1
|
Davis SE, Hart MT, Braza RED, Perry AA, Vega LA, Le Breton YS, McIver KS. The PdxR-PdxKU locus involved in vitamin B 6 salvage is important for group A streptococcal resistance to neutrophil killing and survival in human blood. Microbiol Spectr 2024; 12:e0160924. [PMID: 39530679 PMCID: PMC11619246 DOI: 10.1128/spectrum.01609-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is a Gram-positive bacterium that inflicts both superficial and life-threatening diseases on its human host. Analysis of fitness using a transposon mutant library revealed that genes predicted to be involved in vitamin B6 acquisition are associated with fitness in whole human blood. Vitamin B6 is essential for all life and is important for many cellular functions. In several streptococcal species, it has been shown that mutants in B6 acquisition exhibited reduced virulence phenotypes and were attenuated during infection. In GAS, B6 acquisition is believed to be controlled by the pdxR-pdxKU locus, where PdxR is a positive regulator of pdxKU, which encodes for a B6-substrate kinase and permease, respectively. Mutants in the regulator (ΔpdxR) and salvage machinery (ΔpdxKU) both exhibited modest growth defects when grown in oxygenated conditions with limited vitamin B6 precursors. ∆pdxR and ∆pdxKU mutants also exhibited an impaired ability to survive when challenged with whole human or mouse blood. This defect was characterized by reduced survival in the presence of human neutrophil-like HL60s, primary polymorphonuclear leukocytes, and antimicrobial peptide LL-37. Promoter analysis showed that PdxR is an autoregulator and activated pdxKU in the absence of B6. Interestingly, ∆pdxR and ∆pdxKU mutants were not attenuated in mouse models of infection, suggesting a species-specific impact on virulence. Overall, it appears that pdxR-pdxKU is associated with GAS vitamin B6 metabolism as well as pathogen survival during encounters with the human innate immune system.IMPORTANCEBacterial pathogens such as Streptococcus pyogenes (Group A Streptococcus, GAS) must be able to obtain needed nutrients in their human host. Vitamin B6 or pyridoxal 5' phosphate is essential for all life and is important for many cellular functions. In other streptococcal pathogens, B6 acquisition has been shown to be important for their ability to cause disease. Here, we show that loss of the putative vitamin B6 salvage pathway locus pdxR-pdxKU affects GAS pathogenesis when encountering innate immune responses from phagocytic neutrophils and antimicrobial peptides within the host. pdxR-pdxKU may contribute to oxygen tolerance through B6; however, there appear to be other mechanisms for salvaging vitamin B6. Overall, pdxR-pdxKU is associated with GAS resistance to the human innate immune response and oxygen tolerance and contributes modestly to B6 metabolism.
Collapse
Affiliation(s)
- Sarah E. Davis
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Meaghan T. Hart
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Rezia Era D. Braza
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Aolani A. Perry
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Luis A. Vega
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Yoann S. Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kevin S. McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Jespersen MG, Hayes AJ, Tong SYC, Davies MR. Pangenome evaluation of gene essentiality in Streptococcus pyogenes. Microbiol Spectr 2024; 12:e0324023. [PMID: 39012116 PMCID: PMC11323703 DOI: 10.1128/spectrum.03240-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Bacterial species often consist of strains with variable gene content, collectively referred to as the pangenome. Variations in the genetic makeup of strains can alter bacterial physiology and fitness. To define biologically relevant genes of a genome, genome-wide transposon mutant libraries have been used to identify genes essential for survival or virulence in a given strain. Such phenotypic studies have been conducted in four different genotypes of the human pathogen Streptococcus pyogenes, yet challenges exist in comparing results across studies conducted in different genetic backgrounds and conditions. To advance genotype to phenotype inferences across different S. pyogenes strains, we built a pangenome database of 249 S. pyogenes reference genomes. We systematically re-analyzed publicly available transposon sequencing datasets from S. pyogenes using a transposon sequencing-specific analysis pipeline, Transit. Across four genetic backgrounds and nine phenotypic conditions, 355 genes were essential for survival, corresponding to ~24% of the core genome. Clusters of Orthologous Genes (COG) categories related to coenzyme and lipid transport and growth functions were overrepresented as essential. Finally, essential operons across S. pyogenes genotypes were defined, with an increased number of essential operons detected under in vivo conditions. This study provides an extendible database to which new studies can be added, and a searchable html-based resource to direct future investigations into S. pyogenes biology.IMPORTANCEStreptococcus pyogenes is a human-adapted pathogen occupying restricted ecological niches. Understanding the essentiality of genes across different strains and experimental conditions is important to direct research questions and efforts to prevent the large burden of disease caused by S. pyogenes. To this end we systematically reanalyzed transposon sequencing studies in S. pyogenes using transposon sequencing-specific methods, integrating them into an extendible meta-analysis framework. This provides a repository of gene essentiality in S. pyogenes which was used to highlight specific genes of interest and for the community to guide future phenotypic studies.
