1
|
Sirisaengtaksin N, O'Donoghue EJ, Jabbari S, Roe AJ, Krachler AM. Bacterial outer membrane vesicles provide an alternative pathway for trafficking of Escherichia coli O157 type III secreted effectors to epithelial cells. mSphere 2023; 8:e0052023. [PMID: 37929984 PMCID: PMC10732017 DOI: 10.1128/msphere.00520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Bacteria can package protein cargo into nanosized membrane blebs that are shed from the bacterial membrane and released into the environment. Here, we report that a type of pathogenic bacteria called enterohemorrhagic Escherichia coli O157 (EHEC) uses their membrane blebs (outer membrane vesicles) to package components of their type 3 secretion system and send them into host cells, where they can manipulate host signaling pathways including those involved in infection response, such as immunity. Usually, EHEC use a needle-like apparatus to inject these components into host cells, but packaging them into membrane blebs that get taken up by host cells is another way of delivery that can bypass the need for a functioning injection system.
Collapse
Affiliation(s)
- Natalie Sirisaengtaksin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eloise J. O'Donoghue
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sara Jabbari
- School of Mathematics, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew J. Roe
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Lamprokostopoulou A, Römling U. Yin and Yang of Biofilm Formation and Cyclic di-GMP Signaling of the Gastrointestinal Pathogen Salmonella enterica Serovar Typhimurium. J Innate Immun 2021; 14:275-292. [PMID: 34775379 PMCID: PMC9275015 DOI: 10.1159/000519573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Within the last 60 years, microbiological research has challenged many dogmas such as bacteria being unicellular microorganisms directed by nutrient sources; these investigations produced new dogmas such as cyclic diguanylate monophosphate (cyclic di-GMP) second messenger signaling as a ubiquitous regulator of the fundamental sessility/motility lifestyle switch on the single-cell level. Successive investigations have not yet challenged this view; however, the complexity of cyclic di-GMP as an intracellular bacterial signal, and, less explored, as an extracellular signaling molecule in combination with the conformational flexibility of the molecule, provides endless opportunities for cross-kingdom interactions. Cyclic di-GMP-directed microbial biofilms commonly stimulate the immune system on a lower level, whereas host-sensed cyclic di-GMP broadly stimulates the innate and adaptive immune responses. Furthermore, while the intracellular second messenger cyclic di-GMP signaling promotes bacterial biofilm formation and chronic infections, oppositely, Salmonella Typhimurium cellulose biofilm inside immune cells is not endorsed. These observations only touch on the complexity of the interaction of biofilm microbial cells with its host. In this review, we describe the Yin and Yang interactive concepts of biofilm formation and cyclic di-GMP signaling using S. Typhimurium as an example.
Collapse
Affiliation(s)
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Wang B, Li B, Liang Y, Li J, Gao L, Chen L, Duan K, Shen L. Pleiotropic effects of temperature-regulated 2-OH-lauroytransferase (PA0011) on Pseudomonas aeruginosa antibiotic resistance, virulence and type III secretion system. Microb Pathog 2015; 91:5-17. [PMID: 26596709 DOI: 10.1016/j.micpath.2015.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/24/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa is an important human pathogen which adapts to changing environment, such as temperature variations and entering host by regulating their gene expression. Here, we report that gene PA0011 in P. aeruginosa PAO1, which encodes a 2-OH-lauroytransferase participating in lipid A biosynthesis, is involved in carbapenem resistance and virulence in a temperature-regulated manner in PAO1. The expression of PA0011 was higher at an environment temperature (21 °C) than that at a body temperature (37 °C). The inactivation of PA0011 rendered increased antibiotic susceptibility and decreased virulence both in vivo and in vitro. The impaired integrity and the decreased stability of the outer membrane were the cause of the increased susceptibility of PAO1(Δ0011) to carbapenem and many other common antibiotics. The reduced endotoxic activity of lipopolysaccharide (LPS) contributed to the decreased virulence both at 21 °C and 37 °C in PAO1 (Δ0011). In addition, we have found that PA0011 repressed the expression of TTSS virulence factors both at transcriptional and translational levels, similar to the effect of O antigen of LPS but unlike any effect of its homologue reported in other bacteria. The effect of PA0011 on resistance to many antibiotics including carbapenem and virulence in P. aeruginosa makes it a target for novel antimicrobial therapies.
