1
|
Kaufmann H, Salvador C, Salazar VW, Cruz N, Dias GM, Tschoeke D, Campos L, Sawabe T, Miyazaki M, Maruyama F, Thompson F, Thompson C. Genomic Repertoire of Twenty-Two Novel Vibrionaceae Species Isolated from Marine Sediments. MICROBIAL ECOLOGY 2025; 88:36. [PMID: 40301151 PMCID: PMC12041005 DOI: 10.1007/s00248-025-02533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
The genomic repertoire of vibrios has been extensively studied, particularly regarding their metabolic plasticity, symbiotic interactions, and resistance mechanisms to environmental stressors. However, little is known about the genomic diversity and adaptations of vibrios inhabiting deep-sea marine sediments. In this study, we investigated the genomic diversity of vibrios isolated from deep-sea core sediments collected using a manned submersible off Japan. A total of 50 vibrio isolates were obtained and characterized phenotypically, and by genome sequencing. From this total, we disclosed 22 novel species examining genome-to-genome distance, average amino acid identity, and phenotypes (Alivibrio: 1; Enterovibrio: 1; Photobacterium: 8; Vibrio: 12). The novel species have fallen within known clades (e.g., Fisheri, Enterovibrio, Profundum, and Splendidus) and novel clades (JAMM0721, JAMM0388, JAMM0395). The 28 remainder isolates were identified as known species: Aliivibrio sifiae (2), A. salmonicida (1), Enterovibrio baiacu (1), E. norvegicus (1), Photobacterium profundum (3), P. angustum (1), P. chitiniliticum (1), P. frigidiphilum (1), Photobacterium indicum (1), P. sanguinicancri (1). P. swingsii (2), Vibrio alginolyticus (3), V. anguillarum (1), V. campbellii (1), V. fluvialis (1), V. gigantis (1), V. lentus (1), V. splendidus (4), and V. tasmaniensis (1). Genomic analyses revealed that all 50 vibrios harbored genes associated with high-pressure adaptation, including sensor kinases, chaperones, autoinducer-2 (AI-2) signaling, oxidative damage repair, polyunsaturated fatty acid biosynthesis, and stress response mechanisms related to periplasmic and outer membrane protein misfolding under heat shock and osmotic stress. Additionally, alternative sigma factors, trimethylamine oxide (TMAO) respiration, and osmoprotectant acquisition pathways were identified, further supporting their ability to thrive in deep-sea environments. Notably, the genomes exhibited a high prevalence of antibiotic resistance genes, with antibiotic efflux pumps being the most abundant group. The ugd gene expanded in number in some novel species (Photobacterium satsumensis sp. nov. JAMM1754: 4 copies; Vibrio makurazakiensis sp. nov. JAMM1826: 3 copies). This gene may confer antibiotic (polymyxin) resistance to these vibrios.
Collapse
Affiliation(s)
- Hannah Kaufmann
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Carolina Salvador
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Vinicius W Salazar
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
- Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Natália Cruz
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Graciela Maria Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
- Instituto Alberto Luiz Coimbra de Pós-Graduação E Pesquisa de Engenharia (COPPE), Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucia Campos
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Tomoo Sawabe
- Laboratory of Microbiology, Fisheries Sciences School, Hokkaido University, Hakodate, Japan
| | - Masayuki Miyazaki
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Yokosuka, Japan
- Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Fumito Maruyama
- Microbial Genomics and Ecology Laboratory, Hiroshima University, Hiroshima, Japan
| | - Fabiano Thompson
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil.
