1
|
Crestani C, Forde TL, Bell J, Lycett SJ, Oliveira LMA, Pinto TCA, Cobo-Ángel CG, Ceballos-Márquez A, Phuoc NN, Sirimanapong W, Chen SL, Jamrozy D, Bentley SD, Fontaine M, Zadoks RN. Genomic and functional determinants of host spectrum in Group B Streptococcus. PLoS Pathog 2024; 20:e1012400. [PMID: 39133742 PMCID: PMC11341095 DOI: 10.1371/journal.ppat.1012400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024] Open
Abstract
Group B Streptococcus (GBS) is a major human and animal pathogen that threatens public health and food security. Spill-over and spill-back between host species is possible due to adaptation and amplification of GBS in new niches but the evolutionary and functional mechanisms underpinning those phenomena are poorly known. Based on analysis of 1,254 curated genomes from all major GBS host species and six continents, we found that the global GBS population comprises host-generalist, host-adapted and host-restricted sublineages, which are found across host groups, preferentially within one host group, or exclusively within one host group, respectively, and show distinct levels of recombination. Strikingly, the association of GBS genomes with the three major host groups (humans, cattle, fish) is driven by a single accessory gene cluster per host, regardless of sublineage or the breadth of host spectrum. Moreover, those gene clusters are shared with other streptococcal species occupying the same niche and are functionally relevant for host tropism. Our findings demonstrate (1) the heterogeneity of genome plasticity within a bacterial species of public health importance, enabling the identification of high-risk clones; (2) the contribution of inter-species gene transmission to the evolution of GBS; and (3) the importance of considering the role of animal hosts, and the accessory gene pool associated with their microbiota, in the evolution of multi-host bacterial pathogens. Collectively, these phenomena may explain the adaptation and clonal expansion of GBS in animal reservoirs and the risk of spill-over and spill-back between animals and humans.
Collapse
Affiliation(s)
- Chiara Crestani
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Taya L. Forde
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - John Bell
- Moredun Research Institute, Penicuik, Scotland, United Kingdom
| | - Samantha J. Lycett
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Laura M. A. Oliveira
- Instituto de Microbiologia Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Tatiana C. A. Pinto
- Instituto de Microbiologia Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | | | | | - Nguyen N. Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Wanna Sirimanapong
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Swaine L. Chen
- Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, Singapore
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, England, United Kingdom
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, England, United Kingdom
| | | | - Ruth N. Zadoks
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
- Moredun Research Institute, Penicuik, Scotland, United Kingdom
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| |
Collapse
|
2
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
3
|
McKenna S, Huse KK, Giblin S, Pearson M, Majid Al Shibar MS, Sriskandan S, Matthews S, Pease JE. The Role of Streptococcal Cell-Envelope Proteases in Bacterial Evasion of the Innate Immune System. J Innate Immun 2021; 14:69-88. [PMID: 34649250 PMCID: PMC9082167 DOI: 10.1159/000516956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteria possess the ability to evolve varied and ingenious strategies to outwit the host immune system, instigating an evolutionary arms race. Proteases are amongst the many weapons employed by bacteria, which specifically cleave and neutralize key signalling molecules required for a coordinated immune response. In this article, we focus on a family of S8 subtilisin-like serine proteases expressed as cell-envelope proteases (CEPs) by group A and group B streptococci. Two of these proteases known as Streptococcus pyogenes CEP (SpyCEP) and C5a peptidase cleave the chemokine CXCL8 and the complement fragment C5a, respectively. Both CXCL8 and C5a are potent neutrophil-recruiting chemokines, and by neutralizing their activity, streptococci evade a key defence mechanism of innate immunity. We review the mechanisms by which CXCL8 and C5a recruit neutrophils and the characterization of SpyCEP and C5a peptidase, including both in vitro and in vivo studies. Recently described structural insights into the function of this CEP family are also discussed. We conclude by examining the progress of prototypic vaccines incorporating SpyCEP and C5a peptidase in their preparation. Since streptococci-producing SpyCEP and C5a peptidase are responsible for a considerable global disease burden, targeting these proteases by vaccination strategies or by small-molecule antagonists should provide protection from and promote the resolution of streptococcal infections.
