1
|
Brown MA, Morgan SB, Donachie GE, Horton KL, Pavord ID, Arancibia-Cárcamo CV, Hinks TSC. Epithelial immune activation and intracellular invasion by non-typeable Haemophilus influenzae. Front Cell Infect Microbiol 2023; 13:1141798. [PMID: 37180449 PMCID: PMC10167379 DOI: 10.3389/fcimb.2023.1141798] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Type-2 low asthma affects 30-50% of people with severe asthma and includes a phenotype characterized by sputum neutrophilia and resistance to corticosteroids. Airways inflammation in type-2 low asthma or COPD is potentially driven by persistent bacterial colonization of the lower airways by bacteria such as non-encapsulated Haemophilus influenzae (NTHi). Although pathogenic in the lower airways, NTHi is a commensal of the upper airways. It is not known to what extent these strains can invade airway epithelial cells, persist intracellularly and activate epithelial cell production of proinflammatory cytokines, and how this differs between the upper and lower airways. We studied NTHi infection of primary human bronchial epithelial cells (PBECs), primary nasal epithelial cells (NECs) and epithelial cell lines from upper and lower airways. NTHi strains differed in propensity for intracellular and paracellular invasion. We found NTHi was internalized within PBECs at 6 h, but live intracellular infection did not persist at 24 h. Confocal microscopy and flow cytometry showed NTHi infected secretory, ciliated and basal PBECs. Infection of PBECs led to induction of CXCL8, interleukin (IL)-1β, IL-6 and TNF. The magnitude of cytokine induction was independent of the degree of intracellular invasion, either by differing strains or by cytochalasin D inhibition of endocytosis, with the exception of the inflammasome-induced mediator IL-1β. NTHi-induced activation of TLR2/4, NOD1/2 and NLR inflammasome pathways was significantly stronger in NECs than in PBECs. These data suggest that NTHi is internalized transiently by airway epithelial cells and has capacity to drive inflammation in airway epithelial cells.
Collapse
Affiliation(s)
- Mary A. Brown
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Gillian E. Donachie
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Katie L. Horton
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Ian D. Pavord
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Carolina V. Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Ngwa DN, Agrawal A. Structure-Function Relationships of C-Reactive Protein in Bacterial Infection. Front Immunol 2019; 10:166. [PMID: 30863393 PMCID: PMC6400226 DOI: 10.3389/fimmu.2019.00166] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
One host defense function of C-reactive protein (CRP) is to protect against Streptococcus pneumoniae infection as shown by experiments employing murine models of pneumococcal infection. The protective effect of CRP is due to reduction in bacteremia. There is a distinct relationship between the structure of CRP and its anti-pneumococcal function. CRP is functional in both native and non-native pentameric structural conformations. In the native conformation, CRP binds to pneumococci through the phosphocholine molecules present on the C-polysaccharide of the pneumococcus and the anti-pneumococcal function probably involves the known ability of ligand-complexed CRP to activate the complement system. In the native structure-function relationship, CRP is protective only when given to mice within a few hours of the administration of pneumococci. The non-native pentameric conformation of CRP is created when CRP is exposed to conditions mimicking inflammatory microenvironments, such as acidic pH and redox conditions. In the non-native conformation, CRP binds to immobilized complement inhibitor factor H in addition to being able to bind to phosphocholine. Recent data using CRP mutants suggest that the factor H-binding function of non-native CRP is beneficial: in the non-native structure-function relationship, CRP can be given to mice any time after the administration of pneumococci irrespective of whether the pneumococci became complement-resistant or not. In conclusion, while native CRP is protective only against early stage infection, non-native CRP is protective against both early stage and late stage infections. Because non-native CRP displays phosphocholine-independent anti-pneumococcal activity, it is quite possible that CRP functions as a general anti-bacterial molecule.