| | - Cristiane Thompson
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Mincer TJ, Bos RP, Zettler ER, Zhao S, Asbun AA, Orsi WD, Guzzetta VS, Amaral-Zettler LA. Sargasso Sea Vibrio bacteria: Underexplored potential pathovars in a perturbed habitat. WATER RESEARCH 2023; 242:120033. [PMID: 37244770 DOI: 10.1016/j.watres.2023.120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
We fully sequenced the genomes of 16 Vibrio cultivars isolated from eel larvae, plastic marine debris (PMD), the pelagic brown macroalga Sargassum, and seawater samples collected from the Caribbean and Sargasso Seas of the North Atlantic Ocean. Annotation and mapping of these 16 bacterial genome sequences to a PMD-derived Vibrio metagenome-assembled genome created for this study showcased vertebrate pathogen genes closely-related to cholera and non-cholera pathovars. Phenotype testing of cultivars confirmed rapid biofilm formation, hemolytic, and lipophospholytic activities, consistent with pathogenic potential. Our study illustrates that open ocean vibrios represent a heretofore undescribed group of microbes, some representing potential new species, possessing an amalgam of pathogenic and low nutrient acquisition genes, reflecting their pelagic habitat and the substrates and hosts they colonize.
Collapse
Affiliation(s)
- Tracy J Mincer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA; Department of Biology, Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA.
| | - Ryan P Bos
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Erik R Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands
| | - Shiye Zhao
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushimacho, Yokosuka 237-0061, Japan
| | - Alejandro A Asbun
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands
| | - William D Orsi
- Department of Earth and Environmental Sciences, Paleontology and Geobiology,Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | | | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
3
|
Wu Z, Wu Y, Gao H, He X, Yao Q, Yang Z, Zhou J, Ji L, Gao J, Jia X, Dou Y, Wang X, Shao P. Identification and whole-genome sequencing analysis of Vibrio vulnificus strains causing pearl gentian grouper disease in China. BMC Microbiol 2022; 22:200. [PMID: 35974308 PMCID: PMC9380395 DOI: 10.1186/s12866-022-02610-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Vibrio vulnificus is a pathogenic bacterium that causes disease in marine fish, affecting fish farming and human health worldwide. In May 2021, in the Bohai Bay region, a disease broke out in commercially farmed pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus), causing huge economic losses. The diseased fish had skin lesions, water accumulation in their abdomens, and showed tissue and organ damage. V. vulnificus biotype 2 has been reported in eels and other marine fish, but it is less reported in pearl gentian grouper. In this study, the pathogenic strain isolated from diseased fish was identified as V. vulnificus EPL 0201 biotype 2 on the basis of physiological and biochemical characteristics and the results of 16S rRNA gene and gyrB sequencing, virulence gene detection, and recursive infection experiments. To gain a comprehensive understanding of the pathogenicity and drug resistance of this strain, whole-genome sequencing was performed. Whole-genome analysis showed that the gene map of this strain was complete. The Virulence Factor Database annotation results showed that this strain had the key virulence factor genes vvhA and rtxA, which cause host disease. In addition, this strain had genes conferring resistance against cephalosporins, aminoglycosides, tetracyclines, and sulfonamides. Antimicrobial susceptibility testing confirmed the presence of these resistance genes identified in the genome. The results of this study show that V. vulnificus EPL 0201 biotype 2 is a multi-drug resistant strain with high pathogenicity.
Collapse
Affiliation(s)
- Zun Wu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Yating Wu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Haofeng Gao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xuexin He
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Qiang Yao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Zhanglei Yang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Jinyi Zhou
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Linting Ji
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Jinwei Gao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xuying Jia
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Yong Dou
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xiaoyu Wang
- Tianjin Fisheries Research Institute, 422 Jiefang Nan Road, He Xi District, Tianjin, 300221, People's Republic of China.
