1
|
Abstract
Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.
Collapse
Affiliation(s)
- Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Ukwaththage TO, Keane SM, Shen L, Macnaughtan MA. Chain-Selective Isotopic Labeling of the Heterodimeric Type III Secretion Chaperone, Scc4:Scc1, Reveals the Total Structural Rearrangement of the Chlamydia trachomatis Bi-Functional Protein, Scc4. Biomolecules 2020; 10:biom10111480. [PMID: 33114427 PMCID: PMC7692554 DOI: 10.3390/biom10111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 11/22/2022] Open
Abstract
Scc4 is an unusual bi-functional protein from Chlamydia trachomatis (CT) that functions as a type III secretion system (T3SS) chaperone and an RNA polymerase (RNAP)-binding protein. Both functions require interactions with protein partners during specific stages of the CT developmental cycle. As a T3SS chaperone, Scc4 binds Scc1 during the late stage of development to form a heterodimer complex, which chaperones the essential virulence effector, CopN. During the early-middle stage of development, Scc4 regulates T3SS gene expression by binding the σ66-containing RNAP holoenzyme. In order to study the structure and association mechanism of the Scc4:Scc1 T3SS chaperone complex using nuclear magnetic resonance (NMR) spectroscopy, we developed an approach to selectively label each chain of the Scc4:Scc1 complex with the 15N-isotope. The approach allowed one protein to be visible in the NMR spectrum at a time, which greatly reduced resonance overlap and permitted comparison of the backbone structures of free and bound Scc4. 1H,15N-heteronuclear single quantum coherence spectra of the 15N-Scc4:Scc1 and Scc4:15N-Scc1 complexes showed a total structural rearrangement of Scc4 upon binding Scc1 and a dynamic region isolated to Scc1, respectively. Development of the chain-selective labeling approach revealed that the association of Scc4 and Scc1 requires partial denaturation of Scc1 to form the high affinity complex, while low affinity interactions occurred between the isolated proteins under non-denaturing conditions. These results provide new models for Scc4′s functional switching mechanism and Scc4:Scc1 association in CT.
Collapse
Affiliation(s)
- Thilini O. Ukwaththage
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (T.O.U.); (S.M.K.)
| | - Samantha M. Keane
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (T.O.U.); (S.M.K.)
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Megan A. Macnaughtan
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (T.O.U.); (S.M.K.)
- Correspondence: ; Tel.:+1-225-578-7975
| |
Collapse
|
3
|
Khan AA, A Abuderman A, Ashraf MT, Khan Z. Protein-protein interactions of HPV- Chlamydia trachomatis-human and their potential in cervical cancer. Future Microbiol 2020; 15:509-520. [PMID: 32476479 DOI: 10.2217/fmb-2019-0242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: HPV is an important cause of cervical cancer, but Chlamydia trachomatis (CT) is suspiciously involved in this disease ranging from direct to its involvement as a cofactor with HPV. We performed this study to understand the interaction of HPV and C. trachomatis with humans and its contribution to cervical cancer. Materials & methods: Host-pathogen and pathogen-pathogen protein-protein interaction maps of HPV/CT/human were prepared and compared to analyze interactions during single/coinfection of C. trachomatis and HPV. The interacting human proteins were detected by their involvement in cervical cancer. Results: C. trachomatis may interact with several cancer associated proteins while HPV and C. trachomatis largely interact with different human proteins, suggesting different pathogenesis. Conclusion: C. trachomatis coinfection with HPV may modulate cervical cancer development.
