1
|
Xue F, Ragno M, Blackburn SA, Fasseas M, Maitra S, Liang M, Rai S, Mastroianni G, Tholozan F, Thompson R, Sellars L, Hall R, Saunter C, Weinkove D, Ezcurra M. New tools to monitor Pseudomonas aeruginosa infection and biofilms in vivo in C. elegans. Front Cell Infect Microbiol 2024; 14:1478881. [PMID: 39737329 PMCID: PMC11683784 DOI: 10.3389/fcimb.2024.1478881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/08/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Antimicrobial resistance is a growing health problem. Pseudomonas aeruginosa is a pathogen of major concern because of its multidrug resistance and global threat, especially in health-care settings. The pathogenesis and drug resistance of P. aeruginosa depends on its ability to form biofilms, making infections chronic and untreatable as the biofilm protects against antibiotics and host immunity. A major barrier to developing new antimicrobials is the lack of in vivo biofilm models. Standard microbiological testing is usually performed in vitro using planktonic bacteria, without representation of biofilms, reducing translatability. Here we develop tools to study both infection and biofilm formation by P. aeruginosa in vivo to accelerate development of strategies targeting infection and pathogenic biofilms. Methods Biofilms were quantified in vitro using Crystal Violet staining and fluorescence biofilm assays. For in vivo assays, C. elegans were infected with P. aeruginosa strains. Pathogenicity was quantified by measuring healthspan, survival and GFP fluorescence. Healthspan assays were performed using the WormGazerTM automated imaging technology. Results Using the nematode Caenorhabditis elegans and P. aeruginosa reporters combined with in vivo imaging we show that fluorescent P. aeruginosa reporters that form biofilms in vitro can be used to visualize tissue infection. Using automated tracking of C. elegans movement, we find that that the timing of this infection corresponds with a decline in health endpoints. In a mutant strain of P. aeruginosa lacking RhlR, a transcription factor that controls quorum sensing and biofilm formation, we find reduced capacity of P. aeruginosa to form biofilms, invade host tissues and negatively impact healthspan and survival. Discussion Our findings suggest that RhlR could be a new antimicrobial target to reduce P. aeruginosa biofilms and virulence in vivo and C. elegans could be used to more effectively screen for new drugs to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Feng Xue
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martina Ragno
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Michael Fasseas
- Magnitude Biosciences Limited, NETPark Plexus, Sedgefield, United Kingdom
| | - Sushmita Maitra
- Magnitude Biosciences Limited, NETPark Plexus, Sedgefield, United Kingdom
| | - Mingzhi Liang
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Subash Rai
- The NanoVision Centre, Queen Mary University of London, London, United Kingdom
| | - Giulia Mastroianni
- The NanoVision Centre, Queen Mary University of London, London, United Kingdom
| | | | - Rachel Thompson
- Perfectus Biomed Group, Sci-Tech Daresbury, Chesire, United Kingdom
| | - Laura Sellars
- Perfectus Biomed Group, Sci-Tech Daresbury, Chesire, United Kingdom
| | - Rebecca Hall
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Chris Saunter
- Magnitude Biosciences Limited, NETPark Plexus, Sedgefield, United Kingdom
| | - David Weinkove
- Magnitude Biosciences Limited, NETPark Plexus, Sedgefield, United Kingdom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
2
|
Miles J, Lozano GL, Rajendhran J, Stabb EV, Handelsman J, Broderick NA. Massively parallel mutant selection identifies genetic determinants of Pseudomonas aeruginosa colonization of Drosophila melanogaster. mSystems 2024; 9:e0131723. [PMID: 38380971 PMCID: PMC10949475 DOI: 10.1128/msystems.01317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing [Tn-Seq, also known as insertion sequencing (INSeq)] to identify genes in P. aeruginosa that contribute to fitness during the colonization of Drosophila melanogaster. Our results reveal a suite of critical factors, including those that contribute to polysaccharide production, DNA repair, metabolism, and respiration. Comparison of candidate genes with fitness determinants discovered in previous studies on P. aeruginosa identified several genes required for colonization and virulence determinants that are conserved across hosts and tissues. This analysis provides evidence for both the conservation of function of several genes across systems, as well as host-specific functions. These findings, which represent the first use of transposon sequencing of a gut pathogen in Drosophila, demonstrate the power of Tn-Seq in the fly model system and advance the existing knowledge of intestinal pathogenesis by D. melanogaster, revealing bacterial colonization determinants that contribute to a comprehensive portrait of P. aeruginosa lifestyles across habitats.IMPORTANCEDrosophila melanogaster is a powerful model for understanding host-pathogen interactions. Research with this system has yielded notable insights into mechanisms of host immunity and defense, many of which emerged from the analysis of bacterial mutants defective for well-characterized virulence factors. These foundational studies-and advances in high-throughput sequencing of transposon mutants-support unbiased screens of bacterial mutants in the fly. To investigate mechanisms of host-pathogen interplay and exploit the tractability of this model host, we used a high-throughput, genome-wide mutant analysis to find genes that enable the pathogen P. aeruginosa to colonize the fly. Our analysis reveals critical mediators of P. aeruginosa establishment in its host, some of which are required across fly and mouse systems. These findings demonstrate the utility of massively parallel mutant analysis and provide a platform for aligning the fly toolkit with comprehensive bacterial genomics.