Collapse
Affiliation(s)
- Sophie McKenna
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kristin Krohn Huse
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sean Giblin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Max Pearson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - James Edward Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Whole genome sequencing reveals possible host species adaptation of Streptococcus dysgalactiae. Sci Rep 2021; 11:17350. [PMID: 34462475 PMCID: PMC8405622 DOI: 10.1038/s41598-021-96710-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
Streptococcus dysgalactiae (SD) is an emerging pathogen in human and veterinary medicine, and is associated with several host species, disease phenotypes and virulence mechanisms. SD has traditionally been divided into the subspecies dysgalactiae (SDSD) and subsp. equisimilis (SDSE), but recent molecular studies have indicated that the phylogenetic relationships are more complex. Moreover, the genetic basis for the niche versatility of SD has not been extensively investigated. To expand the knowledge about virulence factors, phylogenetic relationships and host-adaptation strategies of SD, we analyzed 78 SDSD genomes from cows and sheep, and 78 SDSE genomes from other host species. Sixty SDSD and 40 SDSE genomes were newly sequenced in this study. Phylogenetic analysis supported SDSD as a distinct taxonomic entity, presenting a mean value of the average nucleotide identity of 99%. Bovine and ovine associated SDSD isolates clustered separately on pangenome analysis, but no single gene or genetic region was uniquely associated with host species. In contrast, SDSE isolates were more heterogenous and could be delineated in accordance with host. Although phylogenetic clustering suggestive of cross species transmission was observed, we predominantly detected a host restricted distribution of the SD-lineages. Furthermore, lineage specific virulence factors were detected, several of them located in proximity to hotspots for integration of mobile genetic elements. Our study indicates that SD has evolved to adapt to several different host species and infers a potential role of horizontal genetic transfer in niche specialization.
Collapse
|
5
|
Santos VL, Silva LG, Martini CL, Anjos IHV, Maia MM, Genteluci GL, Sant'Anna V, Ferreira AMA, Couceiro JNSS, Figueiredo AMS, Ferreira-Carvalho BT. Low lineage diversity and increased virulence of group C Streptococcus dysgalactiae subsp. equisimilis. J Med Microbiol 2020; 69:576-586. [PMID: 32125264 DOI: 10.1099/jmm.0.001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. In some species, the population structure of pathogenic bacteria is clonal. However, the mechanisms that determine the predominance and persistence of specific bacterial lineages of group C Streptococcus remain poorly understood. In Brazil, a previous study revealed the predominance of two main lineages of Streptococcus dysgalactiae subsp. equisimilis (SDSE).Aim. The aim of this study was to assess the virulence and fitness advantages that might explain the predominance of these SDSE lineages for a long period of time.Methodology. emm typing was determined by DNA sequencing. Adhesion and invasion tests were performed using human bronchial epithelial cells (16HBE14o-). Biofilm formation was tested on glass surfaces and the presence of virulence genes was assessed by PCR. Additionally, virulence was studied using Caenorhabditis elegans models and competitive fitness was analysed in murine models.Results. The predominant lineages A and B were mostly typed as emm stC839 and stC6979, respectively. Notably, these lineages exhibited a superior ability to adhere and invade airway cells. Furthermore, the dominant lineages were more prone to induce aversive olfactory learning and more likely to kill C. elegans. In the competitive fitness assays, they also showed increased adaptability. Consistent with the increased virulence observed in the ex vivo and in vivo models, the predominant lineages A and B showed a higher number of virulence-associated genes and a superior ability to accumulate biofilm.Conclusion. These results suggest strongly that this predominance did not occur randomly but rather was due to adaptive mechanisms that culminated in increased colonization and other bacterial properties that might confer increased bacteria-host adaptability to cause disease.