Collapse
Affiliation(s)
- Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulwahab A Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Mohd Tashfeen Ashraf
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh, 201312, India
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Baverly Blvd., Los Angeles, CA 90048, USA
| |
Collapse
|
4
|
Kebbi-Beghdadi C, Pilloux L, Martin V, Greub G. Eukaryotic Cell Permeabilisation to Identify New Putative Chlamydial Type III Secretion System Effectors Secreted within Host Cell Cytoplasm. Microorganisms 2020; 8:microorganisms8030361. [PMID: 32138376 PMCID: PMC7143554 DOI: 10.3390/microorganisms8030361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Chlamydia trachomatis and Waddlia chondrophila are strict intracellular bacteria belonging to the Chlamydiales order. C. trachomatis is the most frequent bacterial cause of genital and ocular infections whereas W. chondrophila is an opportunistic pathogen associated with adverse pregnancy outcomes and respiratory infections. Being strictly intracellular, these bacteria are engaged in a complex interplay with their hosts to modulate their environment and create optimal conditions for completing their life cycle. For this purpose, they possess several secretion pathways and, in particular, a Type III Secretion System (T3SS) devoted to the delivery of effector proteins in the host cell cytosol. Identifying these effectors is a crucial step in understanding the molecular basis of bacterial pathogenesis. Following incubation of infected cells with perfringolysin O, a pore-forming toxin that binds cholesterol present in plasma membranes, we analysed by mass spectrometry the protein content of the host cell cytoplasm. We identified 13 putative effectors secreted by C. trachomatis and 19 secreted by W. chondrophila. Using Y. enterocolitica as a heterologous expression and secretion system, we confirmed that four of these identified proteins are secreted by the T3SS. Two W. chondrophila T3SS effectors (hypothetical proteins Wcw_0499 and Wcw_1706) were further characterised and demonstrated to be early/mid-cycle effectors. In addition, Wcw_1706 is associated with a tetratricopeptide domain-containing protein homologous to C. trachomatis class II chaperone. Furthermore, we identified a novel C. trachomatis effector, CT460 that localises in the eukaryotic nucleus when ectopically expressed in 293 T cells.
Collapse
Affiliation(s)
| | | | | | - Gilbert Greub
- Correspondence: ; Tel.: +41-21-314-4979; Fax: +41-21-314-4060
| |
Collapse
|
5
|
Ukwaththage TO, Goodwin OY, Songok AC, Tafaro AM, Shen L, Macnaughtan MA. Purification of Tag-Free Chlamydia trachomatis Scc4 for Structural Studies Using Sarkosyl-Assisted on-Column Complex Dissociation. Biochemistry 2019; 58:4284-4292. [PMID: 31545893 DOI: 10.1021/acs.biochem.9b00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes the most common sexually transmitted bacterial disease in the world. The bacterium has a unique biphasic developmental cycle with a type III secretion system (T3SS) to invade host cells. Scc4 is a class I T3SS chaperone forming a heterodimer complex with Scc1 to chaperone the essential virulence effector, CopN. Scc4 also functions as an RNA polymerase binding protein to regulate σ66-dependent transcription. Aggregation and low solubility of 6X-histidine-tagged Scc4 and the insolubility of 6X-histidine and FLAG-tagged Scc1 expressed in Escherichia coli have hindered the high-resolution nuclear magnetic resonance (NMR) structure determination of these proteins and motivated the development of an on-column complex dissociation method to produce tag-free Scc4 and soluble FLAG-tagged Scc1. By utilizing a 6X-histidine-tag on one protein, the coexpressed Scc4-Scc1 complex was captured on nickel-charged immobilized metal affinity chromatography resin, and the nondenaturing detergent, sodium N-lauroylsarcosine (sarkosyl), was used to dissociate and elute the non-6X-histidine-tagged protein. Tag-free Scc4 was produced in a higher yield and had better NMR spectral characteristics compared to 6X-histidine-tagged Scc4, and soluble FLAG-tagged Scc1 was purified for the first time in a high yield. The backbone structure of Scc4 after exposure to sarkosyl was validated using NMR spectroscopy, demonstrating the usefulness of the method to produce proteins for structural and functional studies. The sarkosyl-assisted on-column complex dissociation method is generally applicable to protein complexes with high affinity and is particularly useful when affinity tags alter the protein's biophysical properties or when coexpression is necessary for solubility.
Collapse
Affiliation(s)
- Thilini O Ukwaththage
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Octavia Y Goodwin
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Abigael C Songok
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Alexa M Tafaro
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology , Louisiana State University Health Sciences Center , New Orleans , Louisiana 70112 , United States
| | - Megan A Macnaughtan
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
6
|
Wang X, Hybiske K, Stephens RS. Direct visualization of the expression and localization of chlamydial effector proteins within infected host cells. Pathog Dis 2018; 76:4830102. [PMID: 29390129 DOI: 10.1093/femspd/fty011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 11/14/2022] Open
Abstract
Chlamydia secrete into host cells a diverse array of effector proteins, but progress in characterizing the spatiotemporal localization of these proteins has been hindered by a paucity of genetic approaches in Chlamydia and also by the challenge of studying these proteins within the live cellular environment. We adapted a split-green fluorescent protein (GFP) system for use in Chlamydia to label chlamydial effector proteins and track their localization in host cells under native environment. The efficacy of this system was demonstrated by detecting several known Chlamydia proteins including IncA, CT005 and CT694. We further used this approach to detect two chlamydial deubiquitinases (CT867 and CT868) within live cells during the infection. CT868 localized only to the inclusion membrane at early and late developmental stages. CT867 localized to the chlamydial inclusion membrane at an early developmental stage and was concomitantly localized to the host plasma membrane at a late stage during the infection. These data suggest that chlamydial deubiquitinase play important roles for chlamydial pathogenesis by targeting proteins at both the plasma membrane and the chlamydial inclusion membrane. The split-GFP technology was demonstrated to be a robust and efficient approach to identify the secretion and cellular localization of important chlamydial virulence factors.
