1
|
Ma L, Jia XH, Gao Z, Zhou Y, Cheng YT, Li P, Jia TJ. The Chlamydia pneumoniae inclusion membrane protein Cpn0308 interacts with host protein ACBD3. J Bacteriol 2025; 207:e0027524. [PMID: 39723831 PMCID: PMC11784219 DOI: 10.1128/jb.00275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024] Open
Abstract
Chlamydia pneumoniae is an obligate intracellular bacterium of eukaryotic cells characterized by a unique biphasic life cycle; its biosynthesis and replication must occur within a cytoplasmic vacuole or inclusion. Certain inclusion membrane proteins have been demonstrated to mediate the interactions between intra-inclusion chlamydial organisms and the host cell. It has been demonstrated previously that the C. pneumoniae-encoded Cpn0308 localizes to the inclusion membrane; however, its function remains unknown. In the current study, a yeast two-hybrid assay was conducted to screen Cpn0308 as a bait against a HeLa cell cDNA library, revealing its binding to the host protein acyl-coenzyme A binding domain-containing 3 (ACBD3). The interaction between Cpn0308 and ACBD3 was confirmed through co-immunoprecipitation and GST (Glutathione S-transferase) pull-down assays. The two proteins were also co-localized in HeLa cells co-expressing Cpn0308 and ACBD3, as well as in C. pneumoniae-infected cells, as observed under confocal fluorescence microscopy. Given that ACBD3 plays a crucial role in maintaining host cell lipid homeostasis and its Golgi dynamic domain is responsible for interacting with Cpn0308, we hypothesize that the Cpn0308-ACBD3 interaction may facilitate C. pneumoniae's acquisition of host lipids, thereby benefiting chlamydial survival. This study lays a foundation for further elucidating the mechanisms of Cpn0308-mediated C. pneumoniae pathogenesis.IMPORTANCEThe biosynthesis and replication of Chlamydia pneumoniae (Cpn) must occur within the cytoplasmic vacuoles or inclusions of host cells. Inclusion bodies play a crucial role in mediating the interactions between Cpn and host cells. Cpn0308 is localized to the inclusion membrane; however, its function is unknown. In this study, Cpn0308 was found to bind to host protein acyl-coenzyme A binding domain-containing 3 (ACBD3) through some standard approaches. Co-localization of the two proteins was observed in both original HeLa cells and Cpn-infected HeLa cells. ACBD3 plays a significant role in maintaining lipid homeostasis in host cells; we speculate that the Cpn0308-ACBD3 interaction may facilitate the acquisition of host lipids by C. pneumoniae, thereby enhancing chlamydial survival.
Collapse
Affiliation(s)
- Liang Ma
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
- Handan Vocational College of Science and Technology, Han Dan, Hebei, China
| | - Xiao-hui Jia
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
| | - Zhe Gao
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
| | - Yan Zhou
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
| | - Yong-ting Cheng
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
| | - Ping Li
- Key Laboratory of Clinical Laboratory Diagnostics, Hebei North University, Zhangjiakou, Hebei, China
| | - Tian-jun Jia
- Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
2
|
Wevers C, Höhler M, Alcázar-Román AR, Hegemann JH, Fleig U. A Functional Yeast-Based Screen Identifies the Host Microtubule Cytoskeleton as a Target of Numerous Chlamydia pneumoniae Proteins. Int J Mol Sci 2023; 24:ijms24087618. [PMID: 37108781 PMCID: PMC10142024 DOI: 10.3390/ijms24087618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial pathogens have evolved intricate ways to manipulate the host to support infection. Here, we systematically assessed the importance of the microtubule cytoskeleton for infection by Chlamydiae, which are obligate intracellular bacteria that are of great importance for human health. The elimination of microtubules in human HEp-2 cells prior to C. pneumoniae infection profoundly attenuated the infection efficiency, demonstrating the need for microtubules for the early infection processes. To identify microtubule-modulating C. pneumoniae proteins, a screen in the model yeast Schizosaccharomyces pombe was performed. Unexpectedly, among 116 selected chlamydial proteins, more than 10%, namely, 13 proteins, massively altered the yeast interphase microtubule cytoskeleton. With two exceptions, these proteins were predicted to be inclusion membrane proteins. As proof of principle, we selected the conserved CPn0443 protein, which caused massive microtubule instability in yeast, for further analysis. CPn0443 bound and bundled microtubules in vitro and co-localized partially with microtubules in vivo in yeast and human cells. Furthermore, CPn0443-transfected U2OS cells had a significantly reduced infection rate by C. pneumoniae EBs. Thus, our yeast screen identified numerous proteins encoded using the highly reduced C. pneumoniae genome that modulated microtubule dynamics. Hijacking of the host microtubule cytoskeleton must be a vital part of chlamydial infection.