Collapse
Affiliation(s)
- Victor Lima Santos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Ligia Guedes Silva
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Caroline Lopes Martini
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Isis Hazelman V Anjos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Mariana Masello Maia
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Gabrielle L Genteluci
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Viviane Sant'Anna
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Ana Maria A Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - José Nelson S S Couceiro
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Bauer R, Mauerer S, Spellerberg B. Regulation of the β-hemolysin gene cluster of Streptococcus anginosus by CcpA. Sci Rep 2018; 8:9028. [PMID: 29899560 PMCID: PMC5998137 DOI: 10.1038/s41598-018-27334-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/30/2018] [Indexed: 11/09/2022] Open
Abstract
Streptococcus anginosus is increasingly recognized as an opportunistic pathogen. However, our knowledge about virulence determinants in this species is scarce. One exception is the streptolysin-S (SLS) homologue responsible for the β-hemolytic phenotype of the S. anginosus type strain. In S. anginosus the expression of the hemolysin is reduced in the presence of high glucose concentrations. To investigate the genetic mechanism of the hemolysin repression we created an isogenic ccpA deletion strain. In contrast to the wild type strain, this mutant exhibits hemolytic activity in presence of up to 25 mM glucose supplementation, a phenotype that could be reverted by ccpA complementation. To further demonstrate that CcpA directly regulates the hemolysin expression, we performed an in silico analysis of the promoter of the SLS gene cluster and we verified the binding of CcpA to the promoter by electrophoretic mobility shift assays. This allowed us to define the CcpA binding site in the SLS promoter region of S. anginosus. In conclusion, we report for the first time the characterization of a potential virulence regulator in S. anginosus.
Collapse
Affiliation(s)
- Richard Bauer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany.
| |
Collapse
|
7
|
Alves LA, Harth-Chu EN, Palma TH, Stipp RN, Mariano FS, Höfling JF, Abranches J, Mattos-Graner RO. The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity. Mol Oral Microbiol 2017; 32:419-431. [PMID: 28382721 DOI: 10.1111/omi.12183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRKSm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRKSm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicKSm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicKSm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRKSm.
Collapse
Affiliation(s)
- Livia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Thais H Palma
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Rafael N Stipp
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Flávia S Mariano
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry - University of Florida, Gainesville, FL, USA
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
8
|
Abstract
Since the discovery of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria, outstanding fluorescent labeling tools with numerous applications in vastly different areas of life sciences have been developed. To optimize GFP for diverse life science applications, a large variety of GFP derivatives with different environmental characteristics have been generated by mutagenesis. The enhanced green fluorescent protein (EGFP) is a well-known GFP derivative with highly increased fluorescence intensity compared to the GFP wild-type molecule. Further optimization strategies include numerous GFP derivatives with blue- and yellow-shifted fluorescence and increased pH-stability. The methods reported herein describe in detail the construction of customized fluorescent GFP reporter plasmids where the fluorescence gene is expressed under the control of a certain bacterial promoter of interest. Special attention is given to the GFP derivatives EGFP and Sirius. We explain how to generate EGFP/Sirius expressing streptococci and how to employ recombinantly labeled streptococci in different downstream fluorescent applications.
Collapse
|
9
|
Capsular polysaccharide of Group B Streptococcus mediates biofilm formation in the presence of human plasma. Microbes Infect 2014; 17:71-76. [PMID: 25448634 DOI: 10.1016/j.micinf.2014.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/15/2014] [Accepted: 10/19/2014] [Indexed: 11/20/2022]
Abstract
Group B Streptococcus (GBS) is an asymptomatic colonizer of human mucosal surfaces that is responsible for sepsis and meningitis in neonates. Bacterial persistence and pathogenesis often involves biofilm formation. We previously showed that biofilm formation in medium supplemented with glucose is mediated by the PI-2a pilus. Here, biofilm formation was tested in cell culture medium supplemented with human plasma. GBS strains were able to form biofilms in these conditions unlike Group A Streptococcus (GAS) or Staphylococcus aureus. Analysis of mutants impaired for various surface components revealed that the GBS capsule is a key component in this process.
