1
|
Ante VM, Farris LC, Saputra EP, Hall AJ, O'Bier NS, Oliva Chávez AS, Marconi RT, Lybecker MC, Hyde JA. The Borrelia burgdorferi Adenylate Cyclase, CyaB, Is Important for Virulence Factor Production and Mammalian Infection. Front Microbiol 2021; 12:676192. [PMID: 34113333 PMCID: PMC8186283 DOI: 10.3389/fmicb.2021.676192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, traverses through vastly distinct environments between the tick vector and the multiple phases of the mammalian infection that requires genetic adaptation for the progression of pathogenesis. Borrelial gene expression is highly responsive to changes in specific environmental signals that initiate the RpoS regulon for mammalian adaptation, but the mechanism(s) for direct detection of environmental cues has yet to be identified. Secondary messenger cyclic adenosine monophosphate (cAMP) produced by adenylate cyclase is responsive to environmental signals, such as carbon source and pH, in many bacterial pathogens to promote virulence by altering gene regulation. B. burgdorferi encodes a single non-toxin class IV adenylate cyclase (bb0723, cyaB). This study investigates cyaB expression along with its influence on borrelial virulence regulation and mammalian infectivity. Expression of cyaB was specifically induced with co-incubation of mammalian host cells that was not observed with cultivated tick cells suggesting that cyaB expression is influenced by cellular factor(s) unique to mammalian cell lines. The 3′ end of cyaB also encodes a small RNA, SR0623, in the same orientation that overlaps with bb0722. The differential processing of cyaB and SR0623 transcripts may alter the ability to influence function in the form of virulence determinant regulation and infectivity. Two independent cyaB deletion B31 strains were generated in 5A4-NP1 and ML23 backgrounds and complemented with the cyaB ORF alone that truncates SR0623, cyaB with intact SR0623, or cyaB with a mutagenized full-length SR0623 to evaluate the influence on transcriptional and posttranscriptional regulation of borrelial virulence factors and infectivity. In the absence of cyaB, the expression and production of ospC was significantly reduced, while the protein levels for BosR and DbpA were substantially lower than parental strains. Infectivity studies with both independent cyaB mutants demonstrated an attenuated phenotype with reduced colonization of tissues during early disseminated infection. This work suggests that B. burgdorferi utilizes cyaB and potentially cAMP as a regulatory pathway to modulate borrelial gene expression and protein production to promote borrelial virulence and dissemination in the mammalian host.
Collapse
Affiliation(s)
- Vanessa M Ante
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Lauren C Farris
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Elizabeth P Saputra
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Allie J Hall
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO, United States
| | - Nathaniel S O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Adela S Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Meghan C Lybecker
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO, United States
| | - Jenny A Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
2
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
3
|
DksA Controls the Response of the Lyme Disease Spirochete Borrelia burgdorferi to Starvation. J Bacteriol 2019; 201:JB.00582-18. [PMID: 30478087 PMCID: PMC6351744 DOI: 10.1128/jb.00582-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022] Open
Abstract
The pathogenic spirochete Borrelia burgdorferi senses and responds to changes in the environment, including changes in nutrient availability, throughout its enzootic cycle in Ixodes ticks and vertebrate hosts. This study examined the role of DnaK suppressor protein (DksA) in the transcriptional response of B. burgdorferi to starvation. Wild-type and dksA mutant B. burgdorferi strains were subjected to starvation by shifting cultures grown in rich complete medium, Barbour-Stoenner-Kelly II (BSK II) medium, to a defined mammalian tissue culture medium, RPMI 1640, for 6 h under microaerobic conditions (5% CO2, 3% O2). Microarray analyses of wild-type B. burgdorferi revealed that genes encoding flagellar components, ribosomal proteins, and DNA replication machinery were downregulated in response to starvation. DksA mediated transcriptomic responses to starvation in B. burgdorferi, as the dksA-deficient strain differentially expressed only 47 genes in response to starvation compared to the 500 genes differentially expressed in wild-type strains. Consistent with a role for DksA in the starvation response of B. burgdorferi, fewer CFU of dksA mutants were observed after prolonged starvation in RPMI 1640 medium than CFU of wild-type B. burgdorferi spirochetes. Transcriptomic analyses revealed a partial overlap between the DksA regulon and the regulon of RelBbu, the guanosine tetraphosphate and guanosine pentaphosphate [(p)ppGpp] synthetase that controls the stringent response; the DksA regulon also included many plasmid-borne genes. Additionally, the dksA mutant exhibited constitutively elevated (p)ppGpp levels compared to those of the wild-type strain, implying a regulatory relationship between DksA and (p)ppGpp. Together, these data indicate that DksA, along with (p)ppGpp, directs the stringent response to effect B. burgdorferi adaptation to its environment.IMPORTANCE The Lyme disease bacterium Borrelia burgdorferi survives diverse environmental challenges as it cycles between its tick vectors and various vertebrate hosts. B. burgdorferi must withstand prolonged periods of starvation while it resides in unfed Ixodes ticks. In this study, the regulatory protein DksA is shown to play a pivotal role controlling the transcriptional responses of B. burgdorferi to starvation. The results suggest that DksA gene regulatory activity impacts B. burgdorferi metabolism, virulence gene expression, and the ability of this bacterium to complete its natural life cycle.