Collapse
Affiliation(s)
- Xiaogang Wang
- Program in Infectious Diseases, School of Public Health, University of California, 51 Koshland Hall, Berkeley, CA 94720, USA
| | - Kevin Hybiske
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 750 Republican St Seattle, WA 98109, USA
| | - Richard S Stephens
- Program in Infectious Diseases, School of Public Health, University of California, 51 Koshland Hall, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Wang X, Hybiske K, Stephens RS. Orchestration of the mammalian host cell glucose transporter proteins-1 and 3 by Chlamydia contributes to intracellular growth and infectivity. Pathog Dis 2018; 75:4411801. [PMID: 29040458 DOI: 10.1093/femspd/ftx108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023] Open
Abstract
Chlamydia are gram-negative obligate intracellular bacteria that replicate within a discrete cellular vacuole, called an inclusion. Although it is known that Chlamydia require essential nutrients from host cells to support their intracellular growth, the molecular mechanisms for acquiring these macromolecules remain uncharacterized. In the present study, it was found that the expression of mammalian cell glucose transporter proteins 1 (GLUT1) and glucose transporter proteins 3 (GLUT3) were up-regulated during chlamydial infection. Up-regulation was dependent on bacterial protein synthesis and Chlamydia-induced MAPK kinase activation. GLUT1, but not GLUT3, was observed in close proximity to the inclusion membrane throughout the chlamydial developmental cycle. The proximity of GLUT1 to the inclusion was dependent on a brefeldin A-sensitive pathway. Knockdown of GLUT1 and GLUT3 with specific siRNA significantly impaired chlamydial development and infectivity. It was discovered that the GLUT1 protein was stabilized during infection by inhibition of host-dependent ubiquitination of GLUT1, and this effect was associated with the chlamydial deubiquitinase effector protein CT868. This report demonstrates that Chlamydia exploits host-derived transporter proteins altering their expression, turnover and localization. Consequently, host cell transporter proteins are manipulated during infection as a transport system to fulfill the carbon source requirements for Chlamydia.
Collapse
Affiliation(s)
- Xiaogang Wang
- Program in Infectious Diseases, School of Public Health, University of California, Berkeley, 51 Koshland Hall, CA 94720, USA.,Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA 02115, USA
| | - Kevin Hybiske
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98109, USA
| | - Richard S Stephens
- Program in Infectious Diseases, School of Public Health, University of California, Berkeley, 51 Koshland Hall, CA 94720, USA
| |
Collapse
|
8
|
Bavoil PM, Byrne GI. Analysis of CPAF mutants: new functions, new questions (the ins and outs of a chlamydial protease). Pathog Dis 2015; 71:287-91. [PMID: 24942261 DOI: 10.1111/2049-632x.12194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022] Open
Abstract
The role of the chlamydial protease CPAF, previously described as a secreted serine protease processing a wealth of host and chlamydial proteins to promote chlamydial intracellular growth, has recently been questioned by studies from the groups of Tan and Sütterlin, who demonstrated that the reported proteolysis of almost a dozen substrates by CPAF occurred during preparation of cell lysates rather than in intact cells. Valdivia et al. have now compared near-isogenic pairs of CPAF-deficient and secretion-deficient mutants of Chlamydia trachomatis and their wild-type parent. Their report, published in this issue of Pathogens and Disease, is a landmark study in the emerging era of Chlamydia genetics. The results of Tan and Sütterlin are confirmed with a few additions. While CPAF's role in pathogenesis is diminished considerably from these studies, CPAF remains an important factor in chlamydial biology as (1) CPAF mutants produce less infectious yield than wild type; and (2) CPAF is responsible for proteolytic cleavage of vimentin and LAP-1, but only after lysis of the inclusion membrane, not upon CPAF secretion to the cytosol. Here, we briefly review the evidence in support of CPAF's active secretion from the mid-to-late inclusion and conclude that new experimentation to establish whether or not CPAF is actively secreted should precede any new investigation of CPAF's cellular activities during mid-to-late development.