Collapse
|
10
|
Wei Z, Fu Q, Chen Y, Li M, Cong P, Mo D, Liu X. Streptococcus equi ssp. zooepidemicus C5a peptidase, a putative invasin, induces protective immune response in mice. Res Vet Sci 2013; 95:444-50. [DOI: 10.1016/j.rvsc.2013.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/11/2013] [Accepted: 03/30/2013] [Indexed: 10/26/2022]
|
11
|
Asam D, Mauerer S, Walheim E, Spellerberg B. Identification of β-haemolysin-encoding genes inStreptococcus anginosus. Mol Oral Microbiol 2013; 28:302-15. [DOI: 10.1111/omi.12026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 11/30/2022]
Affiliation(s)
- D. Asam
- Institute of Medical Microbiology and Hospital Hygiene; University of Ulm; Ulm; Germany
| | - S. Mauerer
- Institute of Medical Microbiology and Hospital Hygiene; University of Ulm; Ulm; Germany
| | | | - B. Spellerberg
- Institute of Medical Microbiology and Hospital Hygiene; University of Ulm; Ulm; Germany
| |
Collapse
|
12
|
Florindo C, Ferreira R, Borges V, Spellerberg B, Gomes J, Borrego M. Selection of reference genes for real-time expression studies in Streptococcus agalactiae. J Microbiol Methods 2012; 90:220-7. [DOI: 10.1016/j.mimet.2012.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
|
13
|
Koziel J, Potempa J. Protease-armed bacteria in the skin. Cell Tissue Res 2012; 351:325-37. [PMID: 22358849 PMCID: PMC3560952 DOI: 10.1007/s00441-012-1355-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
The skin constitutes a formidable barrier against commensal and pathogenic bacteria, which permanently and transiently colonise the skin, respectively. Commensal and pathogenic species inhabiting skin both express proteases. Whereas proteases secreted by commensals contribute to homeostatic bacterial coexistence on skin, proteases from pathogenic bacteria are used as virulence factors, helping them colonise skin with breached integrity of the epithelial layer. From these initial sites of colonisation, pathogens can disseminate into deeper layers of skin, possibly leading to the spread of infection. Secreted bacterial proteases probably play an important role in this process and in the deterrence of innate defence mechanisms. For example, Staphylococcus aureus proteases are essential for changing the bacterial phenotype from adhesive to invasive by degrading adhesins on the bacterial cell surface. Secreted staphylococcal proteases mediate pathogen penetration by degrading collagen and elastin, essential components of connective tissue in the dermis. The activation of the contact system and kinin generation by Streptococcus pyogenes and S. aureus proteases contributes to an inflammatory reaction manifested by oedema, redness and pain. Kinin-enhanced vascular leakage might help bacteria escape into the circulation thereby causing possible systemic dissemination of the infection. The inflammatory reaction can also be fueled by the activation of protease-activated receptors on keratinocytes. Concomitantly, bacterial proteases are involved in degrading antimicrobial peptides, disarming the complement system and neutrophils and preventing the infiltration of the infected sites with immune cells by inactivation of chemoattractants. Together, this provides protection for colonising and/or invading pathogens from attack by antibacterial forces of the skin.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | | |
Collapse
|
14
|
Aymanns S, Mauerer S, van Zandbergen G, Wolz C, Spellerberg B. High-level fluorescence labeling of gram-positive pathogens. PLoS One 2011; 6:e19822. [PMID: 21731607 PMCID: PMC3120757 DOI: 10.1371/journal.pone.0019822] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 04/18/2011] [Indexed: 11/19/2022] Open
Abstract
Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.