Collapse
|
4
|
Hyde JA. Borrelia burgdorferi Keeps Moving and Carries on: A Review of Borrelial Dissemination and Invasion. Front Immunol 2017; 8:114. [PMID: 28270812 PMCID: PMC5318424 DOI: 10.3389/fimmu.2017.00114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Borrelia burgdorferi is the etiological agent of Lyme disease, a multisystemic, multistage, inflammatory infection resulting in patients experiencing cardiac, neurological, and arthritic complications when not treated with antibiotics shortly after exposure. The spirochetal bacterium transmits through the Ixodes vector colonizing the dermis of a mammalian host prior to hematogenous dissemination and invasion of distal tissues all the while combating the immune response as it traverses through its pathogenic lifecycle. The innate immune response controls the borrelial burden in the dermis, but is unable to clear the infection and thereby prevent progression of disease. Dissemination in the mammalian host requires temporal regulation of virulence determinants to allow for vascular interactions, invasion, and colonization of distal tissues. Virulence determinants and/or adhesins are highly heterogenetic among environmental B. burgdorferi strains with particular genotypes being associated with the ability to disseminate to specific tissues and the severity of disease, but fail to generate cross-protective immunity between borrelial strains. The unique motility of B. burgdorferi rendered by the endoflagella serves a vital function for dissemination and protection from immune recognition. Progress has been made toward understanding the chemotactic regulation coordinating the activity of the two polar localized flagellar motors and their role in borrelial virulence, but this regulation is not yet fully understood. Distinct states of motility allow for dynamic interactions between several B. burgdorferi adhesins and host targets that play roles in transendothelial migration. Transmigration across endothelial and blood-brain barriers allows for the invasion of tissues and elicits localized immune responses. The invasive nature of B. burgdorferi is lacking in proactive mechanisms to modulate disease, such as secretion systems and toxins, but recent work has shown degradation of host extracellular matrices by B. burgdorferi contributes to the invasive capabilities of the pathogen. Additionally, B. burgdorferi may use invasion of eukaryotic cells for immune evasion and protection against environmental stresses. This review provides an overview of B. burgdorferi mechanisms for dissemination and invasion in the mammalian host, which are essential for pathogenesis and the development of persistent infection.