| | - Peng Shao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
4
|
Damas MSF, Ferreira RL, Campanini EB, Soares GG, Campos LC, Laprega PM, Soares da Costa A, Freire CCDM, Pitondo-Silva A, Cerdeira LT, da Cunha AF, Pranchevicius MCDS. Whole genome sequencing of the multidrug-resistant Chryseobacterium indologenes isolated from a patient in Brazil. Front Med (Lausanne) 2022; 9:931379. [PMID: 35966843 PMCID: PMC9366087 DOI: 10.3389/fmed.2022.931379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Chryseobacterium indologenes is a non-glucose-fermenting Gram-negative bacillus. This emerging multidrug resistant opportunistic nosocomial pathogen can cause severe infections in neonates and immunocompromised patients. This study aimed to present the first detailed draft genome sequence of a multidrug-resistant C. indologenes strain isolated from the cerebrospinal fluid of an infant hospitalized at the Neonatal Intensive Care Unit of Brazilian Tertiary Hospital. We first analyzed the susceptibility of C. indologenes strain to different antibiotics using the VITEK 2 system. The strain demonstrated an outstanding resistance to all the antibiotic classes tested, including β-lactams, aminoglycosides, glycylcycline, and polymyxin. Next, C. indologenes was whole-genome-sequenced, annotated using Prokka and Rapid Annotation using Subsystems Technology (RAST), and screened for orthologous groups (EggNOG), gene ontology (GO), resistance genes, virulence genes, and mobile genetic elements using different software tools. The draft genome contained one circular chromosome of 4,836,765 bp with 37.32% GC content. The genomic features of the chromosome present numerous genes related to cellular processes that are essential to bacteria. The MDR C. indologenes revealed the presence of genes that corresponded to the resistance phenotypes, including genes to β-lactamases (blaIND–13, blaCIA–3, blaTEM–116, blaOXA–209, blaVEB–15), quinolone (mcbG), tigecycline (tet(X6)), and genes encoding efflux pumps which confer resistance to aminoglycosides (RanA/RanB), and colistin (HlyD/TolC). Amino acid substitutions related to quinolone resistance were observed in GyrA (S83Y) and GyrB (L425I and K473R). A mutation that may play a role in the development of colistin resistance was detected in lpxA (G68D). Chryseobacterium indologenes isolate harbored 19 virulence factors, most of which were involved in infection pathways. We identified 13 Genomic Islands (GIs) and some elements associated with one integrative and conjugative element (ICEs). Other elements linked to mobile genetic elements (MGEs), such as insertion sequence (ISEIsp1), transposon (Tn5393), and integron (In31), were also present in the C. indologenes genome. Although plasmids were not detected, a ColRNAI replicon type and the most resistance genes detected in singletons were identified in unaligned scaffolds. We provided a wide range of information toward the understanding of the genomic diversity of C. indologenes, which can contribute to controlling the evolution and dissemination of this pathogen in healthcare settings.
Collapse
Affiliation(s)
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | - Pedro Mendes Laprega
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Andrea Soares da Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | - André Pitondo-Silva
- Programa de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | | | - Maria-Cristina da Silva Pranchevicius
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- Centro de Ciências Biológicas e da Saúde, Biodiversidade Tropical - BIOTROP, Universidade Federal de São Carlos, São Carlos, Brazil
- *Correspondence: Maria-Cristina da Silva Pranchevicius,
| |
Collapse
|
5
|
Zheng H, Huang Y, Liu P, Yan L, Zhou Y, Yang C, Wu Y, Qin J, Guo Y, Pei X, Guo Y, Cui Y, Liang W. Population genomics of the food-borne pathogen Vibrio fluvialis reveals lineage associated pathogenicity-related genetic elements. Microb Genom 2022; 8. [PMID: 35212619 PMCID: PMC8942032 DOI: 10.1099/mgen.0.000769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio fluvialis is a food-borne pathogen with epidemic potential that causes cholera-like acute gastroenteritis and sometimes extraintestinal infections in humans. However, research on its genetic diversity and pathogenicity-related genetic elements based on whole genome sequences is lacking. In this study, we collected and sequenced 130 strains of V. fluvialis from 14 provinces of China, and also determined the susceptibility of 35 of the strains to 30 different antibiotics. Combined with 52 publicly available V. fluvialis genomes, we inferred the population structure and investigated the characteristics of pathogenicity-related factors. The V. fluvialis strains exhibited high levels of homologous recombination and were assigned to two major populations, VflPop1 and VflPop2, according to the different compositions of their gene pools. VflPop2 was subdivided into groups 2.1 and 2.2. Except for VflPop2.2, which consisted only of Asian strains, the strains in VflPop1 and VflPop2.1 were distributed in the Americas, Asia and Europe. Analysis of the pathogenicity potential of V. fluvialis showed that most of the identified virulence-related genes or gene clusters showed high prevalence in V. fluvialis, except for three mobile genetic elements: pBD146, ICEVflInd1 and MGIVflInd1, which were scattered in only a few strains. A total of 21 antimicrobial resistance genes were identified in the genomes of the 182 strains analysed in this study, and 19 (90%) of them were exclusively present in VflPop2. Notably, the tetracycline resistance-related gene tet(35) was present in 150 (95%) of the strains in VflPop2, and in only one (4%) strain in VflPop1, indicating it was population-specific. In total, 91% of the 35 selected strains showed resistance to cefazolin, indicating V. fluvialis has a high resistance rate to cefazolin. Among the 15 genomes that carried the previously reported drug resistance-related plasmid pBD146, 11 (73%) showed resistance to trimethoprim-sulfamethoxazole, which we inferred was related to the presence of the dfr6 gene in the plasmid. On the basis of the population genomics analysis, the genetic diversity, population structure and distribution of pathogenicity-related factors of V. fluvialis were delineated in this study. The results will provide further clues regarding the evolution and pathogenic mechanisms of V. fluvialis, and improve our knowledge for the prevention and control of this pathogen.