Collapse
Affiliation(s)
- Jessica Miles
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Graduate Program in Microbiology, Yale University, New Haven, Connecticut, USA
| | - Gabriel L. Lozano
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Jeyaprakash Rajendhran
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jo Handelsman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
3
|
Porzio E, Andrenacci D, Manco G. Thermostable Lactonases Inhibit Pseudomonas aeruginosa Biofilm: Effect In Vitro and in Drosophila melanogaster Model of Chronic Infection. Int J Mol Sci 2023; 24:17028. [PMID: 38069351 PMCID: PMC10707464 DOI: 10.3390/ijms242317028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Pseudomonas aeruginosa is one of the six antimicrobial-resistant pathogens known as "ESKAPE" that represent a global threat to human health and are considered priority targets for the development of novel antimicrobials and alternative therapeutics. The virulence of P. aeruginosa is regulated by a four-chemicals communication system termed quorum sensing (QS), and one main class of QS signals is termed acylhomoserine lactones (acyl-HSLs), which includes 3-Oxo-dodecanoil homoserine lactone (3-Oxo-C12-HSL), which regulates the expression of genes implicated in virulence and biofilm formation. Lactonases, like Paraoxonase 2 (PON2) from humans and the phosphotriesterase-like lactonases (PLLs) from thermostable microorganisms, are able to hydrolyze acyl-HSLs. In this work, we explored in vitro and in an animal model the effect of some lactonases on the production of Pseudomonas virulence factors. This study presents a model of chronic infection in which bacteria were administered by feeding, and Drosophila adults were treated with enzymes and the antibiotic tobramycin, alone or in combination. In vitro, we observed significant effects of lactonases on biofilm formation as well as effects on bacterial motility and the expression of virulence factors. The treatment in vivo by feeding with the lactonase SacPox allowed us to significantly increase the biocidal effect of tobramycin in chronic infection.
Collapse
Affiliation(s)
- Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| | - Davide Andrenacci
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza” Unit of Bologna, 40136 Bologna, Italy
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
4
|
Miles J, Lozano GL, Rajendhran J, Stabb EV, Handelsman J, Broderick NA. Massively parallel mutant selection identifies genetic determinants of Pseudomonas aeruginosa colonization of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567573. [PMID: 38045230 PMCID: PMC10690197 DOI: 10.1101/2023.11.20.567573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing (Tn-Seq, also known as INSeq) to identify genes in P. aeruginosa that contribute to fitness during colonization of Drosophila melanogaster. Our results reveal a suite of critical factors, including those that contribute to polysaccharide production, DNA repair, metabolism, and respiration. Comparison of candidate genes with fitness determinants discovered in previous studies of P. aeruginosa identified several genes required for colonization and virulence determinants that are conserved across hosts and tissues. This analysis provides evidence for both the conservation of function of several genes across systems, as well as host-specific functions. These findings, which represent the first use of transposon sequencing of a gut pathogen in Drosophila, demonstrate the power of Tn-Seq in the fly model system and advance existing knowledge of intestinal pathogenesis by D. melanogaster, revealing bacterial colonization determinants that contribute to a comprehensive portrait of P. aeruginosa lifestyles across habitats.
Collapse
Affiliation(s)
- Jessica Miles
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Graduate Program in Microbiology, Yale University, New Haven, CT, USA
| | - Gabriel L. Lozano
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Current address: Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeyaprakash Rajendhran
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Current address: Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, TN, India
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Jo Handelsman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Current address: Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
5
|
Cross ST, Brehm AL, Dunham TJ, Rodgers CP, Keene AH, Borlee GI, Stenglein MD. Galbut Virus Infection Minimally Influences Drosophila melanogaster Fitness Traits in a Strain and Sex-Dependent Manner. Viruses 2023; 15:539. [PMID: 36851753 PMCID: PMC9965562 DOI: 10.3390/v15020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Galbut virus (family Partitiviridae) infects Drosophila melanogaster and can be transmitted vertically from infected mothers or infected fathers with near perfect efficiency. This form of super-Mendelian inheritance should drive infection to 100% prevalence, and indeed, galbut virus is ubiquitous in wild D. melanogaster populations. However, on average, only about 60% of individual flies are infected. One possible explanation for this is that a subset of flies are resistant to infection. Although galbut virus-infected flies appear healthy, infection may be sufficiently costly to drive selection for resistant hosts, thereby decreasing overall prevalence. To test this hypothesis, we quantified a variety of fitness-related traits in galbut virus-infected flies from two lines from the Drosophila Genetic Reference Panel (DGRP). Galbut virus-infected flies had no difference in average lifespan and total offspring production compared to their uninfected counterparts. Galbut virus-infected DGRP-517 flies pupated and eclosed faster than their uninfected counterparts. Some galbut virus-infected flies exhibited altered sensitivity to viral, bacterial, and fungal pathogens. The microbiome composition of flies was not measurably perturbed by galbut virus infection. Differences in phenotype attributable to galbut virus infection varied as a function of fly sex and DGRP strain, and differences attributable to infection status were dwarfed by larger differences attributable to strain and sex. Thus, galbut virus infection does produce measurable phenotypic changes, with changes being minor, offsetting, and possibly net-negative.