Collapse
Affiliation(s)
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
3
|
Clarke C, Bakaletz LO, Ruiz-Guiñazú J, Borys D, Mrkvan T. Impact of protein D-containing pneumococcal conjugate vaccines on non-typeable Haemophilus influenzae acute otitis media and carriage. Expert Rev Vaccines 2017; 16:1-14. [PMID: 28571504 DOI: 10.1080/14760584.2017.1333905] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Protein D-containing vaccines may decrease acute otitis media (AOM) burden and nasopharyngeal carriage of non-typeable Haemophilus influenzae (NTHi). Protein D-containing pneumococcal conjugate vaccine PHiD-CV (Synflorix, GSK Vaccines) elicits robust immune responses against protein D. However, the phase III Clinical Otitis Media and PneumoniA Study (COMPAS), assessing PHiD-CV efficacy against various pneumococcal diseases, was not powered to demonstrate efficacy against NTHi; only trends of protective efficacy against NTHi AOM in children were shown. Areas covered: This review aims to consider all evidence available to date from pre-clinical and clinical phase III studies together with further evidence emerging from post-marketing studies since PHiD-CV has been introduced into routine clinical practice worldwide, to better describe the clinical utility of protein D in preventing AOM due to NTHi and its impact on NTHi nasopharyngeal carriage. Expert commentary: Protein D is an effective carrier protein in conjugate vaccines and evidence gathered from pre-clinical, clinical and observational studies suggest that it also elicits immune response that can help to reduce the burden of AOM due to NTHi. There remains a need to develop improved vaccines for prevention of NTHi disease, which could be achieved by combining protein D with other antigens.
Collapse
Affiliation(s)
- Christopher Clarke
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| | - Lauren O Bakaletz
- b Center for Microbial Pathogenesis , The Research Institute at Nationwide Children's Hospital , Columbus , OH , USA.,c The Ohio State University College of Medicine , Columbus , OH , USA
| | - Javier Ruiz-Guiñazú
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| | - Dorota Borys
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| | - Tomas Mrkvan
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| |
Collapse
|
4
|
Post DMB, Ketterer MR, Coffin JE, Reinders LM, Munson RS, Bair T, Murphy TF, Foster ED, Gibson BW, Apicella MA. Comparative Analyses of the Lipooligosaccharides from Nontypeable Haemophilus influenzae and Haemophilus haemolyticus Show Differences in Sialic Acid and Phosphorylcholine Modifications. Infect Immun 2016; 84:765-74. [PMID: 26729761 PMCID: PMC4771351 DOI: 10.1128/iai.01185-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022] Open
Abstract
Haemophilus haemolyticus and nontypeable Haemophilus influenzae (NTHi) are closely related upper airway commensal bacteria that are difficult to distinguish phenotypically. NTHi causes upper and lower airway tract infections in individuals with compromised airways, while H. haemolyticus rarely causes such infections. The lipooligosaccharide (LOS) is an outer membrane component of both species and plays a role in NTHi pathogenesis. In this study, comparative analyses of the LOS structures and corresponding biosynthesis genes were performed. Mass spectrometric and immunochemical analyses showed that NTHi LOS contained terminal sialic acid more frequently and to a higher extent than H. haemolyticus LOS did. Genomic analyses of 10 strains demonstrated that H. haemolyticus lacked the sialyltransferase genes lic3A and lic3B (9/10) and siaA (10/10), but all strains contained the sialic acid uptake genes siaP and siaT (10/10). However, isothermal titration calorimetry analyses of SiaP from two H. haemolyticus strains showed a 3.4- to 7.3-fold lower affinity for sialic acid compared to that of NTHi SiaP. Additionally, mass spectrometric and immunochemical analyses showed that the LOS from H. haemolyticus contained phosphorylcholine (ChoP) less frequently than the LOS from NTHi strains. These differences observed in the levels of sialic acid and ChoP incorporation in the LOS structures from H. haemolyticus and NTHi may explain some of the differences in their propensities to cause disease.
Collapse
Affiliation(s)
| | | | - Jeremy E Coffin
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, USA
| | | | - Robert S Munson
- The Center for Microbial Pathogenesis at the Research Institute at Nationwide Children's Hospital and the Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Thomas Bair
- Bioinformatics Facility, The University of Iowa, Iowa City, Iowa, USA
| | - Timothy F Murphy
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Eric D Foster
- Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Bradford W Gibson
- Buck Institute for Research on Aging, Novato, California, USA Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Michael A Apicella
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Young NM, Foote SJ, Wakarchuk WW. Review of phosphocholine substituents on bacterial pathogen glycans: Synthesis, structures and interactions with host proteins. Mol Immunol 2013; 56:563-73. [DOI: 10.1016/j.molimm.2013.05.237] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 11/24/2022]
|
6
|
Microbial modulation of host immunity with the small molecule phosphorylcholine. Infect Immun 2012; 81:392-401. [PMID: 23230294 DOI: 10.1128/iai.01168-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All microorganisms dependent on persistence in a host for survival rely on either hiding from or modulating host responses to infection. The small molecule phosphorylcholine, or choline phosphate (ChoP), is used for both of these purposes by a wide array of bacterial and parasitic microbes. While the mechanisms underlying ChoP acquisition and expression are diverse, a unifying theme is the use of ChoP to reduce the immune response to infection, creating an advantage for ChoP-expressing microorganisms. In this minireview, we discuss several benefits of ChoP expression during infection as well as how the immune system fights back against ChoP-expressing pathogens.