Collapse
Affiliation(s)
- Simone Aymanns
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Ger van Zandbergen
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Christiane Wolz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard-Karls-Universität, Tübingen, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
15
|
Virulence gene pool detected in bovine group C Streptococcus dysgalactiae subsp. dysgalactiae isolates by use of a group A S. pyogenes virulence microarray. J Clin Microbiol 2011; 49:2470-9. [PMID: 21525223 DOI: 10.1128/jcm.00008-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans.
Collapse
|
16
|
Emergence and global dissemination of host-specific Streptococcus agalactiae clones. mBio 2010; 1. [PMID: 20824105 PMCID: PMC2932510 DOI: 10.1128/mbio.00178-10] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 07/20/2010] [Indexed: 01/04/2023] Open
Abstract
To examine the global diversity of Streptococcus agalactiae (group B streptococci [GBS]) and to elucidate the evolutionary processes that determine its population genetics structure and the reported changes in host tropism and infection epidemiology, we examined a collection of 238 bovine and human isolates from nine countries on five continents. Phylogenetic analysis based on the sequences of 15 housekeeping genes combined with patterns of virulence-associated traits identified a genetically heterogeneous core population from which virulent lineages occasionally emerge as a result of recombination affecting major segments of the genome. Such lineages, like clonal complex 17 (CC17) and two distinct clusters of CC23, are exclusively adapted to either humans or cattle and successfully spread globally. The recent emergence and expansion of the human-associated and highly virulent sequence type 17 (ST17) could conceivably account, in part, for the increased prevalence of neonatal GBS infections after 1960. The composite structure of the S. agalactiae genome invalidates phylogenetic inferences exclusively based on multilocus sequence typing (MLST) data and thereby the previously reported conclusion that the human-associated CC17 emerged from the bovine-associated CC67. Group B streptococci (GBS) (Streptococcus agalactiae) have long been recognized as important causes of mastitis in cattle. After 1960, GBS also became the most prevalent cause of invasive and often fatal infections in newborns. At the same time, GBS are carried by a substantial proportion of healthy individuals. The aims of this study were to elucidate the genetic mechanisms that lead to diversification of the GBS population and to examine the relationship between virulence and host preference of evolutionary lineages of GBS. Genetic analysis of GBS isolates from worldwide sources demonstrated epidemic clones adapted specifically to either the human or bovine host. Such clones seem to emerge from a genetically heterogeneous core population as a result of recombination affecting major segments of the genome. Emergence and global spread of certain clones explain, in part, the change in epidemiology of GBS disease and may have implications for prevention.
Collapse
|
17
|
Abstract
Despite advances in diagnosis and treatment, bacterial sepsis remains a major cause of pediatric morbidity and mortality, particularly among neonates, the critically ill, and the growing immunocompromised patient population. Sepsis is the end point of a complex and dynamic series of events in which both host and microbial factors drive high morbidity and potentially lethal physiologic alterations. In this article we provide a succinct overview of the events that lead to pediatric bloodstream infections (BSIs) and sepsis, with a focus on the molecular mechanisms used by bacteria to subvert host barriers and local immunity to gain access to and persist within the systemic circulation. In the events preceding and during BSI and sepsis, Gram-positive and Gram-negative pathogens use a battery of factors for translocation, inhibition of immunity, molecular mimicry, intracellular survival, and nutrient scavenging. Gaps in understanding the molecular pathogenesis of bacterial BSIs and sepsis are highlighted as opportunities to identify and develop new therapeutics.