Collapse
Affiliation(s)
- Shaun T. Cross
- Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ali L. Brehm
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Tillie J. Dunham
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Case P. Rodgers
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alexandra H. Keene
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Grace I. Borlee
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark D. Stenglein
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Alverdy JC. "It Is Not Necessary to Kill Them in Order to Make Them Relatively Harmless": Molecular Diplomacy in the Pathogen-Host Interaction. Surg Infect (Larchmt) 2023; 24:1-3. [PMID: 36521176 PMCID: PMC9894596 DOI: 10.1089/sur.2022.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- John C. Alverdy
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Kim BO, Chung IY, Cho YH. Differential expression of the major catalase, KatA in the two wild type Pseudomonas aeruginosa strains, PAO1 and PA14. J Microbiol 2019; 57:704-710. [PMID: 31187416 DOI: 10.1007/s12275-019-9225-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022]
Abstract
KatA is the major catalase required for hydrogen peroxide (H2O2) resistance and acute virulence in Pseudomonas aeruginosa PA14, whose transcription is governed by its dual promoters (katAp1 and katAp2). Here, we observed that KatA was not required for acute virulence in another wild type P. aeruginosa strain, PAO1, but that PAO1 exhibited higher KatA expression than PA14 did. This was in a good agreement with the observation that PAO1 was more resistant than PA14 to H2O2 as well as to the antibiotic peptide, polymyxin B (PMB), supposed to involve reactive oxygen species (ROS) for its antibacterial activity. The higher KatA expression in PAO1 than in PA14 was attributed to both katAp1 and katAp2 transcripts, as assessed by S1 nuclease mapping. In addition, it was confirmed that the PMB resistance is attributed to both katAp1 and katAp2 in a complementary manner in PA14 and PAO1, by exploiting the promoter mutants for each -10 box (p1m, p2m, and p1p2m). These results provide an evidence that the two widely used P. aeruginosa strains display different virulence mechanisms associated with OxyR and Anr, which need to be further characterized for better understanding of the critical virulence pathways that may differ in various P. aeruginosa strains.
Collapse
Affiliation(s)
- Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
8
|
Muthuramalingam M, White JC, Murphy T, Ames JR, Bourne CR. The toxin from a ParDE toxin-antitoxin system found in Pseudomonas aeruginosa offers protection to cells challenged with anti-gyrase antibiotics. Mol Microbiol 2019; 111:441-454. [PMID: 30427086 PMCID: PMC6368863 DOI: 10.1111/mmi.14165] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Toxin-antitoxin systems are mediators of diverse activities in bacterial physiology. For the ParE-type toxins, their reported role of gyrase inhibition utilized during plasmid-segregation killing indicates they are toxic. However, their location throughout chromosomes leads to questions about function, including potential non-toxic outcomes. The current study has characterized a ParDE system from the opportunistic human pathogen Pseudomonas aeruginosa (Pa). We identified a protective function for this ParE toxin, PaParE, against effects of quinolone and other antibiotics. However, higher concentrations of PaParE are themselves toxic to cells, indicating the phenotypic outcome can vary based on its concentration. Our assays confirmed PaParE inhibition of gyrase-mediated supercoiling of DNA with an IC50 value in the low micromolar range, a species-specificity that resulted in more efficacious inhibition of Escherichia coli derived gyrase versus Pa gyrase, and overexpression in the absence of antitoxin yielded an expected filamentous morphology with multi-foci nucleic acid material. Additional data revealed that the PaParE toxin is monomeric and interacts with dimeric PaParD antitoxin with a KD in the lower picomolar range, yielding a heterotetramer. This work provides novel insights into chromosome-encoded ParE function, whereby its expression can impart partial protection to cultures from selected antibiotics.