Collapse
|
7
|
Haemophilus parainfluenzae has a limited core lipopolysaccharide repertoire with no phase variation. Glycoconj J 2012; 30:561-76. [PMID: 23093380 DOI: 10.1007/s10719-012-9455-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Cell surface lipopolysaccharide (LPS) is a well characterized virulence determinant for the human pathogen Haemophilus influenzae, so an investigation of LPS in the less pathogenic Haemophilus parainfluenzae could yield important insights. Using a panel of 18 commensal H. parainfluenzae isolates we demonstrate that the set of genes for inner core LPS biosynthesis largely resembles that of H. influenzae, with an additional heptosyltransferase I gene similar to waaC from Pasteurella multocida. Inner core LPS structure is therefore likely to be largely conserved across the two Haemophilus species. Outer core LPS biosynthetic genes are much less prevalent in H. parainfluenzae, although homologues of the H. influenzae LPS genes lpsB, non-phase variable lic2A and lgtC, and losA1, losB1 and lic2C are found in certain isolates. Immunoblotting using antibodies directed against selected LPS epitopes was consistent with these data. We found no evidence for tetranucleotide repeat-mediated phase variation in H. parainfluenzae. Phosphocholine, a phase variable H. influenzae LPS epitope that has been implicated in disease, was absent in H. parainfluenzae LPS as were the respective (lic1) biosynthetic genes. The introduction of the lic1 genes into H. parainfluenzae led to the phase variable incorporation of phosphocholine into its LPS. Differences in LPS structure between Haemophilus species could affect interactions at the bacterial-host interface and therefore the pathogenic potential of these bacteria.
Collapse
|
8
|
Vitiazeva V, Li J, Hood DW, Richard Moxon E, Schweda EK. The structural diversity of lipopolysaccharide expressed by non-typeable Haemophilus influenzae strains 1158 and 1159. Carbohydr Res 2012; 357:98-110. [DOI: 10.1016/j.carres.2012.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 11/28/2022]
|
9
|
Clark SE, Snow J, Li J, Zola TA, Weiser JN. Phosphorylcholine allows for evasion of bactericidal antibody by Haemophilus influenzae. PLoS Pathog 2012; 8:e1002521. [PMID: 22396641 PMCID: PMC3291618 DOI: 10.1371/journal.ppat.1002521] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Haemophilus influenzae has the ability to quickly adapt to different host environments through phase variation of multiple structures on its lipooligosaccharide (LPS), including phosphorylcholine (ChoP). During colonization with H. influenzae, there is a selection for ChoP+ phase variants. In a murine model of nasopharyngeal colonization, this selection is lost in the absence of adaptive immunity. Based on previous data highlighting the importance of natural antibody in limiting H. influenzae colonization, the effect of ChoP expression on antibody binding and its bactericidal activity was investigated. Flow cytometric analysis revealed that ChoP+ phase variants had decreased binding of antibody to LPS epitopes compared to ChoP- phase variants. This difference in antibody binding correlated with increased survival of ChoP+ phase variants in the presence of antibody-dependent, complement-mediated killing. ChoP+ phase variants were also more resistant to trypsin digestion, suggesting a general effect on the physical properties of the outer membrane. Moreover, ChoP-mediated protection against antibody binding correlated with increased resilience of outer membrane integrity. Collectively, these data suggest that ChoP expression provides a selective advantage during colonization through ChoP-mediated effects on the accessibility of bactericidal antibody to the cell surface.