Collapse
Affiliation(s)
- Carolin Wevers
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Mona Höhler
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Abel R Alcázar-Román
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Ursula Fleig
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
The Chlamydia pneumoniae Inclusion Membrane Protein Cpn1027 Interacts with Host Cell Wnt Signaling Pathway Regulator Cytoplasmic Activation/Proliferation-Associated Protein 2 (Caprin2). PLoS One 2015; 10:e0127909. [PMID: 25996495 PMCID: PMC4440618 DOI: 10.1371/journal.pone.0127909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
We previously identified hypothetical protein Cpn1027 as a novel inclusion membrane protein that is unique to Chlamydia pneumoniae. In the current study, using a yeast-two hybrid screen assay, we identified host cell cytoplasmic activation/proliferation-associated protein 2 (Caprin2) as an interacting partner of Cpn1027. The interaction was confirmed and mapped to the C-termini of both Cpn1027 and Caprin2 using co-immunoprecipitation and GST pull-down assays. A RFP-Caprin2 fusion protein was recruited to the chlamydial inclusion and so was the endogenous GSK3β, a critical component of the β-catenin destruction complex in the Wnt signaling pathway. Cpn1027 also co-precipitated GSK3β. Caprin2 is a key regulator of the Wnt signaling pathway by promoting the recruitment of the β-catenin destruction complex to the cytoplasmic membrane in the presence of Wnt signaling while GSK3β is required for priming β-catenin for degradation in the absence of Wnt signaling. The Cpn1027 interactions with Caprin2 and GSK3β may allow C. pneumoniae to actively sequester the β-catenin destruction complex so that β-catenin is maintained even in the absence of extracellular Wnt activation signals. The maintained β-catenin can trans-activate Wnt target genes including Bcl-2, which may contribute to the chlamydial antiapoptotic activity. We found that the C. pneumoniae-infected cells were more resistant to apoptosis induction and the anti-apoptotic activity was dependent on β-catenin. Thus, the current study suggests that the chlamydial inclusion protein Cpn1027 may be able to manipulate host Wnt signaling pathway for enhancing the chlamydial anti-apoptotic activity.
Collapse
|
4
|
Chen Y, Wu B, Liu L, You X, Chen L, Wu Y, Zhang Q. Recombinant Cpn 0810 stimulates proinflammatory cytokine expression and apoptosis in human monocytes. Exp Ther Med 2015; 9:459-463. [PMID: 25574216 PMCID: PMC4280927 DOI: 10.3892/etm.2014.2111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/18/2014] [Indexed: 12/03/2022] Open
Abstract
The aim of the present study was to express the recombinant Chlamydophila pneumoniae (C. pneumoniae) protein, Cpn 0810, in Escherichia coli (E. coli) BL21, and investigate the effects of Cpn 0810 on inflammatory and apoptotic processes in human monocytic (THP-1) cells. An ELISA was performed to detect the levels of the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6. In addition, Hoechst 33258 staining and annexin V binding analyses were performed to measure the rates of apoptosis. Purified glutathione S-transferase (GST)-Cpn 0810 recombinant proteins were obtained from the E. coli BL21 cells carrying the pGEX6p-2/Cpn 0810 plasmid, and were shown to stimulate the expression of TNF-α and IL-6 in the THP-1 cells in a dose- and time-dependent manner. TNF-α and IL-6 levels peaked at 24 h after GST-Cpn 0810 stimulation. Furthermore, GST-Cpn 0810 significantly promoted the apoptosis of THP-1 cells. In conclusion, recombinant GST-Cpn 0810 was shown to stimulate the expression of TNF-α and IL-6, inhibit proliferation and induce apoptosis in THP-1 cells. Therefore, Cpn 0810 may interact with host cells following C. pneumoniae infection, functioning as an important pathogenic factor.