Collapse
Affiliation(s)
- Meenakumari Muthuramalingam
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
- Present address:
Department of Pharmaceutical ChemistryUniversity of KansasLawrence66047 KSUSA
| | - John C. White
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Tamiko Murphy
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Jessica R. Ames
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Christina R. Bourne
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| |
Collapse
|
9
|
Wang JB, Lu HL, St. Leger RJ. The genetic basis for variation in resistance to infection in the Drosophila melanogaster genetic reference panel. PLoS Pathog 2017; 13:e1006260. [PMID: 28257468 PMCID: PMC5352145 DOI: 10.1371/journal.ppat.1006260] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/15/2017] [Accepted: 02/24/2017] [Indexed: 01/01/2023] Open
Abstract
Individuals vary extensively in the way they respond to disease but the genetic basis of this variation is not fully understood. We found substantial individual variation in resistance and tolerance to the fungal pathogen Metarhizium anisopliae Ma549 using the Drosophila melanogaster Genetic Reference Panel (DGRP). In addition, we found that host defense to Ma549 was correlated with defense to the bacterium Pseudomonas aeruginosa Pa14, and several previously published DGRP phenotypes including oxidative stress sensitivity, starvation stress resistance, hemolymph glucose levels, and sleep indices. We identified polymorphisms associated with differences between lines in both their mean survival times and microenvironmental plasticity, suggesting that lines differ in their ability to adapt to variable pathogen exposures. The majority of polymorphisms increasing resistance to Ma549 were sex biased, located in non-coding regions, had moderately large effect and were rare, suggesting that there is a general cost to defense. Nevertheless, host defense was not negatively correlated with overall longevity and fecundity. In contrast to Ma549, minor alleles were concentrated in the most Pa14-susceptible as well as the most Pa14-resistant lines. A pathway based analysis revealed a network of Pa14 and Ma549-resistance genes that are functionally connected through processes that encompass phagocytosis and engulfment, cell mobility, intermediary metabolism, protein phosphorylation, axon guidance, response to DNA damage, and drug metabolism. Functional testing with insertional mutagenesis lines indicates that 12/13 candidate genes tested influence susceptibility to Ma549. Many candidate genes have homologs identified in studies of human disease, suggesting that genes affecting variation in susceptibility are conserved across species.
Collapse
Affiliation(s)
- Jonathan B. Wang
- Department of Entomology, University of Maryland College Park, College Park, Maryland, United States of America
| | - Hsiao-Ling Lu
- Department of Entomology, University of Maryland College Park, College Park, Maryland, United States of America
| | - Raymond J. St. Leger
- Department of Entomology, University of Maryland College Park, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Romero A, Saraceni PR, Merino S, Figueras A, Tomás JM, Novoa B. The Animal Model Determines the Results of Aeromonas Virulence Factors. Front Microbiol 2016; 7:1574. [PMID: 27757107 PMCID: PMC5048442 DOI: 10.3389/fmicb.2016.01574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022] Open
Abstract
The selection of an experimental animal model is of great importance in the study of bacterial virulence factors. Here, a bath infection of zebrafish larvae is proposed as an alternative model to study the virulence factors of Aeromonas hydrophila. Intraperitoneal infections in mice and trout were compared with bath infections in zebrafish larvae using specific mutants. The great advantage of this model is that bath immersion mimics the natural route of infection, and injury to the tail also provides a natural portal of entry for the bacteria. The implication of T3SS in the virulence of A. hydrophila was analyzed using the AH-1::aopB mutant. This mutant was less virulent than the wild-type strain when inoculated into zebrafish larvae, as described in other vertebrates. However, the zebrafish model exhibited slight differences in mortality kinetics only observed using invertebrate models. Infections using the mutant AH-1ΔvapA lacking the gene coding for the surface S-layer suggested that this protein was not totally necessary to the bacteria once it was inside the host, but it contributed to the inflammatory response. Only when healthy zebrafish larvae were infected did the mutant produce less mortality than the wild-type. Variations between models were evidenced using the AH-1ΔrmlB, which lacks the O-antigen lipopolysaccharide (LPS), and the AH-1ΔwahD, which lacks the O-antigen LPS and part of the LPS outer-core. Both mutants showed decreased mortality in all of the animal models, but the differences between them were only observed in injured zebrafish larvae, suggesting that residues from the LPS outer core must be important for virulence. The greatest differences were observed using the AH-1ΔFlaB-J (lacking polar flagella and unable to swim) and the AH-1::motX (non-motile but producing flagella). They were as pathogenic as the wild-type strain when injected into mice and trout, but no mortalities were registered in zebrafish larvae. This study demonstrates that zebrafish larvae can be used as a host model to assess the virulence factors of A. hydrophila. This model revealed more differences in pathogenicity than the in vitro models and enabled the detection of slight variations in pathogenesis not observed using intraperitoneal injections of mice or fish.