Collapse
Affiliation(s)
- Bobo Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Bo Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ying Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jing Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Lang Gao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Lin Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kangmin Duan
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China; Department of Oral Biology; Department of Medical Microbiology, University of Manitoba, 780 Bannatyne Ave., Winnipeg, MB, R3E 0W2, Canada.
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
4
|
Requirement of the lipopolysaccharide O-chain biosynthesis gene wxocB for type III secretion and virulence of Xanthomonas oryzae pv. Oryzicola. J Bacteriol 2013; 195:1959-69. [PMID: 23435979 DOI: 10.1128/jb.02299-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak of rice. A mutant disrupted in wxocB, predicted to encode an enzyme for lipopolysaccharide (LPS) synthesis, was previously shown to suffer reduced virulence. Here, we confirm a role for wxocB in virulence and demonstrate its requirement for LPS O-chain assembly. Structure analysis indicated that wild-type LPS contains a polyrhamnose O chain with irregular, variant residues and a core oligosaccharide identical to that of other Xanthomonas spp. and that the wxocB mutant lacks the O chain. The mutant also showed moderate impairment in exopolysaccharide (EPS) production, but comparison with an EPS-deficient mutant demonstrated that this impairment could not account entirely for the reduced virulence. The wxocB mutant was not detectably different from the wild type in its induction of pathogenesis-related rice genes, type II secretion competence, flagellar motility, or resistance to two phytoalexins or resveratrol, and it was more, not less, resistant to oxidative stress and a third phytoalexin, indicating that none of these properties is involved. The mutant was more sensitive to SDS and to novobiocin, so increased sensitivity to some host-derived antimicrobials cannot be ruled out. However, the mutant showed a marked decrease in type III secretion into plant cells. This was not associated with any change in expression of genes for type III secretion or the ability to attach to plant cells in suspension. Thus, virulence of the wxocB mutant is likely reduced due primarily to a direct, possibly structural, effect of the loss of the O chain on type III delivery of effector proteins.
Collapse
|
5
|
Reinés M, Llobet E, Dahlström KM, Pérez-Gutiérrez C, Llompart CM, Torrecabota N, Salminen TA, Bengoechea JA. Deciphering the acylation pattern of Yersinia enterocolitica lipid A. PLoS Pathog 2012; 8:e1002978. [PMID: 23133372 PMCID: PMC3486919 DOI: 10.1371/journal.ppat.1002978] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/05/2012] [Indexed: 12/20/2022] Open
Abstract
Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3′-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo2-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of the LPS receptor by a LpxR-dependent deacylated LPS. Lipopolysaccharide (LPS) is one of the major surface components of Gram-negative bacteria. The LPS contains a molecular pattern recognized by the innate immune system. Not surprisingly, the modification of the LPS pattern is a virulence strategy of several pathogens to evade the innate immune system. Yersinia enterocolitica causes food-borne infections in animals and humans (yersiniosis). Temperature regulates most, if not all, virulence factors of yersiniae including the structure of the LPS lipid A. At 21°C, lipid A is mainly hexa-acylated and may be modified with aminoarabinose or palmitate. In contrast, at 37°C, Y. enterocolitica expresses a unique tetra-acylated lipid A. In this work, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure expressed by the pathogen at 37°C, the host temperature. Our findings also revealed that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by a Yersinia protein translocated into the cytosol of macrophages and the reduced activation of the LPS receptor complex due to the expression of a LpxR-dependent deacylated LPS.