Collapse
Affiliation(s)
- Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | |
Collapse
|
9
|
Characterization of CPAF critical residues and secretion during Chlamydia trachomatis infection. Infect Immun 2015; 83:2234-41. [PMID: 25776755 DOI: 10.1128/iai.00275-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/11/2015] [Indexed: 11/20/2022] Open
Abstract
CPAF (chlamydial protease-like activity factor), a Chlamydia serine protease, is activated via proximity-induced intermolecular dimerization that triggers processing and removal of an inhibitory peptide occupying the CPAF substrate-binding groove. An active CPAF is a homodimer of two identical intramolecular heterodimers, each consisting of 29-kDa N-terminal and 35-kDa C-terminal fragments. However, critical residues for CPAF intermolecular dimerization, catalytic activity, and processing were defined in cell-free systems. Complementation of a CPAF-deficient chlamydial organism with a plasmid-encoded CPAF has enabled us to characterize CPAF during infection. The transformants expressing CPAF mutated at intermolecular dimerization, catalytic, or cleavage residues still produced active CPAF, although at a lower efficiency, indicating that CPAF can tolerate more mutations inside Chlamydia-infected cells than in cell-free systems. Only by simultaneously mutating both intermolecular dimerization and catalytic residues was CPAF activation completely blocked during infection, both indicating the importance of the critical residues identified in the cell-free systems and exploring the limit of CPAF's tolerance for mutations in the intracellular environment. We further found that active CPAF was always detected in the host cell cytoplasm while nonactive CPAF was restricted to within the chlamydial inclusions, regardless of how the infected cell samples were treated. Thus, CPAF translocation into the host cell cytoplasm correlates with CPAF enzymatic activity and is not altered by sample treatment conditions. These observations have provided new evidence for CPAF activation and translocation, which should encourage continued investigation of CPAF in chlamydial pathogenesis.
Collapse
|
10
|
Bachmann NL, Fraser TA, Bertelli C, Jelocnik M, Gillett A, Funnell O, Flanagan C, Myers GSA, Timms P, Polkinghorne A. Comparative genomics of koala, cattle and sheep strains of Chlamydia pecorum. BMC Genomics 2014; 15:667. [PMID: 25106440 PMCID: PMC4137089 DOI: 10.1186/1471-2164-15-667] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/31/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chlamydia pecorum is an important pathogen of domesticated livestock including sheep, cattle and pigs. This pathogen is also a key factor in the decline of the koala in Australia. We sequenced the genomes of three koala C. pecorum strains, isolated from the urogenital tracts and conjunctiva of diseased koalas. The genome of the C. pecorum VR629 (IPA) strain, isolated from a sheep with polyarthritis, was also sequenced. RESULTS Comparisons of the draft C. pecorum genomes against the complete genomes of livestock C. pecorum isolates revealed that these strains have a conserved gene content and order, sharing a nucleotide sequence similarity > 98%. Single nucleotide polymorphisms (SNPs) appear to be key factors in understanding the adaptive process. Two regions of the chromosome were found to be accumulating a large number of SNPs within the koala strains. These regions include the Chlamydia plasticity zone, which contains two cytotoxin genes (toxA and toxB), and a 77 kbp region that codes for putative type III effector proteins. In one koala strain (MC/MarsBar), the toxB gene was truncated by a premature stop codon but is full-length in IPTaLE and DBDeUG. Another five pseudogenes were also identified, two unique to the urogenital strains C. pecorum MC/MarsBar and C. pecorum DBDeUG, respectively, while three were unique to the koala C. pecorum conjunctival isolate IPTaLE. An examination of the distribution of these pseudogenes in C. pecorum strains from a variety of koala populations, alongside a number of sheep and cattle C. pecorum positive samples from Australian livestock, confirmed the presence of four predicted pseudogenes in koala C. pecorum clinical samples. Consistent with our genomics analyses, none of these pseudogenes were observed in the livestock C. pecorum samples examined. Interestingly, three SNPs resulting in pseudogenes identified in the IPTaLE isolate were not found in any other C. pecorum strain analysed, raising questions over the origin of these point mutations. CONCLUSIONS The genomic data revealed that variation between C. pecorum strains were mainly due to the accumulation of SNPs, some of which cause gene inactivation. The identification of these genetic differences will provide the basis for further studies to understand the biology and evolution of this important animal pathogen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs 4558, Queensland, Australia.