Collapse
Affiliation(s)
- Jenny A Hyde
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center , Bryan, TX , USA
| |
Collapse
|
5
|
Adams PP, Flores Avile C, Popitsch N, Bilusic I, Schroeder R, Lybecker M, Jewett MW. In vivo expression technology and 5' end mapping of the Borrelia burgdorferi transcriptome identify novel RNAs expressed during mammalian infection. Nucleic Acids Res 2017; 45:775-792. [PMID: 27913725 PMCID: PMC5314773 DOI: 10.1093/nar/gkw1180] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/18/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
Borrelia burgdorferi, the bacterial pathogen responsible for Lyme disease, modulates its gene expression profile in response to the environments encountered throughout its tick-mammal infectious cycle. To begin to characterize the B. burgdorferi transcriptome during murine infection, we previously employed an in vivo expression technology-based approach (BbIVET). This identified 233 putative promoters, many of which mapped to un-annotated regions of the complex, segmented genome. Herein, we globally identify the 5' end transcriptome of B. burgdorferi grown in culture as a means to validate non-ORF associated promoters discovered through BbIVET. We demonstrate that 119 BbIVET promoters are associated with transcription start sites (TSSs) and validate novel RNA transcripts using Northern blots and luciferase promoter fusions. Strikingly, 49% of BbIVET promoters were not found to associate with TSSs. This finding suggests that these sequences may be primarily active in the mammalian host. Furthermore, characterization of the 6042 B. burgdorferi TSSs reveals a variety of RNAs including numerous antisense and intragenic transcripts, leaderless RNAs, long untranslated regions and a unique nucleotide frequency for initiating intragenic transcription. Collectively, this is the first comprehensive map of TSSs in B. burgdorferi and characterization of previously un-annotated RNA transcripts expressed by the spirochete during murine infection.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Carlos Flores Avile
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Niko Popitsch
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Ivana Bilusic
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna 1030, Austria
| | - Renée Schroeder
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna 1030, Austria
| | - Meghan Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Mollie W Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| |
Collapse
|
6
|
Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi. MICROARRAYS 2016; 5:microarrays5020009. [PMID: 27600075 PMCID: PMC5003485 DOI: 10.3390/microarrays5020009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/28/2016] [Accepted: 04/11/2016] [Indexed: 11/29/2022]
Abstract
Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the precise orchestration of gene expression. Over 25 microarray analyses relating to B. burgdorferi genomics and transcriptomics have been published. The majority of these studies has explored the global transcriptome under a variety of conditions and has contributed substantially to the current understanding of B. burgdorferi transcriptional regulation. In this review, we present a summary of these studies with particular focus on those that helped define the roles of transcriptional regulators in modulating gene expression in the tick and mammalian milieus. By performing comparative analysis of results derived from the published microarray expression profiling studies, we identified composite gene lists comprising differentially expressed genes in these two environments. Further, we explored the overlap between the regulatory circuits that function during the tick and mammalian phases of the enzootic cycle. Taken together, the data indicate that there is interplay among the distinct signaling pathways that function in feeding ticks and during adaptation to growth in the mammal.
Collapse
|
7
|
Zhang Y, Zhang J, Yang J, Wang Y, Zhang L, Zuo X, Sun L, Pan HF, Hirankarn N, Wang T, Chen R, Ying D, Zeng S, Shen JJ, Lee TL, Lau CS, Chan TM, Leung AMH, Mok CC, Wong SN, Lee KW, Ho MHK, Lee PPW, Chung BHY, Chong CY, Wong RWS, Mok MY, Wong WHS, Tong KL, Tse NKC, Li XP, Avihingsanon Y, Rianthavorn P, Deekajorndej T, Suphapeetiporn K, Shotelersuk V, Ying SKY, Fung SKS, Lai WM, Wong CM, Ng IOL, Garcia-Barcelo MM, Cherny SS, Tam PKH, Sham PC, Yang S, Ye DQ, Cui Y, Zhang XJ, Lau YL, Yang W. Meta-analysis of GWAS on two Chinese populations followed by replication identifies novel genetic variants on the X chromosome associated with systemic lupus erythematosus. Hum Mol Genet 2014; 24:274-84. [DOI: 10.1093/hmg/ddu429] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
9
|
Altered murine tissue colonization by Borrelia burgdorferi following targeted deletion of linear plasmid 17-carried genes. Infect Immun 2012; 80:1773-82. [PMID: 22354033 DOI: 10.1128/iai.05984-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, possesses a segmented genome comprised of a single linear chromosome and upwards of 23 linear and circular plasmids. Much of what is known about plasmid-borne genes comes from studying laboratory clones that have spontaneously lost one or more plasmids during in vitro passage. Some plasmids, including the linear plasmid lp17, are never or rarely reported to be lost during routine culture; therefore, little is known about the requirement of these conserved plasmids for infectivity. In this study, the effects of deleting regions of lp17 were examined both in vitro and in vivo. A mutant strain lacking the genes bbd16 to bbd25 showed no deficiency in the ability to establish infection or disseminate to the bloodstream of mice; however, colonization of peripheral tissues was delayed. Despite the ability to colonize ear, heart, and joint tissues, this mutant exhibited a defect in bladder tissue colonization for up to 56 days postinfection. This phenotype was not observed in immunodeficient mice, suggesting that bladder colonization by the mutant strain was inhibited by an adaptive immune-based mechanism. Moreover, the mutant displayed increased expression of outer surface protein C in vitro, which was correlated with the absence of the gene bbd18. To our knowledge, this is the first report involving genetic manipulation of lp17 in an infectious clone of B. burgdorferi and reveals for the first time the effects of lp17 gene deletion during murine infection by the Lyme disease spirochete.