Collapse
Affiliation(s)
- Mar Reinés
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Llobet
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Käthe M. Dahlström
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Camino Pérez-Gutiérrez
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Catalina M. Llompart
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Nuria Torrecabota
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Tiina A. Salminen
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - José A. Bengoechea
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Liu J, Thanikkal EJ, Obi IR, Francis MS. Elevated CpxR~P levels repress the Ysc-Yop type III secretion system of Yersinia pseudotuberculosis. Res Microbiol 2012; 163:518-30. [PMID: 22842077 DOI: 10.1016/j.resmic.2012.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
One way that Gram-negative bacteria respond to extracytoplasmic stress is through the CpxA-CpxR system. An activated CpxA sensor kinase phosphorylates the CpxR response regulator to instigate positive auto-amplification of Cpx pathway activation, as well as synthesis of various bacterial survival factors. In the absence of CpxA, human enteropathogenic Yersinia pseudotuberculosis accumulates high CpxR~P levels aided by the action of low molecular weight phosphodonors such as acetyl~P. Critically, these bacteria are also defective for plasmid-encoded Ysc-Yop-dependent type III synthesis and secretion, an essential determinant of virulence. Herein, we investigated whether elevated CpxR~P levels account for lost Ysc-Yop function. Decisively, reducing CpxR∼P in Yersinia defective for CpxA phosphatase activity - through incorporating second-site suppressor mutations in ackA-pta or cpxR - dramatically restored Ysc-Yop T3S function. Moreover, the repressive effect of accumulated CpxR∼P is a direct consequence of binding to the promoter regions of the T3S genes. Thus, Cpx pathway activation has two consequences in Yersinia; one, to maintain quality control in the bacterial envelope, and the second, to restrict ysc-yop gene expression to those occasions where it will have maximal effect.
Collapse
Affiliation(s)
- Junfa Liu
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
7
|
Molecular basis of Yersinia enterocolitica temperature-dependent resistance to antimicrobial peptides. J Bacteriol 2012; 194:3173-88. [PMID: 22505678 DOI: 10.1128/jb.00308-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial peptides (APs) belong to the arsenal of weapons of the innate immune system against infections. In the case of gram-negative bacteria, APs interact with the anionic lipid A moiety of the lipopolysaccharide (LPS). In yersiniae most virulence factors are temperature regulated. Studies from our laboratory demonstrated that Yersinia enterocolitica is more susceptible to polymyxin B, a model AP, when grown at 37°C than at 22°C (J. A. Bengoechea, R. Díaz, and I. Moriyón, Infect. Immun. 64:4891-4899, 1996), and here we have extended this observation to other APs, not structurally related to polymyxin B. Mechanistically, we demonstrate that the lipid A modifications with aminoarabinose and palmitate are downregulated at 37°C and that they contribute to AP resistance together with the LPS O-polysaccharide. Bacterial loads of lipid A mutants in Peyer's patches, liver, and spleen of orogastrically infected mice were lower than those of the wild-type strain at 3 and 7 days postinfection. PhoPQ and PmrAB two-component systems govern the expression of the loci required to modify lipid A with aminoarabinose and palmitate, and their expressions are also temperature regulated. Our findings support the notion that the temperature-dependent regulation of loci controlling lipid A modifications could be explained by H-NS-dependent negative regulation alleviated by RovA. In turn, our data also demonstrate that PhoPQ and PmrAB regulate positively the expression of rovA, the effect of PhoPQ being more important. However, rovA expression reached wild-type levels in the phoPQ pmrAB mutant background, hence indicating the existence of an unknown regulatory network controlling rovA expression in this background.
Collapse
|
8
|
Skurnik M. Yersinia surface structures and bacteriophages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:293-301. [PMID: 22782776 DOI: 10.1007/978-1-4614-3561-7_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland.
| |
Collapse
|
9
|
Murray GL, Srikram A, Henry R, Hartskeerl RA, Sermswan RW, Adler B. Mutations affecting Leptospira interrogans lipopolysaccharide attenuate virulence. Mol Microbiol 2010; 78:701-9. [PMID: 20807198 DOI: 10.1111/j.1365-2958.2010.07360.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leptospira interrogans is the causative agent of leptospirosis. Lipopolysaccharide (LPS) is the major outer membrane component of L. interrogans. It is the dominant antigen recognized during infection and the basis for serological classification. The structure of LPS and its role in pathogenesis are unknown. We describe two defined mutants of L. interrogans serovar Manilae with transposon insertions in the LPS locus. Mutant M895 was disrupted in gene la1641 encoding a protein with no known homologues. M1352 was disrupted in a gene unique to serovar Manilae also encoding a protein of unknown function. M895 produced truncated LPS while M1352 showed little or no change in LPS molecular mass. Both mutants showed altered agglutination titres against rabbit antiserum and against a panel of LPS-specific monoclonal antibodies. The mutants were severely attenuated in virulence via the intraperitoneal route of infection, and were cleared from the host animal by 3 days after infection. M895 was also highly attenuated via the mucosal infection route. Resistance to complement in human serum was unaltered for both mutants. While complementation of mutants was not possible, the attenuation of two independently derived LPS mutants demonstrates for the first time that LPS plays an essential role leptospiral virulence.