| |
Collapse
|
11
|
Penicillin kills Chlamydia following the fusion of bacteria with lysosomes and prevents genital inflammatory lesions in C. muridarum-infected mice. PLoS One 2013; 8:e83511. [PMID: 24376710 PMCID: PMC3871543 DOI: 10.1371/journal.pone.0083511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/04/2013] [Indexed: 01/11/2023] Open
Abstract
The obligate intracellular bacterium Chlamydia exists as two distinct forms. Elementary bodies (EBs) are infectious and extra-cellular, whereas reticulate bodies (RBs) replicate within a specialized intracellular compartment termed an ‘inclusion’. Alternative persistent intra-cellular forms can be induced in culture by diverse stimuli such as IFNγ or adenosine/EHNA. They do not grow or divide but revive upon withdrawal of the stimulus and are implicated in several widespread human diseases through ill-defined in vivo mechanisms. β-lactam antibiotics have also been claimed to induce persistence in vitro. The present report shows that upon penicillin G (pG) treatment, inclusions grow as fast as those in infected control cells. After removal of pG, Chlamydia do not revert to RBs. These effects are independent of host cell type, serovar, biovar and species of Chlamydia. Time-course experiments demonstrated that only RBs were susceptible to pG. pG-treated bacteria lost their control over host cell apoptotic pathways and no longer expressed pre-16S rRNA, in contrast to persistent bacteria induced with adenosine/EHNA. Confocal and live-video microscopy showed that bacteria within the inclusion fused with lysosomal compartments in pG-treated cells. That leads to recruitment of cathepsin D as early as 3 h post pG treatment, an event preceding bacterial death by several hours. These data demonstrate that pG treatment of cultured cells infected with Chlamydia results in the degradation of the bacteria. In addition we show that pG is significantly more efficient than doxycycline at preventing genital inflammatory lesions in C. muridarum-C57Bl/6 infected mice. These in vivo results support the physiological relevance of our findings and their potential therapeutic applications.
Collapse
|
12
|
Claessen JHL, Witte MD, Yoder NC, Zhu AY, Spooner E, Ploegh HL. Catch-and-release probes applied to semi-intact cells reveal ubiquitin-specific protease expression in Chlamydia trachomatis infection. Chembiochem 2013; 14:343-52. [PMID: 23335262 DOI: 10.1002/cbic.201200701] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Indexed: 12/26/2022]
Abstract
Protein ubiquitylation controls many cellular pathways, and timely removal of ubiquitin by deubiquitylating enzymes (DUBs) is essential to govern these different functions. To map endogenous expression of individual DUBs as well as that of any interacting proteins, we developed a catch-and-release ubiquitin probe. Ubiquitin was equipped with an activity-based warhead and a cleavable linker attached to a biotin affinity-handle through tandem site-specific modification, in which we combined intein chemistry with sortase-mediated ligation. The resulting probe is cell-impermeable and was therefore delivered to the cytosol of perfringolysin O (PFO)-permeabilized cells. This allowed us to retrieve and identify 34 DUBs and their interacting partners. We also noted the expression, in host cells infected with Chlamydia trachomatis, of two additional DUBs. Furthermore, we retrieved and identified chlamydial DUB1 (ChlaDUB1) and DUB2 (ChlaDUB2), demonstrating by experiment that ChlaDUB2, the presence and activity of which had not been detected in infected cells, is in fact expressed during the course of infection.