Collapse
Affiliation(s)
- Yuyu Chen
- Department of Inspection, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Baiping Wu
- Department of Inspection, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Liangzhuan Liu
- Department of Pathogenic Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoxing You
- Department of Pathogenic Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lili Chen
- Department of Pathogenic Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yimou Wu
- Department of Pathogenic Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qiugui Zhang
- Department of Inspection, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
5
|
Albrecht M, Sharma CM, Dittrich MT, Müller T, Reinhardt R, Vogel J, Rudel T. The transcriptional landscape of Chlamydia pneumoniae. Genome Biol 2011; 12:R98. [PMID: 21989159 PMCID: PMC3333780 DOI: 10.1186/gb-2011-12-10-r98] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/18/2011] [Accepted: 10/11/2011] [Indexed: 02/07/2023] Open
Abstract
Background Gene function analysis of the obligate intracellular bacterium Chlamydia pneumoniae is hampered by the facts that this organism is inaccessible to genetic manipulations and not cultivable outside the host. The genomes of several strains have been sequenced; however, very little information is available on the gene structure and transcriptome of C. pneumoniae. Results Using a differential RNA-sequencing approach with specific enrichment of primary transcripts, we defined the transcriptome of purified elementary bodies and reticulate bodies of C. pneumoniae strain CWL-029; 565 transcriptional start sites of annotated genes and novel transcripts were mapped. Analysis of adjacent genes for co-transcription revealed 246 polycistronic transcripts. In total, a distinct transcription start site or an affiliation to an operon could be assigned to 862 out of 1,074 annotated protein coding genes. Semi-quantitative analysis of mapped cDNA reads revealed significant differences for 288 genes in the RNA levels of genes isolated from elementary bodies and reticulate bodies. We have identified and in part confirmed 75 novel putative non-coding RNAs. The detailed map of transcription start sites at single nucleotide resolution allowed for the first time a comprehensive and saturating analysis of promoter consensus sequences in Chlamydia. Conclusions The precise transcriptional landscape as a complement to the genome sequence will provide new insights into the organization, control and function of genes. Novel non-coding RNAs and identified common promoter motifs will help to understand gene regulation of this important human pathogen.
Collapse
Affiliation(s)
- Marco Albrecht
- Department of Microbiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, 97074, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Dehoux P, Flores R, Dauga C, Zhong G, Subtil A. Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins. BMC Genomics 2011; 12:109. [PMID: 21324157 PMCID: PMC3048545 DOI: 10.1186/1471-2164-12-109] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 02/16/2011] [Indexed: 12/13/2022] Open
Abstract
Background Chlamydiae are obligate intracellular bacteria that multiply in a vacuolar compartment, the inclusion. Several chlamydial proteins containing a bilobal hydrophobic domain are translocated by a type III secretion (TTS) mechanism into the inclusion membrane. They form the family of Inc proteins, which is specific to this phylum. Based on their localization, Inc proteins likely play important roles in the interactions between the microbe and the host. In this paper we sought to identify and analyze, using bioinformatics tools, all putative Inc proteins in published chlamydial genomes, including an environmental species. Results Inc proteins contain at least one bilobal hydrophobic domain made of two transmembrane helices separated by a loop of less than 30 amino acids. Using bioinformatics tools we identified 537 putative Inc proteins across seven chlamydial proteomes. The amino-terminal segment of the putative Inc proteins was recognized as a functional TTS signal in 90% of the C. trachomatis and C. pneumoniae sequences tested, validating the data obtained in silico. We identified a macro domain in several putative Inc proteins, and observed that Inc proteins are enriched in segments predicted to form coiled coils. A surprisingly large proportion of the putative Inc proteins are not constitutively translocated to the inclusion membrane in culture conditions. Conclusions The Inc proteins represent 7 to 10% of each proteome and show a great degree of sequence diversity between species. The abundance of segments with a high probability for coiled coil conformation in Inc proteins support the hypothesis that they interact with host proteins. While the large majority of Inc proteins possess a functional TTS signal, less than half may be constitutively translocated to the inclusion surface in some species. This suggests the novel finding that translocation of Inc proteins may be regulated by as-yet undetermined mechanisms.