Collapse
Affiliation(s)
- Gerald L Murray
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Yersinia enterocolitica is an important human pathogen. Y. enterocolitica must adapt to the host environment, and temperature is an important cue regulating the expression of most Yersinia virulence factors. Here, we report that Y. enterocolitica 8081 serotype O:8 synthesized tetra-acylated lipid A at 37 degrees C but that hexa-acylated lipid A predominated at 21 degrees C. By mass spectrometry and genetic methods, we have shown that the Y. enterocolitica msbB, htrB, and lpxP homologues encode the acyltransferases responsible for the addition of C(12), C(14) and C(16:1), respectively, to lipid A. The expression levels of the acyltransferases were temperature regulated. Levels of expression of msbB and lpxP were higher at 21 degrees C than at 37 degrees C, whereas the level of expression of htrB was higher at 37 degrees C. At 21 degrees C, an lpxP mutant was the strain most susceptible to polymyxin B, whereas at 37 degrees C, an htrB mutant was the most susceptible. We present evidence that the lipid A acylation status affects the expression of Yersinia virulence factors. Thus, expression of flhDC, the flagellar master regulatory operon, was downregulated in msbB and lpxP mutants, with a concomitant decrease in motility. Expression of the phospholipase yplA was also downregulated in both mutants. inv expression was downregulated in msbB and htrB mutants, and consistent with this finding, invasion of HeLa cells was diminished. However, the expression of rovA, the positive regulator of inv, was not affected in the mutants. The levels of pYV-encoded virulence factors Yops and YadA in the acyltransferase mutants were not affected. Finally, we show that only the htrB mutant was attenuated in vivo.
Collapse
|
11
|
Lamprokostopoulou A, Monteiro C, Rhen M, Römling U. Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Environ Microbiol 2009; 12:40-53. [PMID: 19691499 DOI: 10.1111/j.1462-2920.2009.02032.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cyclic di-GMP (c-di-GMP), a novel secondary signalling molecule present in most bacteria, controls transition between motility and sessility. In Salmonella enterica serovar Typhimurium (S. typhimurium) high c-di-GMP concentrations favour the expression of a biofilm state through expression of the master regulator CsgD. In this work, we investigate the effect of c-di-GMP signalling on virulence phenotypes of S. typhimurium. After saturation of the cell with c-di-GMP by overexpression of a di-guanylate cyclase, we studied invasion and induction of a pro-inflammatory cytokine in epithelial cells, basic phenotypes that are major determinants of S. typhimurium virulence. Elevated c-di-GMP had a profound effect on invasion into and IL-8 production by the gastrointestinal epithelial cell line HT-29. Invasion was mainly inhibited through CsgD and the extracellular matrix component cellulose, while inhibition of the pro-inflammatory response occurred through CsgD, which inhibited the secretion of monomeric flagellin. Our results suggest that transition between biofilm formation and virulence in S. typhimurium at the epithelial cell lining is mediated by c-di-GMP signalling through CsgD and cellulose expression.