Collapse
Affiliation(s)
- Jasper H L Claessen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| | - Martin D Witte
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| | - Nicholas C Yoder
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| | - Angela Y Zhu
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| |
Collapse
|
13
|
Perfringolysin O as a useful tool to study human sperm physiology. Fertil Steril 2013; 99:99-106.e2. [DOI: 10.1016/j.fertnstert.2012.08.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/09/2012] [Accepted: 08/22/2012] [Indexed: 11/27/2022]
|
14
|
Fuchs TM, Eisenreich W, Heesemann J, Goebel W. Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiol Rev 2012; 36:435-62. [DOI: 10.1111/j.1574-6976.2011.00301.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/21/2011] [Indexed: 01/02/2023] Open
|
15
|
Olivares-Zavaleta N, Carmody A, Messer R, Whitmire WM, Caldwell HD. Chlamydia pneumoniae inhibits activated human T lymphocyte proliferation by the induction of apoptotic and pyroptotic pathways. THE JOURNAL OF IMMUNOLOGY 2011; 186:7120-6. [PMID: 21543647 DOI: 10.4049/jimmunol.1100393] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chlamydia pneumoniae is an omnipresent obligate intracellular bacterial pathogen that infects numerous host species. C. pneumoniae infections of humans are a common cause of community acquired pneumonia but have also been linked to chronic diseases such as atherosclerosis, Alzheimer's disease, and asthma. Persistent infection and immune avoidance are believed to play important roles in the pathophysiology of C. pneumoniae disease. We found that C. pneumoniae organisms inhibited activated but not nonactivated human T cell proliferation. Inhibition of proliferation was pathogen specific, heat sensitive, and multiplicity of infection dependent and required chlamydial entry but not de novo protein synthesis. Activated CD4(+) and CD8(+) T cells were equally sensitive to C. pneumoniae antiproliferative effectors. The C. pneumoniae antiproliferative effect was linked to T cell death associated with caspase 1, 8, 9, and IL-1β production, indicating that both apoptotic and pyroptotic cellular death pathways were activated after pathogen-T cell interactions. Collectively, these findings are consistent with the conclusion that C. pneumoniae could induce a local T cell immunosuppression and inflammatory response revealing a possible host-pathogen scenario that would support both persistence and inflammation.
Collapse
Affiliation(s)
- Norma Olivares-Zavaleta
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
16
|
Biological characterization of Chlamydia trachomatis plasticity zone MACPF domain family protein CT153. Infect Immun 2010; 78:2691-9. [PMID: 20351143 DOI: 10.1128/iai.01455-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis strains are obligate intracellular human pathogens that share near genomic synteny but have distinct infection and disease organotropisms. The genetic basis for differences in the pathogen-host relationship among chlamydial strains is linked to a variable region of chlamydial genomes, termed the plasticity zone (PZ). Two groups of PZ-encoded proteins, the membrane attack complex/perforin (MACPF) domain protein (CT153) and members of the phospholipase D-like (PLD) family, are related to proteins that modify membranes and lipids, but the functions of CT153 and the PZ PLDs (pzPLDs) are unknown. Here, we show that full-length CT153 (p91) was present in the elementary bodies (EBs) of 15 C. trachomatis reference strains. CT153 underwent a rapid infection-dependent proteolytic cleavage into polypeptides of 57 and 41 kDa that was independent of de novo chlamydial protein synthesis. Following productive infection, p91 was expressed during the mid-developmental cycle and was similarly processed into p57 and p41 fragments. Infected-cell fractionation studies showed that insoluble fractions contained p91, p57, and p41, whereas only p91 was found in the soluble fraction, indicating that unprocessed CT153 may be secreted. Finally, CT153 localized to a distinct population of reticulate bodies, some of which were in contact with the inclusion membrane.
Collapse
|
17
|
Unemo M, Seth-Smith HMB, Cutcliffe LT, Skilton RJ, Barlow D, Goulding D, Persson K, Harris SR, Kelly A, Bjartling C, Fredlund H, Olcén P, Thomson NR, Clarke IN. The Swedish new variant of Chlamydia trachomatis: genome sequence, morphology, cell tropism and phenotypic characterization. MICROBIOLOGY-SGM 2010; 156:1394-1404. [PMID: 20093289 DOI: 10.1099/mic.0.036830-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chlamydia trachomatis is a major cause of bacterial sexually transmitted infections worldwide. In 2006, a new variant of C. trachomatis (nvCT), carrying a 377 bp deletion within the plasmid, was reported in Sweden. This deletion included the targets used by the commercial diagnostic systems from Roche and Abbott. The nvCT is clonal (serovar/genovar E) and it spread rapidly in Sweden, undiagnosed by these systems. The degree of spread may also indicate an increased biological fitness of nvCT. The aims of this study were to describe the genome of nvCT, to compare the nvCT genome to all available C. trachomatis genome sequences and to investigate the biological properties of nvCT. An early nvCT isolate (Sweden2) was analysed by genome sequencing, growth kinetics, microscopy, cell tropism assay and antimicrobial susceptibility testing. It was compared with relevant C. trachomatis isolates, including a similar serovar E C. trachomatis wild-type strain that circulated in Sweden prior to the initially undetected expansion of nvCT. The nvCT genome does not contain any major genetic polymorphisms - the genes for central metabolism, development cycle and virulence are conserved - or phenotypic characteristics that indicate any altered biological fitness. This is supported by the observations that the nvCT and wild-type C. trachomatis infections are very similar in terms of epidemiological distribution, and that differences in clinical signs are only described, in one study, in women. In conclusion, the nvCT does not appear to have any altered biological fitness. Therefore, the rapid transmission of nvCT in Sweden was due to the strong diagnostic selective advantage and its introduction into a high-frequency transmitting population.