Collapse
Affiliation(s)
- Sarah E. Clark
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julian Snow
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Jianjun Li
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Tracey A. Zola
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey N. Weiser
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Paschinger K, Gonzalez-Sapienza GG, Wilson IBH. Mass spectrometric analysis of the immunodominant glycan epitope of Echinococcus granulosus antigen Ag5. Int J Parasitol 2012; 42:279-85. [PMID: 22342524 PMCID: PMC3316857 DOI: 10.1016/j.ijpara.2012.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 11/16/2022]
Abstract
In previous work we showed that Ag5, a major diagnostic antigen from the metacestode of Echinococcus granulosus, possesses a dominant sugar epitope that upon removal results in abolition of most of the antigen immunoreactivity with patient sera. Analysis of this glycan modification has now been performed by western blotting and mass spectrometry. Reactivity to both a specific monoclonal antibody (TEPC15) and human C-reactive protein as well as the presence of a modification of 165 mass units, as detected by mass spectrometry of both glycopeptides and released N-glycans, indicated that the immunodominant sugar epitope of the Ag5 38 kDa subunit is a biantennary structure modified by phosphorylcholine. We believe this is the first time that such a modification has been proven in cestodes and provides the structural basis for understanding the antigenicity of this major E. granulosus component.
Collapse
|
11
|
Martí-Lliteras P, López-Gómez A, Mauro S, Hood DW, Viadas C, Calatayud L, Morey P, Servin A, Liñares J, Oliver A, Bengoechea JA, Garmendia J. Nontypable Haemophilus influenzae displays a prevalent surface structure molecular pattern in clinical isolates. PLoS One 2011; 6:e21133. [PMID: 21698169 PMCID: PMC3116884 DOI: 10.1371/journal.pone.0021133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/20/2011] [Indexed: 11/22/2022] Open
Abstract
Non-typable Haemophilus influenzae (NTHi) is a Gram negative pathogen that causes acute respiratory infections and is associated with the progression of chronic respiratory diseases. Previous studies have established the existence of a remarkable genetic variability among NTHi strains. In this study we show that, in spite of a high level of genetic heterogeneity, NTHi clinical isolates display a prevalent molecular feature, which could confer fitness during infectious processes. A total of 111 non-isogenic NTHi strains from an identical number of patients, isolated in two distinct geographical locations in the same period of time, were used to analyse nine genes encoding bacterial surface molecules, and revealed the existence of one highly prevalent molecular pattern (lgtF+, lic2A+, lic1D+, lic3A+, lic3B+, siaA−, lic2C+, ompP5+, oapA+) displayed by 94.6% of isolates. Such a genetic profile was associated with a higher bacterial resistance to serum mediated killing and enhanced adherence to human respiratory epithelial cells.
Collapse
Affiliation(s)
- Pau Martí-Lliteras
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
| | - Antonio López-Gómez
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
| | - Silvia Mauro
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
| | - Derek W. Hood
- Molecular Infectious Diseases Group, Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom
| | - Cristina Viadas
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
| | - Laura Calatayud
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Servicio de Microbiología, Hospital Universitario Bellvitge, Barcelona, Spain
- Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
- Universidad de Barcelona, Barcelona, Spain
| | - Pau Morey
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
| | - Alain Servin
- INSERM, UMR 756, Signalisation and Physiopathology of Epithelial cells, Paris, France
| | - Josefina Liñares
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Servicio de Microbiología, Hospital Universitario Bellvitge, Barcelona, Spain
- Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
- Universidad de Barcelona, Barcelona, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Palma Mallorca, Spain
| | - José Antonio Bengoechea
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Consejo Superior de Investigaciones Científicas-CSIC, Madrid, Spain
| | - Junkal Garmendia
- Programa de Infección e Inmunidad, Fundación Caubet-CIMERA, Bunyola, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias-CIBERES, Vitoria, Spain
- Instituto de Agrobiotecnología, CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Mutilva, Spain
- * E-mail:
| |
Collapse
|
12
|