Collapse
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yuanming Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ping Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lin Yan
- National Center for Food Safety Risk Assessment, Beijing 100022, PR China
| | - Yanyan Zhou
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiaoyan Pei
- National Center for Food Safety Risk Assessment, Beijing 100022, PR China
| | - Yunchang Guo
- National Center for Food Safety Risk Assessment, Beijing 100022, PR China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Weili Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| |
Collapse
|
6
|
Sharaf NG, Shahgholi M, Kim E, Lai JY, VanderVelde DG, Lee AT, Rees DC. Characterization of the ABC methionine transporter from Neisseria meningitidis reveals that lipidated MetQ is required for interaction. eLife 2021; 10:69742. [PMID: 34409939 PMCID: PMC8416018 DOI: 10.7554/elife.69742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023] Open
Abstract
NmMetQ is a substrate-binding protein (SBP) from Neisseria meningitidis that has been identified as a surface-exposed candidate antigen for meningococcal vaccines. However, this location for NmMetQ challenges the prevailing view that SBPs in Gram-negative bacteria are localized to the periplasmic space to promote interaction with their cognate ABC transporter embedded in the bacterial inner membrane. To elucidate the roles of NmMetQ, we characterized NmMetQ with and without its cognate ABC transporter (NmMetNI). Here, we show that NmMetQ is a lipoprotein (lipo-NmMetQ) that binds multiple methionine analogs and stimulates the ATPase activity of NmMetNI. Using single-particle electron cryo-microscopy, we determined the structures of NmMetNI in the presence and absence of lipo-NmMetQ. Based on our data, we propose that NmMetQ tethers to membranes via a lipid anchor and has dual function and localization, playing a role in NmMetNI-mediated transport at the inner membrane and moonlighting on the bacterial surface.
Collapse
Affiliation(s)
- Naima G Sharaf
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Mona Shahgholi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Esther Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Jeffrey Y Lai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - David G VanderVelde
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Allen T Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|
7
|
Renoz F, Foray V, Ambroise J, Baa-Puyoulet P, Bearzatto B, Mendez GL, Grigorescu AS, Mahillon J, Mardulyn P, Gala JL, Calevro F, Hance T. At the Gate of Mutualism: Identification of Genomic Traits Predisposing to Insect-Bacterial Symbiosis in Pathogenic Strains of the Aphid Symbiont Serratia symbiotica. Front Cell Infect Microbiol 2021; 11:660007. [PMID: 34268133 PMCID: PMC8275996 DOI: 10.3389/fcimb.2021.660007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Mutualistic associations between insects and heritable bacterial symbionts are ubiquitous in nature. The aphid symbiont Serratia symbiotica is a valuable candidate for studying the evolution of bacterial symbiosis in insects because it includes a wide diversity of strains that reflect the diverse relationships in which bacteria can be engaged with insects, from pathogenic interactions to obligate intracellular mutualism. The recent discovery of culturable strains, which are hypothesized to resemble the ancestors of intracellular strains, provide an opportunity to study the mechanisms underlying bacterial symbiosis in its early stages. In this study, we analyzed the genomes of three of these culturable strains that are pathogenic to aphid hosts, and performed comparative genomic analyses including mutualistic host-dependent strains. All three genomes are larger than those of the host-restricted S. symbiotica strains described so far, and show significant enrichment in pseudogenes and mobile elements, suggesting