Collapse
|
10
|
Schmit VL, Patton TG, Gilmore RD. Analysis of Borrelia burgdorferi Surface Proteins as Determinants in Establishing Host Cell Interactions. Front Microbiol 2011; 2:141. [PMID: 21747816 PMCID: PMC3129520 DOI: 10.3389/fmicb.2011.00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/14/2011] [Indexed: 11/13/2022] Open
Abstract
Borrelia burgdorferi infection causes Lyme borreliosis in humans, a condition which can involve a systemic spread of the organism to colonize various tissues and organs. If the infection is left untreated by antimicrobials, it can lead to manifestations including, arthritis, carditis, and/or neurological problems. Identification and characterization of B. burgdorferi outer membrane proteins that facilitate cellular attachment and invasion to establish infection continue to be investigated. In this study, we sought to further define putative cell binding properties of surface-exposed B. burgdorferi proteins by observing whether cellular adherence could be blocked by antibodies. B. burgdorferi mixed separately with monoclonal antibodies (mAbs) against outer surface protein (Osp) A, OspC, decorin-binding protein (Dbp) A, BBA64, and RevA antigens were incubated with human umbilical vein endothelial cells (HUVEC) and human neuroglial cells (H4). B. burgdorferi treated with anti-OspA, -DbpA, and -BBA64 mAbs showed a significant decrease in cellular association compared to controls, whereas B. burgdorferi treated with anti-OspC and anti-RevA showed no reduction in cellular attachment. Additionally, temporal transcriptional analyses revealed upregulated expression of bba64, ospA, and dbpA during coincubation with cells. Together, the data provide evidence that OspA, DbpA, and BBA64 function in host cell adherence and infection mechanisms.
Collapse
Affiliation(s)
- Virginia L Schmit
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Fort Collins, CO, USA
| | | | | |
Collapse
|
11
|
CsrA modulates levels of lipoproteins and key regulators of gene expression critical for pathogenic mechanisms of Borrelia burgdorferi. Infect Immun 2010; 79:732-44. [PMID: 21078860 DOI: 10.1128/iai.00882-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbon storage regulator A (CsrA) is an RNA binding protein that has been characterized in many bacterial species to play a central regulatory role by modulating several metabolic processes. We recently showed that a homolog of CsrA in Borrelia burgdorferi (CsrA(Bb), BB0184) was upregulated in response to propagation of B. burgdorferi under mammalian host-specific conditions. In order to further delineate the role of CsrA(Bb), we generated a deletion mutant designated ES10 in a linear plasmid 25-negative isolate of B. burgdorferi strain B31 (ML23). The deletion mutant was screened by PCR and Southern blot hybridization, and a lack of synthesis of CsrA(Bb) in ES10 was confirmed by immunoblot analysis. Analysis of ES10 propagated at pH 6.8/37°C revealed a significant reduction in the levels of OspC, DbpA, BBK32, and BBA64 compared to those for the parental wild-type strain propagated under these conditions, while there were no significant changes in the levels of either OspA or P66. Moreover, the levels of two regulatory proteins, RpoS and BosR, were also found to be lower in ES10 than in the control strain. Quantitative real-time reverse transcription-PCR analysis of total RNA extracted from the parental strain and csrA(Bb) mutant revealed significant differences in gene expression consistent with the changes at the protein level. Neither the csrA(Bb) mutant nor the trans-complemented strain was capable of infection following intradermal needle inoculation in C3H/HeN mice at either 10³ or 10⁵ spirochetes per mouse. The further characterization of molecular basis of regulation mediated by CsrA(Bb) will provide significant insights into the pathophysiology of B. burgdorferi.