McCrea KW, Xie J, Marrs CF, Gilsdorf JR. Prevalence of genetic differences in phosphorylcholine expression between nontypeable Haemophilus influenzae and Haemophilus haemolyticus. BMC Microbiol 2010; 10:286. [PMID: 21073698 PMCID: PMC2992063 DOI: 10.1186/1471-2180-10-286] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/12/2010] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Although non-typeable (NT) Haemophilus influenzae and Haemophilus haemolyticus are closely related human commensals, H. haemolyticus is non-pathogenic while NT H. influenzae is an important cause of respiratory tract infections. Phase-variable phosphorylcholine (ChoP) modification of lipooligosaccharide (LOS) is a NT H. influenzae virulence factor that, paradoxically, may also promote complement activation by binding C-reactive protein (CRP). CRP is known to bind more to ChoP positioned distally than proximally in LOS, and the position of ChoP within LOS is dictated by specific licD alleles (designated here as licDI, licDIII, and licDIV) that are present in a lic1 locus. The lic1 locus contains the licA-licD genes, and ChoP-host interactions may also be influenced by a second lic1 locus that allows for dual ChoP substitutions in the same strain, or by the number of licA gene tetranucleotide repeats (5'-CAAT-3') that reflect phase-variation mutation rates. RESULTS Using dot-blot hybridization, 92% of 88 NT H. influenzae and 42.6% of 109 H. haemolyticus strains possessed a lic1 locus. Eight percent of NT H. influenzae and none of the H. haemolyticus strains possessed dual copies of lic1. The licDIII and licDIV gene alleles were distributed similarly (18-22%) among the NT H. influenzae and H. haemolyticus strains while licDI alleles were present in 45.5% of NT H. influenzae but in less than 1% of H. haemolyticus strains (P < .0001). NT H. influenzae had an average of 26.8 tetranucleotide repeats in licA compared to 14.8 repeats in H. haemolyticus (P < .05). In addition, NT H. influenzae strains that possessed a licDIII allele had increased numbers of repeats compared to NT H. influenzae with other licD alleles (P < .05). CONCLUSIONS These data demonstrate that genetic similarities and differences of ChoP expression exist between NT H. influenzae and H. haemolyticus and strengthen the hypothesis that, at the population level, these differences may, in part, provide an advantage in the virulence of NT H. influenzae.
Collapse
Affiliation(s)
- Kirk W McCrea
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jingping Xie
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109-0244, USA
- Beacon Analytical Systems Inc., Saco, ME 04072, USA
| | - Carl F Marrs
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109-0244, USA
| | - Janet R Gilsdorf
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Hallström T, Riesbeck K. Haemophilus influenzae and the complement system. Trends Microbiol 2010; 18:258-65. [PMID: 20399102 DOI: 10.1016/j.tim.2010.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/10/2010] [Accepted: 03/17/2010] [Indexed: 02/04/2023]
Abstract
The respiratory tract pathogen Haemophilus influenzae is responsible for a variety of infections in humans including septicemia, bronchitis, pneumonia, and acute otitis media. The pathogenesis of H. influenzae relies on its capacity to resist human host defenses including the complement system, and thus H. influenzae has developed several efficient strategies to circumvent complement attack. In addition to attracting specific host complement regulators directly to the bacterial surface, the capsule, lipooligosaccharides, and several outer membrane proteins contribute to resistance against complement-mediated attacks and hence increased bacterial survival. Insights into the mechanisms of complement evasion by H. influenzae are important for understanding pathogenesis and for developing vaccines and new therapies aimed at patients with, for example, chronic obstructive pulmonary disease. Here we overview current knowledge on the different mechanisms by which H. influenzae evades attack by the host complement system.
Collapse
Affiliation(s)
- Teresia Hallström
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | | |
Collapse
|
14
|
Hood DW, Deadman ME, Engskog MKR, Vitiazeva V, Makepeace K, Schweda EKH, Moxon R. Genes required for the synthesis of heptose-containing oligosaccharide outer core extensions in Haemophilus influenzae lipopolysaccharide. MICROBIOLOGY-SGM 2010; 156:3421-3431. [PMID: 20688825 DOI: 10.1099/mic.0.041780-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heptose-containing oligosaccharides (OSs) are found in the outer core of the lipopolysaccharide (LPS) of a subset of non-typable Haemophilus influenzae (NTHi) strains. Candidate genes for the addition of either l-glycero-d-manno-heptose (ld-Hep) or d-glycero-d-manno-heptose (dd-Hep) and subsequent hexose sugars to these OSs have been identified from the recently completed genome sequences available for NTHi strains. losA1/losB1 and losA2/losB2 are two sets of related genes in which losA has homology to genes encoding glycosyltransferases and losB to genes encoding heptosyltransferases. Each set of genes is variably present across NTHi strains and is located in a region of the genome with an alternative gene organization between strains that contributes to LPS heterogeneity. Dependent upon the strain background, the LPS phenotype, structure and serum resistance of strains mutated in these genes were altered when compared with the relevant parent strain. Our studies confirm that losB1 and losB2 usually encode dd-heptosyl- and ld-heptosyl transferases, respectively, and that losA1 and losA2 encode glycosyltransferases that play a role in OS extensions of NTHi LPS.