that these three pathogenic strains are in the early stages of the adaptation to their host. Compared to their intracellular mutualistic relatives, the three strains harbor a greater diversity of genes coding for virulence factors and metabolic pathways, suggesting that they are likely adapted to infect new hosts and are a potential source of metabolic innovation for insects. The presence in their genomes of secondary metabolism gene clusters associated with the production of antimicrobial compounds and phytotoxins supports the hypothesis that S. symbiotia symbionts evolved from plant-associated strains and that plants may serve as intermediate hosts. Mutualistic associations between insects and bacteria are the result of independent transitions to endosymbiosis initiated by the acquisition of environmental progenitors. In this context, the genomes of free-living S. symbiotica strains provide a rare opportunity to study the inventory of genes held by bacterial associates of insects that are at the gateway to a host-dependent lifestyle.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Vincent Foray
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
- Institut de Recherche sur la Biologie de l’insecte, UMR 7261, CNRS, Université de Tours, Tours, France
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | | | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Gipsi Lima Mendez
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Federica Calevro
- Univ Lyon, INSA-Lyon, INRAE, BF2i, UMR203, F-69621, Villeurbanne, France
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Zhang X, Sun J, Chen F, Qi H, Chen L, Sung YY, Huang Y, Lv A, Hu X. Phenotypic and genomic characterization of a Vibrio parahaemolyticus strain causing disease in Penaeus vannamei provides insights into its niche adaptation and pathogenic mechanism. Microb Genom 2021; 7. [PMID: 33952389 PMCID: PMC8209731 DOI: 10.1099/mgen.0.000549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The virulence of Vibrio parahaemolyticus is variable depending on its virulence determinants. A V. parahaemolyticus strain, in which the virulence is governed by the pirA and pirB genes, can cause acute hepatopancreatic necrosis disease (AHPND) in shrimps. Some V. parahaemolyticus that are non-AHPND strains also cause shrimp diseases and result in huge economic losses, while their pathogenicity and pathogenesis remain unclear. In this study, a non-AHPND V. parahaemolyticus, TJA114, was isolated from diseased Penaeus vannamei associated with a high mortality. To understand its virulence and adaptation to the external environment, whole-genome sequencing of this isolate was conducted, and its phenotypic profiles including pathogenicity, growth characteristics and nutritional requirements were investigated. Shrimps following artificial infection with this isolate presented similar clinical symptoms to the naturally diseased ones and generated obvious pathological lesions. The growth characteristics indicated that the isolate TJA114 could grow well under different salinity (10–55 p.p.t.), temperature (23–37 °C) and pH (6–10) conditions. Phenotype MicroArray results showed that this isolate could utilize a variety of carbon sources, amino acids and a range of substrates to help itself adapt to the high hyperosmotic and alkaline environments. Antimicrobial-susceptibility test showed that it was a multidrug-resistant bacterium. The whole-genomic analysis showed that this V. parahaemolyticus possessed many important functional genes associated with multidrug resistance, stress response, adhesions, haemolysis, putative secreted proteases, dedicated protein secretion systems and a variety of nutritional metabolic mechanisms. These annotated functional genes were confirmed by the phenotypic profiles. The results in this study indicated that this V. parahaemolyticus isolate possesses a high pathogenicity and strong environmental adaptability.