Collapse
Affiliation(s)
- Magnus Unemo
- National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Clinical Microbiology, örebro University Hospital, örebro, Sweden
| | | | - Lesley T Cutcliffe
- Molecular Microbiology Group, University Medical School, Southampton General Hospital, Southampton, UK
| | - Rachel J Skilton
- Molecular Microbiology Group, University Medical School, Southampton General Hospital, Southampton, UK
| | - David Barlow
- Molecular Microbiology Group, University Medical School, Southampton General Hospital, Southampton, UK
| | - David Goulding
- Microbial Pathogenesis Electron Microscope Facility, The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Kenneth Persson
- Department of Clinical Microbiology, Malmö University Hospital, Malmö, Sweden
| | - Simon R Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Cambridgeshire, UK
| | - Anne Kelly
- National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Clinical Microbiology, örebro University Hospital, örebro, Sweden
| | - Carina Bjartling
- Department of Obstetrics and Gynaecology, Malmö University Hospital, Malmö, Sweden
| | - Hans Fredlund
- National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Clinical Microbiology, örebro University Hospital, örebro, Sweden
| | - Per Olcén
- National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Clinical Microbiology, örebro University Hospital, örebro, Sweden
| | - Nicholas R Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Cambridgeshire, UK
| | - Ian N Clarke
- Molecular Microbiology Group, University Medical School, Southampton General Hospital, Southampton, UK
| |
Collapse
|
18
|
Markham AP, Jaafar ZA, Kemege KE, Middaugh CR, Hefty PS. Biophysical characterization of Chlamydia trachomatis CT584 supports its potential role as a type III secretion needle tip protein. Biochemistry 2009; 48:10353-61. [PMID: 19769366 DOI: 10.1021/bi901200y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chlamydia are obligate intracellular bacterial pathogens that cause a variety of diseases. Like many Gram-negative bacteria, they employ type III secretion systems (T3SS) for invasion, establishing and maintaining their unique intracellular niche, and possibly cellular exit. Computational structure prediction indicated that ORF CT584 is homologous to other T3SS needle tip proteins. Tip proteins have been shown to be localized to the extracellular end of the T3SS needle and play a key role in controlling secretion of effector proteins. We have previously demonstrated that T3SS needle tip proteins from different bacteria share many biophysical characteristics. To support the hypothesis that CT584 is a T3SS needle tip protein, biophysical properties of CT584 were explored as a function of pH and temperature, using spectroscopic techniques. Far-UV circular dichroism, Fourier transform infrared spectroscopy, UV absorbance spectroscopy, ANS extrinsic fluorescence, turbidity, right angle static light scattering, and analytical ultracentrifugation were all employed to monitor the secondary, tertiary, quaternary, and aggregation behavior of this protein. An empirical phase diagram approach is also employed to facilitate such comparisons. These analyses demonstrate that CT584 shares many biophysical characteristics with other T3SS needle tip proteins. These data support the hypothesis that CT584 is a member of the same functional family, although future biologic analyses are required.