Collapse
Affiliation(s)
- Derek W Hood
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Mary E Deadman
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Mikael K R Engskog
- Clinical Research Centre, Karolinska Institutet and University College of South Stockholm, Huddinge, Sweden
| | - Varvara Vitiazeva
- Clinical Research Centre, Karolinska Institutet and University College of South Stockholm, Huddinge, Sweden
| | - Katherine Makepeace
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Elke K H Schweda
- Clinical Research Centre, Karolinska Institutet and University College of South Stockholm, Huddinge, Sweden
| | - Richard Moxon
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| |
Collapse
|
15
|
Bakaletz LO. Chinchilla as a robust, reproducible and polymicrobial model of otitis media and its prevention. Expert Rev Vaccines 2009; 8:1063-82. [PMID: 19627188 DOI: 10.1586/erv.09.63] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is compelling evidence that many infectious diseases of humans are caused by more than one microorganism. Multiple diverse in vitro systems have been used to study these complex diseases, and although the data generated have contributed greatly to our understanding of diseases of mixed microbial etiology, having rigorous, reproducible and relevant animal models of human diseases are essential for the development of novel methods to treat or prevent them. All animal models have inherent limitations; however, they also have important advantages over in vitro methods, including the presence of organized organ systems and an intact immune system, which promote our ability to characterize the pathogenesis of, and the immune response to, sequential or coinfecting microorganisms. For the highly prevalent pediatric disease otitis media, or middle-ear infection, the chinchilla (Chinchilla lanigera) has served as a gold-standard rodent host system in which to study this multifactorial and polymicrobial disease.
Collapse
Affiliation(s)
- Lauren O Bakaletz
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| |
Collapse
|
16
|
Power PM, Sweetman WA, Gallacher NJ, Woodhall MR, Kumar GA, Moxon ER, Hood DW. Simple sequence repeats in Haemophilus influenzae. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2009; 9:216-28. [PMID: 19095084 PMCID: PMC2651432 DOI: 10.1016/j.meegid.2008.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 02/02/2023]
Abstract
Simple sequence repeat (SSRs) of DNA are subject to high rates of mutation and are important mediators of adaptation in Haemophilus influenzae. Previous studies of the Rd KW20 genome identified the primacy of tetranucleotide SSRs in mediating phase variation (the rapid reversible switching of gene expression) of surface exposed structures such as lipopolysaccharide. The recent sequencing of the genomes of multiple strains of H. influenzae allowed the comparison of the SSRs (repeat units of one to nine nucleotides in length) in detail across four complete H. influenzae genomes and then comparison with a further 12 genomes when they became available. The SSR loci were broadly classified into three groups: (1) those that did not vary; (2) those for which some variation between strains was observed but this could not be linked to variation of gene expression; and (3) those that both varied and were located in regions consistent with mediating phase variable gene expression. Comparative analysis of 988 SSR associated loci confirmed that tetranucleotide repeats were the major mediators of phase variation and extended the repertoire of known tetranucleotide SSR loci by identifying ten previously uncharacterised tetranucleotide SSR loci with the potential to mediate phase variation which were unequally distributed across the H. influenzae pan-genome. Further, analysis of non-tetranucleotide SSR in the 16 strains revealed a number of mononucleotide, dinucleotide, pentanucleotide, heptanucleotide, and octanucleotide SSRs which were consistent with these tracts mediating phase variation. This study substantiates previous findings as to the important role that tetranucleotide SSRs play in H. influenzae biology. Two Brazilian isolates showed the most variation in their complement of SSRs suggesting the possibility of geographic and phenotypic influences on SSR distribution.