Collapse
Affiliation(s)
- Pierre Dehoux
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
| | | | | | | | | |
Collapse
|
7
|
Zhong G. Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front Microbiol 2011; 2:14. [PMID: 21687409 PMCID: PMC3109274 DOI: 10.3389/fmicb.2011.00014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 01/19/2011] [Indexed: 12/23/2022] Open
Abstract
The human pathogen Chlamydia trachomatis secretes numerous effectors into host cells in order to successfully establish and complete the intracellular growth cycle. Three C. trachomatis proteases [chlamydial proteasome/protease-like activity factor (CPAF), tail-specific protease (Tsp), and chlamydial high temperature requirement protein A (cHtrA)] have been localized in the cytosol of the infected cells either by direct immunofluorescence visualization or functional implication. Both CPAF and Tsp have been found to play important roles in C. trachomatis interactions with host cells although the cellular targets of cHtrA have not been identified. All three proteases contain a putative N-terminal signal sequence, suggesting that they may be secreted via a sec-dependent pathway. However, these proteases are also found in chlamydial organism-free vesicles in the lumen of the chlamydial inclusions before they are secreted into host cell cytosol, suggesting that these proteases may first be translocated into the periplasmic region via a sec-dependent pathway and then exported outside of the organisms via an outer membrane vesicles (OMVs) budding mechanism. The vesiculized proteases in the inclusion lumen can finally enter host cell cytosol via vesicle fusing with or passing through the inclusion membrane. Continuing identification and characterization of the C. trachomatis-secreted proteins (CtSPs) will not only promote our understanding of C. trachomatis pathogenic mechanisms but also allow us to gain novel insights into the OMV pathway, a well-known mechanism used by bacteria to export virulence factors although its mechanism remains elusive.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
8
|
Hongliang C, Zhou Z, Zhan H, Yanhua Z, Zhongyu L, Yingbiao L, Guozhi D, Yimou W. Serodiagnosis of Chlamydia pneumoniae infection using three inclusion membrane proteins. J Clin Lab Anal 2010; 24:55-61. [PMID: 20087957 DOI: 10.1002/jcla.20367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Chlamydia pneumoniae genome-encoded open reading frames Cpn0146, Cpn0147, and Cpn0308 were expressed as recombinant proteins for detecting C. pneumoniae-specific antibodies in samples from three groups of individuals including 183 with C. pneumoniae-associated respiratory infection (group I), 60 healthy blood donors (group II), and 32 with no known respiratory infection (group III). The recombinant Cpn0146 was recognized by 71 (38.8% positive recognition rate), 15 (25%) and 1 (3.1%), Cpn0147 by 75 (40.9%), 14 (23.3%), and 2 (6.3%), and Cpn0308 by 82 (44.8%), 16 (26.7%), and 0 (0%) samples from groups I, II, and III, respectively. The positive recognition rates with any of the three antigens were significantly higher in group I than those in groups II and III, suggesting that more individuals from group I were likely infected with C. pneumoniae. This conclusion was confirmed with a commercially available whole organism-based ELISA kit (Savyon Diagnostics Ltd., Ashdod, Israel), which detected C. pneumoniae antibodies in 98 (64.1%), 26 (43.3%), and 4 (12.5%) samples from group I, II, and III, respectively. Comparing to the commercial kit, the recombinant antigen-based detection assays displayed >97% of detection specificity and >87% of sensitivity, suggesting that these recombinant antigens can be considered alternative tools for aiding in serodiagnosis of C. pneumoniae infection.