Collapse
Affiliation(s)
- Xue Zhang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Jingfeng Sun
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Feng Chen
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Hongli Qi
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Limei Chen
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Yadong Huang
- Tianjin Hengqian Aquaculture Co. Ltd, Tianjin 300270, PR China
| | - Aijun Lv
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Xiucai Hu
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| |
Collapse
|
9
|
Pang R, Li Y, Liao K, Guo P, Li Y, Yang X, Zhang S, Lei T, Wang J, Chen M, Wu S, Xue L, Wu Q. Genome- and Proteome-Wide Analysis of Lysine Acetylation in Vibrio vulnificus Vv180806 Reveals Its Regulatory Roles in Virulence and Antibiotic Resistance. Front Microbiol 2020; 11:591287. [PMID: 33250879 PMCID: PMC7674927 DOI: 10.3389/fmicb.2020.591287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Infection with Vibrio vulnificus is notorious for its atypical clinical manifestations and irreversible disease progression. Lysine acetylation is a conserved post-translational modification (PTM) that plays a critical regulatory role in diverse cellular processes. However, little is known about the role of lysine acetylation on the pathogenesis of V. vulnificus. Here, we report the complete genome sequence and a global profile for protein lysine acetylation of V. vulnificus Vv180806, a highly cefoxitin resistant strain isolated from a mortality case. The assembled genome comprised two circular chromosomes and one circular plasmid; it contained 4,770 protein-coding genes and 153 RNA genes. Phylogenetic analysis revealed genetic homology of this strain with other V. vulnificus strains from food sources. Of all the proteins in this strain, 1,924 (40.34%) were identified to be acetylated at 6,626 sites. The acetylated proteins were enriched in metabolic processes, binding functions, cytoplasm, and multiple central metabolic pathways. Moreover, the acetylation was found in most identified virulence factors of this strain, suggesting its potentially important role in bacterial virulence. Our work provides insights into the genomic and acetylomic features responsible for the virulence and antibiotic resistance of V. vulnificus, which will facilitate future investigations on the pathogenesis of this bacterium.
Collapse
Affiliation(s)
- Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Penghao Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanping Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Hernández-Cabanyero C, Amaro C. Phylogeny and life cycle of the zoonotic pathogen Vibrio vulnificus. Environ Microbiol 2020; 22:4133-4148. [PMID: 32567215 DOI: 10.1111/1462-2920.15137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
Abstract
Vibrio vulnificus is a zoonotic pathogen able to cause diseases in humans and fish that occasionally result in sepsis and death. Most reviews about this pathogen (including those related to its ecology) are clearly biased towards its role as a human pathogen, emphasizing its relationship with oysters as its main reservoir, the role of the known virulence factors as well as the clinic and the epidemiology of the human disease. This review tries to give to the reader a wider vision of the biology of this pathogen covering aspects related to its phylogeny and evolution and filling the gaps in our understanding of the general strategies that V. vulnificus uses to survive outside and inside its two main hosts, the human and the eel, and how its response to specific environmental parameters determines its survival, its death, or the triggering of an infectious process.
Collapse
Affiliation(s)
| | - Carmen Amaro
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, Valencia, 46100, Spain
| |
Collapse
|
11
|
Yuan L, Li L, Zheng F, Shi Y, Xie X, Chai A, Li B. The complete genome sequence of Rahnella aquatilis ZF7 reveals potential beneficial properties and stress tolerance capabilities. Arch Microbiol 2019; 202:483-499. [PMID: 31707426 DOI: 10.1007/s00203-019-01758-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 01/28/2023]
Abstract
Rahnella aquatilis ZF7 is a plant beneficial strain isolated from Sakura tree soil with potential for biocontrol. Here, we present the complete genome sequence of R. aquatilis ZF7, which consists of one 4.49 Mb circular chromosome and a 54-kb plasmid named pRAZF7. Phylogenetic analyses revealed that R. aquatilis ZF7 is much similar to the strains Rahnella sp. Y9602 and R. aquatilis HX2 than others evaluated. In this study, multiple genes encoding functions that likely contribute to plant growth promotion, biocontrol and stress tolerance were identified by comparative genome analyses, including IAA production, phosphate solubilization, antibiotic resistance and formation of Se nanoparticles (SeNPs). In addition, these functions were also confirmed by in vitro experiments. Considering its ability to form SeNPs, strain R. aquatilis ZF7 will contribute to nano-agriculture. Overall, the features of R. aquatilis ZF7 make it a high potential and competitive strain in biocontrol, and the genome data will help further studies on the mechanisms of plant growth promotion and biocontrol.