Collapse
|
12
|
Xue F, Dong H, Wu J, Wu Z, Hu W, Sun A, Troxell B, Yang XF, Yan J. Transcriptional responses of Leptospira interrogans to host innate immunity: significant changes in metabolism, oxygen tolerance, and outer membrane. PLoS Negl Trop Dis 2010; 4:e857. [PMID: 21049008 PMCID: PMC2964297 DOI: 10.1371/journal.pntd.0000857] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/27/2010] [Indexed: 12/31/2022] Open
Abstract
Background Leptospira interrogans is the major causative agent of leptospirosis. Phagocytosis plays important roles in the innate immune responses to L. interrogans infection, and L. interrogans can evade the killing of phagocytes. However, little is known about the adaptation of L. interrogans during this process. Methodology/Principal Findings To better understand the interaction of pathogenic Leptospira and innate immunity, we employed microarray and comparative genomics analyzing the responses of L. interrogans to macrophage-derived cells. During this process, L. interrogans altered expressions of many genes involved in carbohydrate and lipid metabolism, energy production, signal transduction, transcription and translation, oxygen tolerance, and outer membrane proteins. Among them, the catalase gene expression was significantly up-regulated, suggesting it may contribute to resisting the oxidative pressure of the macrophages. The expressions of several major outer membrane protein (OMP) genes (e.g., ompL1, lipL32, lipL41, lipL48 and ompL47) were dramatically down-regulated (10–50 folds), consistent with previous observations that the major OMPs are differentially regulated in vivo. The persistent down-regulations of these major OMPs were validated by immunoblotting. Furthermore, to gain initial insight into the gene regulation mechanisms in L. interrogans, we re-defined the transcription factors (TFs) in the genome and identified the major OmpR TF gene (LB333) that is concurrently regulated with the major OMP genes, suggesting a potential role of LB333 in OMPs regulation. Conclusions/Significance This is the first report on global responses of pathogenic Leptospira to innate immunity, which revealed that the down-regulation of the major OMPs may be an immune evasion strategy of L. interrogans, and a putative TF may be involved in governing these down-regulations. Alterations of the leptospiral OMPs up interaction with host antigen-presenting cells (APCs) provide critical information for selection of vaccine candidates. In addition, genome-wide annotation and comparative analysis of TFs set a foundation for further studying regulatory networks in Leptospira spp. Leptospirosis is an important tropical disease around the world, particularly in humid tropical and subtropical countries. As a major pathogen of this disease, Leptospira interrogans can be shed from the urine of reservoir hosts, survive in soil and water, and infect humans through broken skin or mucous membranes. Recently, host adaptability and immune evasion of L. interrogans to host innate immunity was partially elucidated in infection or animal models. A better understanding of the molecular mechanisms of L. interrogans in response to host innate immunity is required to learn the nature of early leptospirosis. This study focused on the transcriptome of L. interrogans during host immune cells interaction. Significant changes in energy metabolism, oxygen tolerance and outer membrane protein profile were identified as potential immune evasion strategies by pathogenic Leptospira during the early stage of infection. The major outer membrane proteins (OMPs) of L. interrogans may be regulated by the major OmpR specific transcription factor (LB333). These results provide a foundation for further studying the pathogenesis of leptospirosis, as well as identifying gene regulatory networks in Leptospira spp.
Collapse
Affiliation(s)
- Feng Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Biomedical Informatics, Wenzhou Medical College, Wenzhou, China
| | - Zuowei Wu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weilin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Aihua Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Bryan Troxell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jie Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
13
|
The bba64 gene of Borrelia burgdorferi, the Lyme disease agent, is critical for mammalian infection via tick bite transmission. Proc Natl Acad Sci U S A 2010; 107:7515-20. [PMID: 20368453 DOI: 10.1073/pnas.1000268107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spirochetal agent of Lyme disease, Borrelia burgdorferi, is transmitted by bites of Ixodes ticks to mammalian reservoir hosts and humans. The mechanism(s) by which the organism is trafficked from vector to host is poorly understood. In this study, we demonstrate that a B. burgdorferi mutant strain deficient in the synthesis of the bba64 gene product was incapable of infecting mice via tick bite even though the mutant was (i) infectious in mice when introduced by needle inoculation, (ii) acquired by larval ticks feeding on infected mice, and (iii) able to persist through tick molting stages. This finding of a B. burgdorferi gene required for pathogen transfer and/or survival from the tick to the susceptible host represents an important breakthrough toward understanding transmission mechanisms involved for the Lyme disease agent.