Collapse
Affiliation(s)
- Agaristi Lamprokostopoulou
- Department of Microbiology, Tumor and Cell Biology, FE number 280, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
12
|
Baños RC, Pons JI, Madrid C, Juárez A. A global modulatory role for the Yersinia enterocolitica H-NS protein. Microbiology (Reading) 2008; 154:1281-1289. [DOI: 10.1099/mic.0.2007/015610-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rosa C. Baños
- Institut de Bioenginyeria de Catalunya, Parc Científic de Barcelona, Edifici Hèlix. c/ Josep Samitier 1-5, 08028 Barcelona, Spain
| | - José I. Pons
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain
| | - Cristina Madrid
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain
| | - Antonio Juárez
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain
- Institut de Bioenginyeria de Catalunya, Parc Científic de Barcelona, Edifici Hèlix. c/ Josep Samitier 1-5, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Unusual, virulence plasmid-dependent growth behavior of Yersinia enterocolitica in three-dimensional collagen gels. J Bacteriol 2008; 190:4111-20. [PMID: 18408033 DOI: 10.1128/jb.00156-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
As a first approach to establishing a three-dimensional culture infection model, we studied the growth behavior of the extracellular pathogen Yersinia enterocolitica in three-dimensional collagen gels (3D-CoG). Surprisingly, we observed that plasmidless Y. enterocolitica was motile in the 3D-CoG in contrast to its growth in traditional motility agar at 37 degrees C. Motility at 37 degrees C was abrogated in the presence of the virulence plasmid pYV or the exclusive expression of the pYV-located Yersinia adhesion gene yadA. YadA-producing yersiniae formed densely packed (dp) microcolonies, whereas pYVDelta yadA-carrying yersiniae formed loosely packed microcolonies at 37 degrees C in 3D-CoG. Furthermore, we demonstrated that the packing density of the microcolonies was dependent on the head domain of YadA. Moreover, dp microcolony formation did not depend on the capacity of YadA to bind to collagen fibers, as demonstrated by the use of yersiniae producing collagen nonbinding YadA. By using a yopE-gfp reporter, we demonstrated Ca(2+)-dependent expression of this pYV-localized virulence gene by yersiniae in 3D-CoG. In conclusion, this study revealed unique plasmid-dependent growth behavior of yersiniae in a three-dimensional matrix environment that resembles the behavior of yersiniae (e.g., formation of microcolonies) in infected mouse tissue. Thus, this 3D-CoG model may be a first step to a more complex level of in vitro infection models that mimic living tissue, enabling us to study the dynamics of pathogen-host cell interactions.
Collapse
|
14
|
Goebel EM, Wolfe DN, Elder K, Stibitz S, Harvill ET. O antigen protects Bordetella parapertussis from complement. Infect Immun 2008; 76:1774-80. [PMID: 18285500 PMCID: PMC2292887 DOI: 10.1128/iai.01629-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/08/2008] [Accepted: 02/05/2008] [Indexed: 12/13/2022] Open
Abstract
Bordetella pertussis, a causative agent of whooping cough, expresses BrkA, which confers serum resistance, but the closely related human pathogen that also causes whooping cough, Bordetella parapertussis, does not. Interestingly, B. parapertussis, but not B. pertussis, produces an O antigen, a factor shown in other models to confer serum resistance. Using a murine model of infection, we determined that O antigen contributes to the ability of B. parapertussis to colonize the respiratory tract during the first week of infection, but not thereafter. Interestingly, an O antigen-deficient strain of B. parapertussis was not defective in colonizing mice lacking the complement cascade. O antigen prevented both complement component C3 deposition on the surface and complement-mediated killing of B. parapertussis. In addition, O antigen was required for B. parapertussis to systemically spread in complement-sufficient mice, but not complement-deficient mice. These data indicate that O antigen enables B. parapertussis to efficiently colonize the lower respiratory tract by protecting against complement-mediated control and clearance.
Collapse
Affiliation(s)
- Elizabeth M Goebel
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
15
|
aro mutations in Salmonella enterica cause defects in cell wall and outer membrane integrity. J Bacteriol 2008; 190:3155-60. [PMID: 18310348 DOI: 10.1128/jb.00053-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we characterized aro mutants of Salmonella enterica serovars Enteritidis and Typhimurium, which are frequently used as live oral vaccines. We found that the aroA, aroD, and aroC mutants were sensitive to blood serum, albumen, EDTA, and ovotransferrin, and this defect could be complemented by an appropriate aro gene cloned in a plasmid. Subsequent microarray analysis of gene expression in the aroD mutant in serovar Typhimurium indicated that the reason for this sensitivity might be the upregulation of murA. To confirm this, we artificially overexpressed murA from a multicopy plasmid, and this overexpression caused sensitivity of the strain to albumen and EDTA but not to serum and ovotransferrin. We concluded that attenuation of aro mutants is caused not only by their inability to synthesize aromatic metabolites but also by their defect in cell wall and outer membrane functions associated with decreased resistance to components of innate immune response.