Collapse
Affiliation(s)
- Aaron P Markham
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
19
|
Kern JM, Maass V, Maass M. Molecular pathogenesis of chronic Chlamydia pneumoniae infection: a brief overview. Clin Microbiol Infect 2009; 15:36-41. [PMID: 19220338 DOI: 10.1111/j.1469-0691.2008.02631.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to its unique host cell-dependent development cycle, Chlamydia pneumoniae occupies an intracellular niche that enables the bacterium to survive and to multiply, secluded from both the extracellular and the cytoplasmic environments. Within its separate chlamydial inclusion, it is able to genetically switch between a replicative and a persisting non-replicative state, linking the pathogen to acute as well as chronic diseases. Although its role in acute respiratory infection has been established, a potential link between chronic vascular infection with C. pneumoniae and the development of atherosclerosis remains enigmatic, in particular because chronic chlamydial infection cannot be eradicated by antibiotics. C. pneumoniae has developed numerous mechanisms to establish an adequate growth milieu involving the type III secretion-mediated release of chlamydial effector proteins that interact with cellular structures and reprogram host cell regulatory pathways. This brief overview of these pathomechanisms focuses on chronic vascular infection.
Collapse
Affiliation(s)
- J M Kern
- Institute of Medical Microbiology, Hygiene and Infectious Diseases, University Hospital Salzburg, Salzburg, Austria
| | | | | |
Collapse
|
20
|
Cragnolini JJ, García-Medel N, de Castro JAL. Endogenous processing and presentation of T-cell epitopes from Chlamydia trachomatis with relevance in HLA-B27-associated reactive arthritis. Mol Cell Proteomics 2009; 8:1850-9. [PMID: 19443418 DOI: 10.1074/mcp.m900107-mcp200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlamydia trachomatis triggers reactive arthritis, a spondyloarthropathy linked to the human major histocompatibility complex molecule HLA-B27, through an unknown mechanism that might involve molecular mimicry between chlamydial and self-derived HLA-B27 ligands. Chlamydia-specific CD8(+) T-cells are found in reactive arthritis patients, but the immunogenic epitopes are unknown. A previous screening of the chlamydial genome for putative HLA-B27 ligands predicted multiple peptides that were recognized in vitro by CD8(+) T-lymphocytes from patients. Here stable transfectants expressing bacterial fusion proteins in human cells were generated to investigate the endogenous processing and presentation by HLA-B27 of two such epitopes through comparative immunoproteomics of HLA-B27-bound peptide repertoires. A predicted T-cell epitope, from the CT610 gene product, was presented by HLA-B27. This is, to our knowledge, the first endogenously processed epitope involved in HLA-B27-restricted responses against C. trachomatis in reactive arthritis. A second predicted epitope, from the CT634 gene product, was not detected. Instead a non-predicted nonamer from the same protein was identified. Both bacterial peptides showed very high homology with human sequences containing the HLA-B27 binding motif. Thus, expression and intracellular processing of chlamydial proteins into human cells allowed us to identify two bacterial HLA-B27 ligands, including the first endogenous T-cell epitope from C. trachomatis involved in spondyloarthropathy. That human proteins contain sequences mimicking chlamydial T-cell epitopes suggests a basis for an autoimmune component of Chlamydia-induced HLA-B27-associated disease.
Collapse
Affiliation(s)
- Juan J Cragnolini
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Universidad Autónoma, 28049 Madrid, Spain
| | | | | |
Collapse
|
21
|
Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect Immun 2008; 77:508-16. [PMID: 19001072 DOI: 10.1128/iai.01173-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chlamydia trachomatis is a globally important obligate intracellular bacterial pathogen that is a leading cause of sexually transmitted disease and blinding trachoma. Effective control of these diseases will likely require a preventative vaccine. C. trachomatis polymorphic membrane protein D (PmpD) is an attractive vaccine candidate as it is conserved among C. trachomatis strains and is a target of broadly cross-reactive neutralizing antibodies. We show here that immunoaffinity-purified native PmpD exists as an oligomer with a distinct 23-nm flower-like structure. Two-dimensional blue native-sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses showed that the oligomers were composed of full-length PmpD (p155) and two proteolytically processed fragments, the p73 passenger domain (PD) and the p82 translocator domain. We also show that PmpD undergoes an infection-dependent proteolytic processing step late in the growth cycle that yields a soluble extended PD (p111) that was processed into a p73 PD and a novel p30 fragment. Interestingly, soluble PmpD peptides possess putative eukaryote-interacting functional motifs, implying potential secondary functions within or distal to infected cells. Collectively, our findings show that PmpD exists as two distinct forms, a surface-associated oligomer exhibiting a higher-order flower-like structure and a soluble form restricted to infected cells. We hypothesize that PmpD is a multifunctional virulence factor important in chlamydial pathogenesis and could represent novel vaccine or drug targets for the control of human chlamydial infections.
Collapse
|