Collapse
Affiliation(s)
- Alejandro Romero
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| | - Paolo R Saraceni
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| | - Susana Merino
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona Spain
| | - Antonio Figueras
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| | - Juan M Tomás
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona Spain
| | - Beatriz Novoa
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| |
Collapse
|
11
|
Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci Rep 2016; 6:30169. [PMID: 27503003 PMCID: PMC4977528 DOI: 10.1038/srep30169] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/08/2016] [Indexed: 01/28/2023] Open
Abstract
Bacteria have evolved multiple strategies for causing infections that include producing virulence factors, undertaking motility, developing biofilms, and invading host cells. N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) tightly regulates the expression of multiple virulence factors in the opportunistic pathogenic bacterium Pseudomonas aeruginosa. Thus, inhibiting QS could lead to health benefits. In this study, we demonstrate an anti-virulence activity of a cranberry extract rich in proanthocyanidins (cerPAC) against P. aeruginosa in the model host Drosophila melanogaster and show this is mediated by QS interference. cerPAC reduced the production of QS-regulated virulence determinants and protected D. melanogaster from fatal infection by P. aeruginosa PA14. Quantification of AHL production using liquid chromatography-mass spectrometry confirmed that cerPAC effectively reduced the level of AHLs produced by the bacteria. Furthermore, monitoring QS signaling gene expression revealed that AHL synthases LasI/RhlI and QS transcriptional regulators LasR/RhlR genes were inhibited and antagonized, respectively, by cerPAC. Molecular docking studies suggest that cranberry-derived proanthocyanidin binds to QS transcriptional regulators, mainly interacting with their ligand binding sites. These findings provide insights into the underlying mechanisms of action of a cerPAC to restrict the virulence of P. aeruginosa and can have implications in the development of alternative approaches to control infections.
Collapse
|
12
|
Moyano AJ, Tobares RA, Rizzi YS, Krapp AR, Mondotte JA, Bocco JL, Saleh MC, Carrillo N, Smania AM. A long-chain flavodoxin protects Pseudomonas aeruginosa from oxidative stress and host bacterial clearance. PLoS Genet 2014; 10:e1004163. [PMID: 24550745 PMCID: PMC3923664 DOI: 10.1371/journal.pgen.1004163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022] Open
Abstract
Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for flavodoxin from P. aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments. Coping with toxic reactive oxygen species (ROS) generated as by-products of aerobic metabolism is a major challenge for O2-thriving organisms, which deploy multilevel responses to prevent ROS-triggered damage, including membrane modifications, induction of antioxidant and repair systems and/or replacement of ROS-sensitive targets by resistant isofunctional versions, among others. The opportunistic pathogen Pseudomonas aeruginosa is frequently exposed to ROS in the environment as well as within the host, and we describe herein a new response by which this microorganism can deal with oxidative stress. This pathway depends on a previously uncharacterized gene that we named fldP (for flavodoxin from P. aeruginosa), which encodes a flavoprotein that belongs to the family of long-chain flavodoxins. FldP exhibited a protective role against ROS-dependent physiological and mutational damage, and contributed to the survival of P. aeruginosa during in vivo infection of flies as well as within mammalian macrophagic cells. Thus, fldP increases the adaptive repertoire of P. aeruginosa to face oxidative stress.
Collapse
Affiliation(s)
- Alejandro J. Moyano
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina A. Tobares
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina S. Rizzi
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana R. Krapp
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan A. Mondotte
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - José L. Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea M. Smania
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
13
|
Utility of insects for studying human pathogens and evaluating new antimicrobial agents. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:1-25. [PMID: 23604210 DOI: 10.1007/10_2013_194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Insect models, such as Galleria mellonella and Drosophila melanogaster have significant ethical, logistical, and economic advantages over mammalian models for the studies of infectious diseases. Using these models, various pathogenic microbes have been studied and many novel virulence genes have been identified. Notably, because insects are susceptible to a wide variety of human pathogens and have immune responses similar to those of mammals, they offer the opportunity to understand innate immune responses against human pathogens better. It is important to note that insect pathosystems have also offered a simple strategy to evaluate the efficacy and toxicity of many antimicrobial agents. Overall, insect models provide a rapid, inexpensive, and reliable way as complementary hosts to conventional vertebrate animal models to study pathogenesis and antimicrobial agents.
Collapse
|
14
|
Lutter EI, Purighalla S, Duong J, Storey DG. Lethality and cooperation of Pseudomonas aeruginosa quorum-sensing mutants in Drosophila melanogaster infection models. MICROBIOLOGY-SGM 2012; 158:2125-2132. [PMID: 22628480 DOI: 10.1099/mic.0.054999-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The virulence profiles of Pseudomonas aeruginosa quorum-sensing (QS) mutants were assessed in Drosophila melanogaster feeding and nicking infection models. Functional RhlIR and LasIR QS systems were required for killing in the fly feeding infection model but were not essential in the fly nicking infection model. Mixed infections between PAO1 and strains harbouring mutations in lasR, rhlI and lasI rhlI resulted in increased lethality in the fly feeding model compared with either isolate alone. These results suggested that the parental strain could cooperate with QS mutants in the Drosophila feeding infection model. Finally, the mixed infection between PAO1 and an rhlR mutant resulted in spiteful behaviour and reduced pathogenicity of the mixed culture.