Collapse
|
16
|
Ho N, Kondakova AN, Knirel YA, Creuzenet C. The biosynthesis and biological role of 6-deoxyheptose in the lipopolysaccharide O-antigen of Yersinia pseudotuberculosis. Mol Microbiol 2008; 68:424-47. [DOI: 10.1111/j.1365-2958.2008.06163.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Fälker S, Schilling J, Schmidt MA, Heusipp G. Overproduction of DNA adenine methyltransferase alters motility, invasion, and the lipopolysaccharide O-antigen composition of Yersinia enterocolitica. Infect Immun 2007; 75:4990-7. [PMID: 17682042 PMCID: PMC2044514 DOI: 10.1128/iai.00457-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA adenine methyltransferase (Dam) not only regulates basic cellular functions but also interferes with the proper expression of virulence factors in various pathogens. We showed previously that for the human pathogen Yersinia enterocolitica, overproduction of Dam results in increased invasion of epithelial cells. Since invasion and motility are coordinately regulated in Y. enterocolitica, we analyzed the motility of a Dam-overproducing (Dam(OP)) strain and found it to be highly motile. In Dam(OP) strains, the operon encoding the master regulator of flagellum biosynthesis, flhDC, is upregulated. We show that the increased invasion is not due to enhanced expression of known and putative Y. enterocolitica invasion and adhesion factors, such as Inv, YadA, Ail, Myf fibrils, Pil, or Flp pili. However, overproduction of Dam no longer results in increased invasion for an inv mutant strain, indicating that Inv is necessary for increased invasion after overproduction of Dam. Since we show that overproduction of Dam results in an increased amount of rough lipopolysaccharide (LPS) molecules lacking O-antigen side chains, this implies that reduced steric hindrance by LPS might contribute to increased invasion by a Y. enterocolitica Dam(OP) strain. Our data add an important new aspect to the various virulence-associated phenotypes influenced by DNA methylation in Y. enterocolitica and indicate that Dam targets regulatory processes modulating the composition and function of the bacterial surface.
Collapse
Affiliation(s)
- Stefan Fälker
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | | | | | | |
Collapse
|
18
|
Carlsson KE, Liu J, Edqvist PJ, Francis MS. Influence of the Cpx extracytoplasmic-stress-responsive pathway on Yersinia sp.-eukaryotic cell contact. Infect Immun 2007; 75:4386-99. [PMID: 17620356 PMCID: PMC1951158 DOI: 10.1128/iai.01450-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The extracytoplasmic-stress-responsive CpxRA two-component signal transduction pathway allows bacteria to adapt to growth in extreme environments. It controls the production of periplasmic protein folding and degradation factors, which aids in the biogenesis of multicomponent virulence determinants that span the bacterial envelope. This is true of the Yersinia pseudotuberculosis Ysc-Yop type III secretion system. However, despite using a second-site suppressor mutation to restore Yop effector secretion by yersiniae defective in the CpxA sensor kinase, these bacteria poorly translocated Yops into target eukaryotic cells. Investigation of this phenotype herein revealed that the expression of genes which encode several surface-located adhesins is also influenced by the Cpx pathway. In particular, the expression and surface localization of invasin, an adhesin that engages beta1-integrins on the eukaryotic cell surface, are severely restricted by the removal of CpxA. This reduces bacterial association with eukaryotic cells, which could be suppressed by the ectopic production of CpxA, invasin, or RovA, a positive activator of inv expression. In turn, these infected eukaryotic cells then became susceptible to intoxication by translocated Yop effectors. In contrast, bacteria harboring an in-frame deletion of cpxR, which encodes the cognate response regulator, displayed an enhanced ability to interact with cell monolayers, as well as elevated inv and rovA transcription. This phenotype could be drastically suppressed by providing a wild-type copy of cpxR in trans. We propose a mechanism of inv regulation influenced by the direct negative effects of phosphorylated CpxR on inv and rovA transcription. In this fashion, sensing of extracytoplasmic stress by CpxAR contributes to productive Yersinia sp.-eukaryotic cell interactions.
Collapse
Affiliation(s)
- Katrin E Carlsson
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|