Collapse
Affiliation(s)
- Chen Hongliang
- Institute of Pathogenic Biology Medical College, University of South China, Hengyang, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rockey DD, Wang J, Lei L, Zhong G. Chlamydia vaccine candidates and tools for chlamydial antigen discovery. Expert Rev Vaccines 2009; 8:1365-77. [PMID: 19803759 DOI: 10.1586/erv.09.98] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The failure of the inactivated Chlamydia-based vaccine trials in the 1960s has led researchers studying Chlamydia to take cautious and rational approaches to develop safe and effective chlamydial vaccines. Subsequent research efforts focused on three areas. The first is the analysis of the immunobiology of chlamydial infection in animal models, with supporting clinical studies, to identify the immune correlates of both protective immunity and pathological responses. Second, recent radical improvements in genomics, proteomics and associated technologies have assisted in the implementation of creative approaches to search for suitable vaccine candidates. Third, progress in the analysis of host response and adjuvanticity regulating both innate and adaptive immunity at the mucosal site of infection has led to progress in the design of optimal delivery and adjuvant systems for enhancing protective immunity. Considerable progress has been made in the first two areas but research efforts to better define the factors that regulate immunity at mucosal sites of infection and to develop strategies to boost protective immunity via immunomodulation, effective delivery systems and potent adjuvants, have remained elusive. In this article, we will summarize progress in these areas with a focus on chlamydial vaccine antigen discovery, and discuss future directions towards the development of a safe and effective chlamydial vaccine.
Collapse
Affiliation(s)
- Daniel D Rockey
- Associate Professor, College of Veterinary Medicine, Oregon State University, 211 Dryden Hall, Corvallis, OR 97331-4804, USA.
| | | | | | | |
Collapse
|
10
|
Li Z, Zhong Y, Lei L, Wu Y, Wang S, Zhong G. Antibodies from women urogenitally infected with C. trachomatis predominantly recognized the plasmid protein pgp3 in a conformation-dependent manner. BMC Microbiol 2008; 8:90. [PMID: 18541036 PMCID: PMC2432062 DOI: 10.1186/1471-2180-8-90] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Accepted: 06/09/2008] [Indexed: 12/30/2022] Open
Abstract
Background C. trachomatis organisms carry a cryptic plasmid that encodes 8 open reading frames designated as pORF1 to 8. It is not clear whether all 8 pORFs are expressed during C. trachomatis infection in humans and information on the functionality of the plasmid proteins is also very limited. Results When antibodies from women urogenitally infected with C. trachomatis were reacted with the plasmid proteins, all 8 pORFs were positively recognized by one or more human antibody samples with the recognition of pORF5 protein (known as pgp3) by most antibodies and with the highest titers. The antibody recognition of the pORFs was blocked by C. trachomatis-infected HeLa but not normal HeLa cell lysates. The pgp3 fusion protein-purified human IgG detected the endogenous pgp3 in the cytosol of C. trachomatis-infected cells with an intracellular distribution pattern similar to that of CPAF, a chlamydial genome-encoded protease factor. However, the human antibodies no longer recognized pgp3 but maintained recognition of CPAF when both antigens were linearized or heat-denatured. The pgp3 conformation is likely maintained by the C-terminal 75% amino acid sequence since further deletion blocked the binding by the human antibodies and two conformation-dependent mouse monoclonal antibodies. Conclusion The plasmid-encoded 8 proteins are both expressed and immunogenic with pgp3 as the most immunodominant antigen during chlamydial infection in humans. More importantly, the human anti-pgp3 antibodies are highly conformation-dependent. These observations have provided important information for further understanding the function of the plasmid-encoded proteins and exploring the utility of pgp3 in chlamydial diagnosis and vaccination.