Collapse
Affiliation(s)
- Erika I Lutter
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 4N1, Canada
| | - Swathi Purighalla
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 4N1, Canada
| | - Jessica Duong
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 4N1, Canada
| | - Douglas G Storey
- Microbiology and Infectious Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 4N1, Canada
| |
Collapse
|
15
|
Edwards S, Kjellerup BV. Exploring the applications of invertebrate host-pathogen models for in vivo biofilm infections. ACTA ACUST UNITED AC 2012; 65:205-14. [PMID: 22533965 DOI: 10.1111/j.1574-695x.2012.00975.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/13/2012] [Accepted: 04/15/2012] [Indexed: 12/26/2022]
Abstract
In the natural environment, microorganisms exist together in self-produced polymeric matrix biofilms. Often, several species, which can belong to both bacterial and fungal kingdoms, coexist and interact in ways which are not completely understood. Biofilm infections have become prevalent largely in medical settings because of the increasing use of indwelling medical devices such as catheters or prosthetics. These infections are resistant to common antimicrobial therapies because of the inherent nature of their structure. In terms of infectious biofilms, it is important to understand the microbe-microbe interactions and how the host immune system reacts in order to discover therapeutic targets. Currently, single infection immune response studies are thriving with the use of invertebrate models. This review highlights the advances in single microbial-host immune response as well as the promising aspects of polymicrobial biofilm study in five invertebrate models: Lemna minor (duckweed), Arabidopsis thaliana (thale cress), Dictyostelium discoideum (slime mold), Drosophila melanogaster (common fruit fly), and Caenorhabditis elegans (roundworm).
Collapse
Affiliation(s)
- Sarah Edwards
- Department of Biological Sciences, Goucher College, Baltimore, MD 21204, USA
| | | |
Collapse
|
16
|
Abstract
Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi) screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.
Collapse
Affiliation(s)
- Ethan Bier
- University of California, San Diego, La Jolla, CA 92039, USA.
| | | |
Collapse
|
17
|
Mulcahy H, Sibley CD, Surette MG, Lewenza S. Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog 2011; 7:e1002299. [PMID: 21998591 PMCID: PMC3188550 DOI: 10.1371/journal.ppat.1002299] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 08/18/2011] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo.
Collapse
Affiliation(s)
- Heidi Mulcahy
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Christopher D. Sibley
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Michael G. Surette
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shawn Lewenza
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
18
|
Sibley CD, Surette MG. The polymicrobial nature of airway infections in cystic fibrosis: Cangene Gold Medal Lecture. Can J Microbiol 2011; 57:69-77. [PMID: 21326348 DOI: 10.1139/w10-105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microbial communities characterize the airways of cystic fibrosis (CF) patients. Members of these diverse and dynamic communities can be thought of as pathogens, benign commensals, or synergens--organisms not considered pathogens in the traditional sense but with the capacity to alter the pathogenesis of the community through microbe-microbe or polymicrobe-host interactions. Very few bacterial pathogens have been implicated as clinically relevant in CF; however, the CF airway microbiome can be a reservoir of previously unrecognized but clinically relevant organisms. A combination of culture-dependent and culture-independent approaches provides a more comprehensive perspective of CF microbiology than either approach alone. Here we review these concepts, highlight the future challenges for CF microbiology, and discuss the implications for the management of CF airway infections. We suggest that the success of treatment interventions for chronic CF lung disease will rely on the context of the microbes within microbial communities. The microbiology of CF airways may serve as a model to investigate the emergent properties of other clinically relevant microbial communities in the human body.
Collapse
Affiliation(s)
- Christopher D Sibley
- Department of Microbiology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | | |
Collapse
|
19
|
Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS One 2010; 5:e12504. [PMID: 20856932 PMCID: PMC2938339 DOI: 10.1371/journal.pone.0012504] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/23/2010] [Indexed: 11/19/2022] Open
Abstract
Background The fruit fly, Drosophila melanogaster, is a well-established model organism for probing the molecular and cellular basis of physiological and immune system responses of adults or late stage larvae to bacterial challenge. However, very little is known about the consequences of bacterial infections that occur in earlier stages of development. We have infected mid-second instar larvae with strains of Pseudomonas fluorescens to determine how infection alters the ability of larvae to survive and complete development. Methodology/Principal Findings We mimicked natural routes of infection using a non-invasive feeding procedure to study the toxicity of the three sequenced P. fluorescens strains (Pf0-1, SBW25, and Pf-5) to Drosophila melanogaster. Larvae fed with the three strains of P. fluorescens showed distinct differences in developmental trajectory and survival. Treatment with SBW25 caused a subset of insects to die concomitant with a systemic melanization reaction at larval, pupal or adult stages. Larvae fed with Pf-5 died in a dose-dependent manner with adult survivors showing eye and wing morphological defects. In addition, larvae in the Pf-5 treatment groups showed a dose-dependent delay in the onset of metamorphosis relative to control-, Pf0-1-, and SBW25-treated larvae. A functional gacA gene is required for the toxic properties of wild-type Pf-5 bacteria. Conclusions/Significance These experiments are the first to demonstrate that ingestion of P. fluorescens bacteria by D. melanogaster larvae causes both lethal and non-lethal phenotypes, including delay in the onset of metamorphosis and morphological defects in surviving adult flies, which can be decoupled.