Collapse
Affiliation(s)
- Magnus G. Jespersen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew J. Hayes
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Y. C. Tong
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Mark R. Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
3
|
Rom JS, Le Breton Y, Islam E, Belew AT, El-Sayed NM, McIver KS. Loss of rpoE Encoding the δ-Factor of RNA Polymerase Impacts Pathophysiology of the Streptococcus pyogenes M1T1 Strain 5448. Microorganisms 2022; 10:microorganisms10081686. [PMID: 36014103 PMCID: PMC9412562 DOI: 10.3390/microorganisms10081686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022] Open
Abstract
Streptococcus pyogenes, also known as the Group A Streptococcus (GAS), is a Gram-positive bacterial pathogen of major clinical significance. Despite remaining relatively susceptible to conventional antimicrobial therapeutics, GAS still causes millions of infections and hundreds of thousands of deaths each year worldwide. Thus, a need for prophylactic and therapeutic interventions for GAS is in great demand. In this study, we investigated the importance of the gene encoding the delta (δ) subunit of the GAS RNA polymerase, rpoE, for its impact on virulence during skin and soft-tissue infection. A defined 5448 mutant with an insertionally-inactivated rpoE gene was defective for survival in whole human blood and was attenuated for both disseminated lethality and lesion size upon mono-culture infection in mouse soft tissue. Furthermore, the mutant had reduced competitive fitness when co-infected with wild type (WT) 5448 in the mouse model. We were unable to attribute this attenuation to any observable growth defect, although colony size and the ability to grow at higher temperatures were both affected when grown with nutrient-rich THY media. RNA-seq of GAS grown in THY to late log phase found that mutation of rpoE significantly impacted (>2-fold) the expression of 429 total genes (205 upregulated, 224 downregulated), including multiple virulence and “housekeeping” genes. The arc operon encoding the arginine deiminase (ADI) pathway was the most upregulated in the rpoE mutant and this could be confirmed phenotypically. Taken together, these findings demonstrate that the delta (δ) subunit of RNA polymerase is vital in GAS gene expression and virulence.
Collapse
|
4
|
Streptococcus suis TrpX is part of a tryptophan uptake system, and its expression is regulated by a T-box regulatory element. Sci Rep 2022; 12:13920. [PMID: 35978073 PMCID: PMC9382623 DOI: 10.1038/s41598-022-18227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Streptococcus suis, a common member of the porcine respiratory microbiota, can cause life-threatening diseases in pigs as well as humans. A previous study identified the gene trpX as conditionally essential for in vivo survival by intrathecal infection of pigs with a transposon library of S. suis strain 10. Here, we characterized trpX, encoding a putative tryptophan/tyrosine transport system substrate-binding protein, in more detail. We compared growth capacities of the isogenic trpX-deficient mutant derivative strain 10∆trpX with its parent. Growth experiments in chemically defined media (CDM) revealed that growth of 10∆trpX depended on tryptophan concentration, suggesting TrpX involvement in tryptophan uptake. We demonstrated that trpX is part of an operon structure and co-transcribed with two additional genes encoding a putative permease and ATPase, respectively. Bioinformatics analysis identified a putative tryptophan T-box riboswitch in the 5′ untranslated region of this operon. Finally, qRT-PCR and a reporter activation assay revealed trpX mRNA induction under tryptophan-limited conditions. In conclusion, our study showed that TrpX is part of a putative tryptophan ABC transporter system regulated by a T-box riboswitch probably functioning as a substrate-binding protein. Due to the tryptophan auxotrophy of S. suis, TrpX plays a crucial role for metabolic adaptation and growth during infection.
Collapse
|
5
|
Phosphotransferase System Uptake and Metabolism of the β-Glucoside Salicin Impact Group A Streptococcal Bloodstream Survival and Soft Tissue Infection. Infect Immun 2020; 88:IAI.00346-20. [PMID: 32719156 DOI: 10.1128/iai.00346-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]), a major human-specific pathogen, relies on efficient nutrient acquisition for successful infection within its host. The phosphotransferase system (PTS) couples the import of carbohydrates with their phosphorylation prior to metabolism and has been linked to GAS pathogenesis. In a screen of an insertional mutant library of all 14 annotated PTS permease (EIIC) genes in MGAS5005, the annotated β-glucoside PTS transporter (bglP) was found to be crucial for GAS growth and survival in human blood and was validated in another M1T1 GAS strain, 5448. In 5448, bglP was shown to be in an operon with a putative phospho-β-glucosidase (bglB) downstream and a predicted antiterminator (licT) upstream. Using defined nonpolar mutants of the β-glucoside permease (bglP) and β-glucosidase enzyme (bglB) in 5448, we showed that bglB, not bglP, was important for growth in blood. Furthermore, transcription of the licT-blgPB operon was found to be repressed by glucose and induced by the β-glucoside salicin as the sole carbon source. Investigation of the individual bglP and bglB mutants determined that they influence in vitro growth in the β-glucoside salicin; however, only bglP was necessary for growth in other non-β-glucoside PTS sugars, such as fructose and mannose. Additionally, loss of BglP and BglB suggests that they are important for the regulation of virulence-related genes that control biofilm formation, streptolysin S (SLS)-mediated hemolysis, and localized ulcerative lesion progression during subcutaneous infections in mice. Thus, our results indicate that the β-glucoside PTS transports salicin and its metabolism can differentially influence GAS pathophysiology during soft tissue infection.
Collapse
|