithelial cells. The pathway for LPS activation of RelB by the non-canonical pathway (RelB) in non-myeloid cells was not yet reported, but important for understanding the range of potential microbial LPS-induced effects in inflammatory bowel disease. METHODS Experiments were performed in human colonic epithelial cells and in mouse embryonic fibroblasts deficient in components of the IkappaB kinase (IKK) signalosome, in order to detect mediators of the non-canonical pathway of NF-κB activation, including nuclear RelB and p52 and phospho- and total NF-κB inducing kinase (NIK). BCL10 was silenced by siRNA and effects of mutations of specific phosphorylation sites of BCL10 (Ser138Gly and Ser218Gly) were determined. RESULTS By the non-canonical pathway, LPS exposure increased nuclear RelB and p52, and phospho-NIK, with no change in total NIK. Phosphorylation of BCL10 serine 138 was required for NIK phosphorylation, since mutation of this residue eliminated the increases in phospho-NIK and nuclear RelB and p52. Mutations of either serine 138 or serine 218 reduced RelA, p50, and phospho-IκBα of the canonical pathway. Effects of LPS stimulation and BCL10 silencing on NIK phosphorylation were demonstrated in confocal images. CONCLUSIONS LPS induces activation of both canonical and non-canonical pathways of NF-κB in human colonic epithelial cells, and the non-canonical pathway requires phosphorylations of BCL10 (serine 138) and NIK. These findings demonstrate the important role of BCL10 in mediating LPS-induced inflammation in human colonic epithelial cells and may open new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL 60612-7227, USA
| | | | | | | |
Collapse
|
17
|
Cruz SC, Silva GP, Sampaio FJ, Souza SL, Dias AAS, Milagres LG. Comparison of long-term humoral memory development after immunisation against Neisseria meningitidis B or diphtheria toxoid. Vaccine 2010; 28:6841-6. [DOI: 10.1016/j.vaccine.2010.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/30/2010] [Accepted: 08/03/2010] [Indexed: 11/26/2022]
|
18
|
Rajaiya J, Sadeghi N, Chodosh J. Specific NFkappaB subunit activation and kinetics of cytokine induction in adenoviral keratitis. Mol Vis 2009; 15:2879-89. [PMID: 20038977 PMCID: PMC2797044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/18/2009] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Corneal inflammation associated with ocular adenoviral infection is caused by leukocytic infiltration of the subepithelial stroma in response to expression of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) by infected corneal cells. We have shown that these two chemokines are activated by the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK) and p38 for IL-8, and Jun-terminal kinase (JNK) for MCP-1. It is also well established that transcription of each of these chemokines is tightly controlled by the nuclear factor kappa B (NFkappaB) transcription factor family. Therefore, we sought to better understand the differential regulation of chemokine expression by NFkappaB in adenoviral infection of the cornea. METHODS Primary keratocytes derived from human donor corneas were treated with signaling inhibitors and small interfering RNA specific to MAPKs, and infected with adenovirus for different time periods before analysis. Activation of specific NFkappaB subunits was analyzed by western blot, confocal microscopy, electromobility shift assay, and chromatin immunoprecipitation, and chemokine expression was quantified by enzyme-linked immunosorbent assay. RESULTS Upon adenoviral infection, NFkappaB p65, p50, and cREL subunits translocate to the nucleus. This translocation is blocked by inhibitors of specific MAPK signaling pathways. Confocal microscopy showed that inhibitors of the p38, JNK, and ERK pathways differentially inhibited NFkappaB nuclear translocation, while PP2, an inhibitor of Src family kinases, completely inhibited NFkappaB nuclear translocation. Western blot analysis revealed that activation of specific NFkappaB subunits was time dependent following infection. Chromatin immunoprecipitation experiments indicated that binding of NFkappaB p65 and p50 subunits to the IL-8 promoter upon viral infection was differentially reduced by chemical inhibitors of MAPKs. Electromobility shift assay and luciferase assay analysis revealed that transactivation of IL-8 occurred with binding by the NFkappaB p65 homodimer or NFkappaB p65/p50 heterodimer as early as 1 h post infection, whereas MCP-1 expression was dependent upon the NFkappaB cREL but not the p65 subunit, and occurred 4 h after IL-8 induction. Finally, knockdown of NFkappaB p65 by short interfering RNA abrogated IL-8 but not MCP-1 expression after adenoviral infection. CONCLUSION The kinetics of NFkappaB subunit activation are partly responsible for the observed pattern of acute inflammation in the adenoviral-infected cornea. MAPKs differentially regulate chemokine expression in adenoviral keratitis by differential and time-dependent activation of specific NFkappaB subunits.
Collapse
Affiliation(s)
- Jaya Rajaiya
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA
| | - Neda Sadeghi
- University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Liu L, Yuan S, Long Y, Guo Z, Sun Y, Li Y, Niu Y, Li C, Mei Q. Immunomodulation of Rheum tanguticum polysaccharide (RTP) on the immunosuppressive effects of dexamethasone (DEX) on the treatment of colitis in rats induced by 2,4,6-trinitrobenzene sulfonic acid. Int Immunopharmacol 2009; 9:1568-77. [PMID: 19788936 DOI: 10.1016/j.intimp.2009.09.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/23/2009] [Accepted: 09/19/2009] [Indexed: 12/22/2022]
Abstract
Dexamethasone (DEX) is still the main choice for colitis, although the immunosuppressive side effects are still the troublesome problems to overcome. In our previous study, Rheum tanguticum polysaccharide (RTP), extracted from traditional Chinese medicine rhubarb, targeted mannose receptor, showed immunoregulatory effect on the balance of Th1 and Th2 polarization in colitis rats. For the present study, we hypothesized that RTP could regulate the immunosuppressive effects of DEX. Taking advantage of the colon delivery ability of the polysaccharide, we prepared the double emulsion of RTP microsphere containing DEX to investigate the potential immunoregulatory effects of RTP on DEX immunosuppression in TNBS-induced colitis in rats. As expected, DEX-RTP microsphere showed not only significant immunomodulatory effects, but also strong anti-inflammation. The microsphere balanced enteric bacteria disorder, decreased TLR4 activation and promoted the balance of Th1 and Th2 polarization, inhibited NF-kappaB activity. Especially, DEX-RTP showed significant colon injury reparation. DEX alone exhibited a strong anti-inflammatory effect by suppressing MPO activity, down-regulate NF-kappaB activity and Th1 cytokines production. However, DEX showed severe immunosuppressive effects. It aggravated the intestinal commensal bacteria disorder, induced thymus atrophy and the further imbalance of Th1/Th1 cytokine polarization. RTP showed significant immunoregulatory effects. A significant protection on the intestinal bacterial balance, TLR4 and NF-kappaB activation decreased, and Th1/Th2 cytokine production balance were showed in RTP. In conclusion, DEX-RTP microsphere delivered DEX directly to the colon avoiding the absorption at the upper intestinal tract and showed synergistic effects on colitis both from the strong anti-inflammatory effects of DEX and from the immunoregulation of RTP.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gasparini C, Foxwell BMJ, Feldmann M. RelB/p50 regulates CCL19 production, but fails to promote human DC maturation. Eur J Immunol 2009; 39:2215-23. [DOI: 10.1002/eji.200939209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|