Collapse
|
20
|
Translocation of Pseudomonas aeruginosa from the intestinal tract is mediated by the binding of ExoS to an Na,K-ATPase regulator, FXYD3. Infect Immun 2010; 78:4511-22. [PMID: 20805335 DOI: 10.1128/iai.00428-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The intestinal tract is considered the most important reservoir of Pseudomonas aeruginosa in intensive care units (ICUs). Gut colonization by P. aeruginosa underlies the development of invasive infections such as gut-derived sepsis. Intestinal colonization by P. aeruginosa is associated with higher ICU mortality rates. The translocation of endogenous P. aeruginosa from the colonized intestinal tract is an important pathogenic phenomenon. Here we identify bacterial and host proteins associated with bacterial penetration through the intestinal epithelial barrier. We first show by comparative genomic hybridization analysis that the exoS gene, encoding the type III effector protein, ExoS, was specifically detected in a clinical isolate that showed higher virulence in silkworms following midgut injection. We further show using a silkworm oral infection model that exoS is required both for virulence and for bacterial translocation from the midgut to the hemolymph. Using a bacterial two-hybrid screen, we show that the mammalian factor FXYD3, which colocalizes with and regulates the function of Na,K-ATPase, directly binds ExoS. A pulldown assay revealed that ExoS binds to the transmembrane domain of FXYD3, which also interacts with Na,K-ATPase. Na,K-ATPase controls the structure and barrier function of tight junctions in epithelial cells. Collectively, our results suggest that ExoS facilitates P. aeruginosa penetration through the intestinal epithelial barrier by binding to FXYD3 and thereby impairing the defense function of tight junctions against bacterial penetration.
Collapse
|
21
|
Castonguay-Vanier J, Vial L, Tremblay J, Déziel E. Drosophila melanogaster as a model host for the Burkholderia cepacia complex. PLoS One 2010; 5:e11467. [PMID: 20635002 PMCID: PMC2902503 DOI: 10.1371/journal.pone.0011467] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/19/2010] [Indexed: 02/06/2023] Open
Abstract
Background Colonization with bacterial species from the Burkholderia cepacia complex (Bcc) is associated with fast health decline among individuals with cystic fibrosis. In order to investigate the virulence of the Bcc, several alternative infection models have been developed. To this end, the fruit fly is increasingly used as surrogate host, and its validity to enhance our understanding of host-pathogen relationships has been demonstrated with a variety of microorganisms. Moreover, its relevance as a suitable alternative to mammalian hosts has been confirmed with vertebrate organisms. Methodology/Principal Findings The aim of this study was to establish Drosophila melanogaster as a surrogate host for species from the Bcc. While the feeding method proved unsuccessful at killing the flies, the pricking technique did generate mortality within the populations. Results obtained with the fruit fly model are comparable with results obtained using mammalian infection models. Furthermore, validity of the Drosophila infection model was confirmed with B. cenocepacia K56-2 mutants known to be less virulent in murine hosts or in other alternative models. Competitive index (CI) analyses were also performed using the fruit fly as host. Results of CI experiments agree with those obtained with mammalian models. Conclusions/Significance We conclude that Drosophila is a useful alternative infection model for Bcc and that fly pricking assays and competition indices are two complementary methods for virulence testing. Moreover, CI results indicate that this method is more sensitive than mortality tests.
Collapse
Affiliation(s)
- Josée Castonguay-Vanier
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
| | - Ludovic Vial
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
| | - Julien Tremblay
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
| | - Eric Déziel
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
- * E-mail:
| |
Collapse
|
22
|
Ben-Ami R, Lamaris GA, Lewis RE, Kontoyiannis DP. Interstrain variability in the virulence ofAspergillus fumigatusandAspergillus terreusin aToll-deficientDrosophilafly model of invasive aspergillosis. Med Mycol 2010. [DOI: 10.3109/13693780903148346] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
O'Callaghan D, Vergunst A. Non-mammalian animal models to study infectious disease: worms or fly fishing? Curr Opin Microbiol 2010; 13:79-85. [PMID: 20045373 DOI: 10.1016/j.mib.2009.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
A major challenge in studying human infectious diseases is to understand in detail the molecular bases, including both pathogen and host-related factors, which contribute to disease development. Non-mammalian models have proven to be of great value for our understanding of disease and have shown conservation in fundamental virulence mechanisms for the infection of evolutionary divergent hosts. In this review we describe recent advances with three major non-mammalian models used for analysis of infectious disease in humans; the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the zebrafish Danio rerio.