Collapse
Affiliation(s)
- Lifang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fei Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
12
|
|
13
|
Wang M, Gao H, Lin N, Zhang Y, Huang N, Walker ED, Ming D, Chen S, Hu S. The antibiotic resistance and pathogenicity of a multidrug-resistant Elizabethkingia anophelis isolate. Microbiologyopen 2019; 8:e804. [PMID: 30891912 PMCID: PMC6854844 DOI: 10.1002/mbo3.804] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
Elizabethkingia anophelis 12012‐2 PRCM was isolated from a patient with multiple organ dysfunction syndrome and lower respiratory tract infection in China. Minimum inhibitory concentration (MIC) analysis demonstrated that it was resistant to 20 antibiotics including trimethoprim/sulfamethoxazole and ciprofloxacin, which were effective for the elimination of other Elizabethkingia infections. To investigate multidrug resistance and pathogenicity mechanisms, we analyzed genome features of 12012‐2 PRCM and compared them to the other Elizabethkingia species. The draft genome size was 4.02 Mb with a GC content of 32%, comparable to that of other E. anophelis strains. Phylogenetic analysis showed that E. anophelis 12012‐2 PRCM formed a sister group with E. anophelis 502, distinct from clades formed by other clinical and environmental E. anophelis isolates. E. anophelis 12012‐2 PRCM contained multiple copies of β‐lactamase genes as well as genes predicted to function in antimicrobial efflux. It also contained 92 genes that were potentially involved in virulence, disease, and defense, and were associated with resistance and pathogenicity. Comparative genomic analysis showed high homology among three clinical and two environmental E. anophelis strains having a variety of similar antibiotic resistance and virulence factor genes, and similar genomic structure. Applications of this analysis will contribute to understanding the antibiotic resistance and pathogenic mechanisms of E. anophelis infections, which will assist in the management of infections as it increases in prevalence.
Collapse
Affiliation(s)
- Mingxi Wang
- Yun Leung Laboratory for Molecular Diagnostics, School of Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Hongzhi Gao
- Clinical Center for Molecular Diagnosis and Therapy, Fujian Medical University 2nd Affiliated Hospital, Quanzhou, Fujian, China
| | - Nanfei Lin
- Clinical Center for Molecular Diagnosis and Therapy, Fujian Medical University 2nd Affiliated Hospital, Quanzhou, Fujian, China
| | - Yaping Zhang
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University 2nd Affiliated Hospital, Quanzhou, Fujian, China
| | - Nan Huang
- Quanzhou Medical College, Quanzhou, Fujian, China
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Desong Ming
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian, China
| | - Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Zhang YJ, Lin H, Wang P, Chen C, Chen S. Subcellular localisation of lipoproteins of Vibrio vulnificus by the identification of outer membrane vesicles components. Antonie van Leeuwenhoek 2018; 111:1985-1997. [PMID: 29721710 DOI: 10.1007/s10482-018-1092-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022]
Abstract
Vibrio vulnificus, a Gram-negative halophilic bacterium, is an opportunistic human pathogen that is responsible for the majority of seafood-associated deaths worldwide. Lipoproteins are important components of the bacterial cell envelope and have been shown to be involved in a wide variety of cellular processes. Little is known about the localisation or transport mechanism of lipoproteins in V. vulnificus. To assess the localisation of lipoproteins in V. vulnificus, we tested two established techniques for the rapid separation of membrane-associated proteins: detergent extraction with Sarkosyl and outer membrane vesicles (OMVs) preparation. The results showed that Sarkosyl extraction was not useful for the separation of lipoproteins from the different membranes of V. vulnificus. On the other hand, we confirmed that OMVs produced by V. vulnificus contained lipoproteins from the outer but not the inner membrane. Analysis of the OMVs components confirmed the localisation of several well-known lipoproteins to membranes that were different from expected, based on their predicted functions. Using this technique, we found that Asp at position +2 of mature lipoproteins can function as an inner membrane retention signal in V. vulnificus. Interestingly, the Escherichia coli "+2 rule" does not apply to the V. vulnificus lipoprotein IlpA (G2D) mutant, as a Ser to Asp mutation at position +2 of IlpA did not affect its outer membrane localisation. Furthermore, an IlpA tether-mRFP chimeric lipoprotein and its G2D mutant also behaved like IlpA. Together, these results suggest that the sorting rule of lipoproteins in V. vulnificus might be different from that in E. coli.