Collapse
|
14
|
Overexpression of CsrA (BB0184) alters the morphology and antigen profiles of Borrelia burgdorferi. Infect Immun 2009; 77:5149-62. [PMID: 19737901 DOI: 10.1128/iai.00673-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, alters its gene expression in response to highly disparate environmental signals encountered in its hosts. Among the relatively few regulators of adaptive gene expression present in the borrelial genome is an open reading frame (ORF), BB0184, annotated as CsrA (carbon storage regulator A). CsrA, in several bacterial species, has been characterized as a small RNA binding protein that functions as a global regulator affecting mRNA stability or levels of translation of multiple ORFs. Consistent with known functions of CsrA, overexpression of CsrA from B. burgdorferi (CsrABb) in Escherichia coli resulted in reduced accumulation of glycogen. We determined that csrABb is part of the flgK motility operon and that the synthesis of CsrABb was increased when B. burgdorferi was propagated under fed-tick conditions. Overexpression of CsrABb in B. burgdorferi strain B31 (ML23, lp25-negative clonal isolate) resulted in a clone, designated ES25, which exhibited alterations in colony morphology and a significant reduction in the levels of FlaB. Several lipoproteins previously characterized as playing a role in infectivity were also altered in ES25. Real-time reverse transcription-PCR analysis of RNA revealed significant differences in the transcriptional levels of ospC in ES25, while there were no such differences in the levels of other transcripts, suggesting posttranscriptional regulation of expression of these latter genes. These observations indicate that CsrABb plays a role in the regulation of expression of pathophysiological determinants of B. burgdorferi, and further characterization of CsrABb will help in better understanding of the regulators of gene expression in B. burgdorferi.
Collapse
|
15
|
Esteve-Gassent MD, Elliott NL, Seshu J. sodA is essential for virulence of Borrelia burgdorferi in the murine model of Lyme disease. Mol Microbiol 2008; 71:594-612. [PMID: 19040638 DOI: 10.1111/j.1365-2958.2008.06549.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has a limited set of genes to combat oxidative/nitrosative stress encountered in its tick vector or mammalian hosts. We inactivated the gene encoding for superoxide dismutase A (sodA, bb0153), an enzyme mediating the dismutation of superoxide anions and examined the in vitro and in vivo phenotype of the mutant. There were no significant differences in the in vitro growth characteristics of the sodA mutant compared with the control strains. Microscopic analysis of viability of spirochaetes revealed greater percentage of cell death upon treatment of sodA mutant with superoxide generators compared with its controls. Infectivity analysis in C3H/HeN mice following intradermal needle inoculation of 10(3) or 10(5) spirochaetes per mouse revealed complete attenuation of infectivity for the sodA mutant compared with control strains at 21 days post infection. The sodA mutant was more susceptible to the effects of activated macrophages and neutrophils, suggesting that its in vivo phenotype is partly due to the killing effects of activated immune cells. These studies indicate that SodA plays an important role in combating oxidative stress and is essential for the colonization and dissemination of B. burgdorferi in the murine model of Lyme disease.
Collapse
Affiliation(s)
- Maria D Esteve-Gassent
- South Texas Center for Emerging Infectious Diseases, and Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
16
|
Gilmore RD, Howison RR, Schmit VL, Carroll JA. Borrelia burgdorferi expression of the bba64, bba65, bba66, and bba73 genes in tissues during persistent infection in mice. Microb Pathog 2008; 45:355-60. [PMID: 18848981 DOI: 10.1016/j.micpath.2008.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/11/2008] [Accepted: 08/20/2008] [Indexed: 11/16/2022]
Abstract
Borrelia burgdorferi, the etiological agent of Lyme disease in humans, is vectored between mammalian hosts in nature by Ixodes ticks. The organism adapts to diverse environments encountered throughout the enzootic cycle by differentially expressing essential gene products to survive the specialized conditions, whether in ticks or warm-blooded hosts. However, little is known regarding the identity and/or function of B. burgdorferi genes expressed during colonization of tissues during mammalian infection. Experimental evidence has shown that a group of genes (formerly classified as paralogous gene family 54) contiguously localized on the 54-kilobase linear plasmid of B. burgdorferi, are among the most highly regulated by in vitro conditions resembling mammalian infection. In this study, we employed quantitative reverse transcription-PCR to measure temporal gene expression of a subset of this B. burgdorferi gene family (bba64, bba65, bba66, and bba73) in tissues during chronic murine infection. The goal was to gain insight into the role of these genes in infectivity and pathogenesis by identifying when the genes are induced and whether they are expressed in specific target tissues. B. burgdorferi bba64, bba65, bba66, and bba73 expression was measured from infected mouse tissues relative to expression in in vitro culture conditions at specific times post-infection. bba64 expression was highly upregulated in bladder, heart, and spleen tissues throughout the infection period, contrasting with the sharp downregulation previously observed in ear tissues. bba65, bba66, and bba73 demonstrated upregulated differential expression in various tissues over 1 year post-infection. These results suggest an essential role for these genes in borrelial survival, persistence, and/or pathogenesis.