Collapse
Affiliation(s)
- Stacey L. Bateman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Center for Microbial Pathogenesis, Duke University School of Medicine, Durham, NC 27710
| | - Patrick C. Seed
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710
- Center for Microbial Pathogenesis, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
18
|
Al Safadi R, Amor S, Hery-Arnaud G, Spellerberg B, Lanotte P, Mereghetti L, Gannier F, Quentin R, Rosenau A. Enhanced expression of lmb gene encoding laminin-binding protein in Streptococcus agalactiae strains harboring IS1548 in scpB-lmb intergenic region. PLoS One 2010; 5:e10794. [PMID: 20520730 PMCID: PMC2875397 DOI: 10.1371/journal.pone.0010794] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 05/01/2010] [Indexed: 11/19/2022] Open
Abstract
Group B streptococcus (GBS) is the main cause of neonatal sepsis and meningitis. Bacterial surface proteins play a major role in GBS binding to and invasion of different host surfaces. The scpB and lmb genes, coding for fibronectin-binding and laminin-binding surface proteins, are present in almost all human GBS isolates. The scpB-lmb intergenic region is a hot spot for integration of two mobile genetic elements (MGEs): the insertion element IS1548 or the group II intron GBSi1. We studied the structure of scpB-lmb intergenic region in 111 GBS isolates belonging to the intraspecies major clonal complexes (CCs). IS1548 was mostly found (72.2%) in CC19 serotype III strains recovered more specifically (92.3%) from neonatal meningitis. GBSi1 was principally found (70.6%) in CC17 strains, mostly (94.4%) of serotype III, but also (15.7%) in CC19 strains, mostly (87.5%) of serotype II. No MGE was found in most strains of the other CCs (76.0%), notably CC23, CC10 and CC1. Twenty-six strains representing these three genetic configurations were selected to investigate the transcription and expression levels of scpB and lmb genes. Quantitative RT-PCR showed that lmb transcripts were 5.0- to 9.6-fold higher in the group of strains with IS1548 than in the other two groups of strains (P<0.001). Accordingly, the binding ability to laminin was 3.8- to 6.6-fold higher in these strains (P≤0.001). Moreover, Lmb amount expressed on the cell surface was 2.4- to 2.7-fold greater in these strains (P<0.001). By contrast, scpB transcript levels and fibronectin binding ability were similar in the three groups of strains. Deletion of the IS1548 sequence between scpB and lmb genes in a CC19 serotype III GBS strain substantially reduced the transcription of lmb gene (13.5-fold), the binding ability to laminin (6.2-fold), and the expression of Lmb protein (5.0-fold). These data highlight the importance of MGEs in bacterial virulence and demonstrate the up-regulation of lmb gene by IS1548; the increased lmb gene expression observed in CC19 serotype III strains with IS1548 may play a role in their ability to cause neonatal meningitis and endocarditis.
Collapse
Affiliation(s)
- Rim Al Safadi
- Equipe d'Accueil 3854 Bactéries et Risque Materno-Fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
| | - Souheila Amor
- Equipe d'Accueil 3854 Bactéries et Risque Materno-Fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
| | - Geneviève Hery-Arnaud
- Equipe d'Accueil 3854 Bactéries et Risque Materno-Fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
| | - Barbara Spellerberg
- Institut für Medizinische Mikrobiologie und Hygiene, Universitäsklinikum Ulm, Ulm, Germany
| | - Philippe Lanotte
- Equipe d'Accueil 3854 Bactéries et Risque Materno-Fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
| | - Laurent Mereghetti
- Equipe d'Accueil 3854 Bactéries et Risque Materno-Fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
| | - François Gannier
- Unité Mixte de Recherche CNRS FRE 3092 Physiologie des Cellules Cardiaques et Vasculaires, UFR Sciences, Université François Rabelais de Tours, Tours, France
| | - Roland Quentin
- Equipe d'Accueil 3854 Bactéries et Risque Materno-Fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
- Service de Bactériologie et Hygiène Hospitalière, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Agnès Rosenau
- Equipe d'Accueil 3854 Bactéries et Risque Materno-Fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, Tours, France
- * E-mail:
| |
Collapse
|