Collapse
Affiliation(s)
- Peter M Power
- Molecular Infectious Diseases Group, Department of Paediatrics, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX39DS, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Schweda EKH, Twelkmeyer B, Li J. Profiling structural elements of short-chain lipopolysaccharide of non-typeable Haemophilus influenzae. Innate Immun 2009; 14:199-211. [PMID: 18669606 DOI: 10.1177/1753425908095958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major virulence determinant of the human bacterial pathogen Haemophilus influenzae. A characteristic feature of H. influenzae LPS is the extensive intra- and inter-strain heterogeneity of glycoform structure which is key to the role of the molecule in both commensal and disease-causing behaviour of the bacterium. The chemical composition of non-typeable Haemophilus influenzae (NTHi) LPS is highly diverse. It contains a number of different monosaccharides (Neu5Ac, L-glycero-D-manno heptose, D-glycero-D-manno heptose, Kdo, D-Glc, D-Gal, D-GlcNAc, D-GalNAc) and non-carbohydrate substituents. Prominent non-carbohydrate components are O-acetyl groups, glycine and phosphates. We now know that sialic acid (N-acetylneuraminic acid or Neu5Ac) and certain oligosaccharide extensions are important in the pathogenesis of NTHi; however, the biological implications for many of the various features are still unknown. Electrospray ionization mass spectrometry in combination with separation techniques like CE and HPLC is an indispensable tool in profiling glycoform populations in heterogeneous LPS samples. Mass spectrometry is characterized by its extreme sensitivity. Trace amounts of glycoforms expressing important virulence determinants can be detected and characterized on minute amounts of material. The present review focuses on LPS structures and mass spectrometric methods which enable us to profile these in complex mixtures.
Collapse
Affiliation(s)
- Elke K H Schweda
- Clinical Research Centre, Karolinska Institutet and University College of South Stockholm, NOVUM, Huddinge, Sweden.
| | | | | |
Collapse
|
18
|
Lundström SL, Li J, Deadman ME, Hood DW, Moxon ER, Schweda EKH. Structural analysis of the lipopolysaccharide from nontypeable Haemophilus influenzae strain R2846. Biochemistry 2008; 47:6025-38. [PMID: 18465844 DOI: 10.1021/bi702510b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We here report the lipopolysaccharide (LPS) structures expressed by nontypeable Haemophilus influenzae R2846, a strain whose complete genome sequence has recently been obtained. Results were obtained by using NMR techniques and ESI-MS on O-deacylated LPS and core oligosaccharide material (OS) as well as ESI-MS (n) on permethylated dephosphorylated OS. A beta- d-Glc p-(1-->4)- d-alpha- d-Hep p-(1-->6)-beta- d-Glc p-(1-->4) unit was found linked to the proximal heptose (HepI) of the conserved triheptosyl inner-core moiety, l-alpha- d-Hep p-(1-->2)-[ PEtn-->6]- l-alpha- d-Hep p-(1-->3)- l-alpha- d-Hep p-(1-->5)-[ PPEtn-->4]-alpha-Kdo-(2-->6)-lipid A. The beta- d-Glc p (GlcI) linked to HepI was also branched with oligosaccharide extensions from O-4 and O-6. O-4 of GlcI was substituted with sialyllacto- N-neotetraose [alpha-Neu5Ac-(2-->3)-beta- d-Gal p-(1-->4)-beta- d-Glc pNAc-(1-->3)-beta- d-Gal p-(1-->4)-beta- d-Glc p-(1-->] and the related structure [( PEtn-->6)-alpha- d-Gal pNAc-(1-->6)-beta- d-Gal p-(1-->4)-beta- d-Glc pNAc-(1-->3)-beta- d-Gal p-(1-->4)-beta- d-Glc p-(1-->]. The distal heptose (HepIII) was substituted at O-2 by beta- d-Gal. Phosphate, phosphoethanolamine, phosphocholine, acetate, and glycine were found to substitute the core oligosaccharide. Two heptosyltransferase genes, losB1 and losB2, have been identified from the R2846 genome sequence and are candidates to add the noncore heptose to the LPS. Mutant strain R2846 losB1 did not show dd-heptose in the extension from HepI but still contained minor quantities of ld-heptose at the same position, indicating that the losB1 gene is required to add dd-heptose to GlcI. The LPS from strain R2846 losB1/ losB2 expressed no noncore heptose, consistent with losB2 directing the addition of ld-heptose.
Collapse
Affiliation(s)
- Susanna L Lundström
- Clinical Research Centre, Karolinska Institutet and University College of South Stockholm, Novum, S-14186 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|