Collapse
Affiliation(s)
- Robert D Gilmore
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA.
| | | | | | | |
Collapse
|
17
|
Deletion of BBA64, BBA65, and BBA66 loci does not alter the infectivity of Borrelia burgdorferi in the murine model of Lyme disease. Infect Immun 2008; 76:5274-84. [PMID: 18765733 DOI: 10.1128/iai.00803-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to highly disparate environmental signals encountered in its tick vector versus vertebrate hosts. Whole-genome transcriptional profile analysis of B. burgdorferi, propagated in vitro under mammalian-host-specific conditions, revealed significant upregulation of several linear plasmid 54 (lp54)-encoded open reading frames (ORFs). Among these ORFs, BBA64, BBA65, and BBA66 have been shown to be upregulated in response to multiple mammalian-host-specific signals. Recently, we determined that there was no significant difference in the ability of BBA64(-) mutant to infect C3H/HeN mice compared to its isogenic control strains, suggesting that B. burgdorferi might utilize multiple, functionally related determinants to establish infection. We further generated BBA65(-) and BBA66(-) single mutants in a noninfectious, lp25(-) clonal isolate of B. burgdorferi strain B31 (ML23) and complemented them with the minimal region of lp25 (BBE22) required for restoring the infectivity. In addition, we generated a BBA64(-) BBA65(-) BBA66(-) triple mutant using an infectious, clonal isolate of B. burgdorferi strain B31 (5A11) that has all of the infection-associated plasmids. There were no significant differences in the ability to isolate viable spirochetes from different tissues of C3H/HeN mice infected via intradermal needle inoculation with either the individual single mutants or the triple mutant compared to their respective isogenic parental strains at days 21 and 62 postinfection. These observations suggest that B. burgdorferi can establish infection in the absence of expression of BBA64, BBA65, and BBA66 in the murine model of Lyme disease.
Collapse
|
18
|
Borrelia burgdorferi surface-localized proteins expressed during persistent murine infection are conserved among diverse Borrelia spp. Infect Immun 2008; 76:2498-511. [PMID: 18390998 DOI: 10.1128/iai.01583-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in the United States, regulates numerous genes encoding lipoproteins on linear plasmid 54 in response to environmental cues. We analyzed a subset of these genes/proteins that were historically categorized as paralogous gene family 54 (BBA64, BBA65, BBA66, BBA68, BBA69, BBA70, BBA71, and BBA73) and found that the expression of several genes was influenced by the sigma(N)-sigma(S) regulatory cascade at the level of transcription and protein synthesis. Moreover, we established in this and a previous study that BBA65, BBA66, BBA69, BBA71, and BBA73 are temporally expressed during persistent infection of immunocompetent mice, as determined by quantitative real time-PCR of ear tissue, by enzyme-linked immunosorbent assay, and by immunoblotting. Correspondingly, BBA65, BBA66, BBA71, and BBA73 proteins were detectable in infectious B. burgdorferi B31 isolates but undetectable in noninfectious isolates. BBA65, BBA66, BBA71, and BBA73 proteins were also found to partition into the Triton X-114 detergent phase and were sensitive to protease treatment of intact cells, indicating that they are membrane associated and surface localized. Lastly, Southern blotting and PCR with specific gene primer/probes for BBA64, BBA65, BBA66, BBA71, and BBA73 suggest that many of these genes are conserved among the B. burgdorferi sensu lato isolates and the relapsing-fever Borrelia species. Together, the data presented suggest that these genes may play a part in Borrelia infection and/or pathogenicity that could extend beyond the sensu lato group.
Collapse
|