Collapse
Affiliation(s)
- Zhongyu Li
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
11
|
The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect Immun 2008; 76:3415-28. [PMID: 18474640 DOI: 10.1128/iai.01377-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The chlamydial cryptic plasmid encodes eight putative open reading frames (ORFs), designated pORF1 to -8. Antibodies raised against these ORF proteins were used to localize the endogenous proteins during chlamydial infection. We found that the pORF5 protein (also known as pgp3) was detected mainly in the cytosol of Chlamydia-infected cells, while the remaining seven proteins were found inside the chlamydial inclusions only. The pgp3 distribution pattern in the host cell cytosol is similar to but not overlapping with that of chlamydial protease/proteasome-like activity factor (CPAF), a chlamydial genome-encoded protein known to be secreted from chlamydial inclusions into the host cell cytosol. The anti-pgp3 labeling was removed by preabsorption with pgp3 but not CPAF fusion proteins and vice versa, demonstrating that pgp3 is a unique secretion protein. This conclusion is further supported by the observation that pgp3 was highly enriched in cytosolic fractions and had a minimal presence in the inclusion-containing nuclear fractions prepared from Chlamydia-infected cells. The pgp3 protein was detected as early as 12 h after infection and was secreted by all chlamydial species that carry the cryptic plasmid, suggesting that there is a selection pressure for maintaining pgp3 secretion during chlamydial infection. Although expression of pgp3 in the host cell cytosol via a transgene did not alter the susceptibility of the transfected cells to the subsequent chlamydial infection, purified pgp3 protein stimulated macrophages to release inflammatory cytokines, suggesting that pgp3 may contribute to chlamydial pathogenesis.
Collapse
|
12
|
Müller N, Sattelmacher F, Lugert R, Gross U. Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins. Med Microbiol Immunol 2008; 197:387-96. [PMID: 18449565 PMCID: PMC2525848 DOI: 10.1007/s00430-008-0097-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Indexed: 11/27/2022]
Abstract
We here describe four proteins of Chlamydia pneumoniae, which might play a role in host-pathogen interaction. The hypothetical bacterial proteins CPn0708 and CPn0712 were detected in Chlamydia pneumoniae-infected host cells by indirect immunofluorescence tests with polyclonal antisera raised against the respective proteins. While CPn0708 was localized within the inclusion body, CPn0712 was identified in the inclusion membrane and in the surrounding host cell cytosol. CPn0712 colocalizes with actin, indicating its possible interaction with components of the cytoskeleton. Investigations on CPn0809 and CPn1020, two Chlamydia pneumoniae proteins previously described to be secreted into the host cell cytosol, revealed colocalization with calnexin, a marker for the ER. Neither CPn0712, CPn0809 nor CPn1020 were able to inhibit host cell apoptosis. Furthermore, transient expression of CPn0712, CPn0809 and CPn1020 by the host cell itself had no effect on subsequent infection with Chlamydia pneumoniae. However, microarray analysis of CPn0712-expressing host cells revealed six host cell genes which were regulated as in host cells infected with Chlamydia pneumoniae, indicating the principal usefulness of heterologous expression to study the effect of Chlamydia pneumoniae proteins on host cell modulation.
Collapse
Affiliation(s)
- Nicole Müller
- Institute for Medical Microbiology, University of Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
13
|
Briken V. Molecular mechanisms of host-pathogen interactions and their potential for the discovery of new drug targets. Curr Drug Targets 2008; 9:150-7. [PMID: 18288966 PMCID: PMC2650272 DOI: 10.2174/138945008783502449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vaccines and chemotherapy have undeniably been the discoveries in the field of biomedical research that have exerted the biggest impact on the improvement of public health. Nevertheless, the development of bacterial resistance to antibiotics has co-evolved over time with the discovery of new drugs. This entails the necessity for continuous research on new anti-infectious agents. The current review highlights recent discoveries in the molecular mechanisms of specific host pathogen interactions and their potential for drug discovery. The focus is on facultative and obligate intracellular pathogens (Mycobacterium, Chlamydia and Legionella) and their manipulation of host cells in regard to inhibition of phagosome maturation and cell death. Furthermore, the composition and role of the SecA2 and the ESX-1 secretion pathways in bacterial virulence and manipulation of infected host cells is discussed. The central hypothesis proposed in this review is that the characterization of bacterial proteins and lipids involved in host cell manipulation (modulins) will provide an abundance of new drug targets. One advantage of targeting such bacterial modulins for drug development is that these anti-modulin drugs will not disrupt the beneficial host microflora and therefore have fewer side effects.
Collapse
Affiliation(s)
- Volker Briken
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, Microbiology Bldg. 231, Room 2201, College Park, MD, 20742, USA.
| |
Collapse
|