Collapse
Affiliation(s)
- David O'Callaghan
- INSERM Espri 26, UFR Médecine, Université de Montpellier 1, EA4204, UFR Médecine, Nimes, France.
| | | |
Collapse
|
24
|
Martha B, Croisier D, Fanton A, Astruc K, Piroth L, Huet F, Chavanet P. Factors associated with mucoid transition of Pseudomonas aeruginosa in cystic fibrosis patients. Clin Microbiol Infect 2009; 16:617-23. [PMID: 20002106 DOI: 10.1111/j.1469-0691.2009.02786.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although the mucoid form of Pseudomonas aeruginosa (Pa) is largely responsible for the progression of lung disease in cystic fibrosis (CF), the relationship between factors relating daily-care regimes to mucoidy acquisition are as yet poorly investigated. Fifty-two CF patients registered at the CF centre of Dijon, France, were retrospectively evaluated from the date of Pa colonization either to the first positive sputum culture for mucoid Pa (n = 26) or to the last culture in which the Pa remained non-mucoid (n = 26). All clinical, pathological and therapeutic events were recorded. The association between the parameters collected and mucoid transition of Pa was assessed in a Cox model with time-dependant covariables. The mean follow-up was 4.7 + or - 4.3 years. Three independent parameters were associated with the higher risk of mucoid transition of Pa: persistence of Pa in sputum (OR 7.89; p <0.01), use of inhaled bronchodilators (OR 3.40; p = 0.04), and the use of inhaled colimycin (OR 4.04; p = 0.02). Isolation of Staphylococcus aureus, Haemophilus influenzae or Streptococcus pneumoniae in sputum was associated with a lower risk (OR 0.24; p < 0.01). Mucoid transition of Pa was associated with variables that reflected the severity of both lung disease and Pa colonization. Although they do not lead to prophylactic measures, these results corroborate the need to avoid Pa persistence.
Collapse
Affiliation(s)
- B Martha
- Service des Maladies Infectieuses, Centre Hospitalier Universitaire, Dijon, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Apidianakis Y, Rahme LG. Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 2009; 4:1285-94. [PMID: 19680242 DOI: 10.1038/nprot.2009.124] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conservation of host signaling pathways and tissue physiology between Drosophila melanogaster and mammals allows for the modeling of human host-pathogen interactions in Drosophila. Here we present the use of genetically tractable Drosophila models of bacterial pathogenesis to study infection with the human opportunistic pathogen Pseudomonas aeruginosa. We describe and compare two protocols commonly used to infect Drosophila with P. aeruginosa: needle-pricking and injector-pumping. Each model has relevance for examining host components and bacterial factors in host defense and virulence. Fly survival and bacterial proliferation within host flies can be assessed as a measure of host susceptibility and pathogen virulence potential. The profiles of host responses toward P. aeruginosa virulent and non-virulent strains can be determined, enabling the identification of interaction-specific genes that could potentially favor or limit the initiation and progression of infection. Both of the protocols presented herein may be adapted for the inoculation and study of other microbial pathogens. P. aeruginosa cell preparation requires 24 h, fly inoculation 1 h, and fly survival and bacterial proliferation 1-4 d.
Collapse
Affiliation(s)
- Yiorgos Apidianakis
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
26
|
Brannon MK, Davis JM, Mathias JR, Hall CJ, Emerson JC, Crosier PS, Huttenlocher A, Ramakrishnan L, Moskowitz SM. Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos. Cell Microbiol 2009; 11:755-68. [PMID: 19207728 DOI: 10.1111/j.1462-5822.2009.01288.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that can cause serious infection in those with deficient or impaired phagocytes. We have developed the optically transparent and genetically tractable zebrafish embryo as a model for systemic P. aeruginosa infection. Despite lacking adaptive immunity at this developmental stage, zebrafish embryos were highly resistant to P. aeruginosa infection, but as in humans, phagocyte depletion dramatically increased their susceptibility. The virulence of an attenuated P. aeruginosa strain lacking a functional Type III secretion system was restored upon phagocyte depletion, suggesting that this system influences virulence through its effects on phagocytes. Intravital imaging revealed bacterial interactions with multiple blood cell types. Neutrophils and macrophages rapidly phagocytosed and killed P. aeruginosa, suggesting that both cell types play a role in protection against infection. Intravascular aggregation of erythrocytes and other blood cells with resultant circulatory blockage was observed immediately upon infection, which may be relevant to the pathogenesis of thrombotic complications of human P. aeruginosa infections. The real-time visualization capabilities and genetic tractability of the zebrafish infection model should enable elucidation of molecular and cellular details of P. aeruginosa pathogenesis in conditions associated with neutropenia or impaired phagocyte function.
Collapse
Affiliation(s)
- Mark K Brannon
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Seabra R, Bhogal N. Hospital infections, animal models and alternatives. Eur J Clin Microbiol Infect Dis 2008; 28:561-8. [DOI: 10.1007/s10096-008-0680-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 11/28/2008] [Indexed: 01/05/2023]
|