Collapse
Affiliation(s)
- Yan-Jiao Zhang
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Shandong, 266109, China
| | - Huiyuan Lin
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Shandong, 266109, China
| | - Pan Wang
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Shandong, 266109, China
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Shiyong Chen
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Shandong, 266109, China.
- Shandong Engineering Research Center for Aquatic Animal Immune Preparation, Marine Science and Engineering College, Qingdao Agricultural University, Shandong, 266109, China.
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
15
|
Roig FJ, González-Candelas F, Sanjuán E, Fouz B, Feil EJ, Llorens C, Baker-Austin C, Oliver JD, Danin-Poleg Y, Gibas CJ, Kashi Y, Gulig PA, Morrison SS, Amaro C. Phylogeny of Vibrio vulnificus from the Analysis of the Core-Genome: Implications for Intra-Species Taxonomy. Front Microbiol 2018; 8:2613. [PMID: 29358930 PMCID: PMC5765525 DOI: 10.3389/fmicb.2017.02613] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus (Vv) is a multi-host pathogenic species currently subdivided into three biotypes (Bts). The three Bts are human-pathogens, but only Bt2 is also a fish-pathogen, an ability that is conferred by a transferable virulence-plasmid (pVvbt2). Here we present a phylogenomic analysis from the core genome of 80 Vv strains belonging to the three Bts recovered from a wide range of geographical and ecological sources. We have identified five well-supported phylogenetic groups or lineages (L). L1 comprises a mixture of clinical and environmental Bt1 strains, most of them involved in human clinical cases related to raw seafood ingestion. L2 is formed by a mixture of Bt1 and Bt2 strains from various sources, including diseased fish, and is related to the aquaculture industry. L3 is also linked to the aquaculture industry and includes Bt3 strains exclusively, mostly related to wound infections or secondary septicemia after farmed-fish handling. Lastly, L4 and L5 include a few strains of Bt1 associated with specific geographical areas. The phylogenetic trees for ChrI and II are not congruent to one another, which suggests that inter- and/or intra-chromosomal rearrangements have been produced along Vv evolution. Further, the phylogenetic trees for each chromosome and the virulence plasmid were also not congruent, which also suggests that pVvbt2 has been acquired independently by different clones, probably in fish farms. From all these clones, the one with zoonotic capabilities (Bt2-Serovar E) has successfully spread worldwide. Based on these results, we propose a new updated classification of the species based on phylogenetic lineages rather than on Bts, as well as the inclusion of all Bt2 strains in a pathovar with the particular ability to cause fish vibriosis, for which we suggest the name "piscis."
Collapse
Affiliation(s)
- Francisco J Roig
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain.,Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit on Infection and Public Health FISABIO-Salud Pública and Universitat de Valencia-I2SysBio, Valencia, Spain.,CIBEResp, National Network Center for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Valencia, Spain
| | - Eva Sanjuán
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Belén Fouz
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - James D Oliver
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States.,Duke University Marine Lab, Beaufort, NC, United States
| | - Yael Danin-Poleg
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Cynthia J Gibas
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Paul A Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Shatavia S Morrison
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Carmen Amaro
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
16
|
Role of Heat Shock Proteases in Quorum-Sensing-Mediated Regulation of Biofilm Formation by Vibrio Species. mBio 2018; 9:mBio.02086-17. [PMID: 29295912 PMCID: PMC5750401 DOI: 10.1128/mbio.02086-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Capsular polysaccharide (CPS) is essential for the dispersal of biofilms formed by the pathogenic bacterium Vibrio vulnificus. CPS production is induced by the quorum-sensing (QS) master regulator SmcR when biofilms mature. However, V. vulnificus biofilms formed under heat shock conditions did not exhibit the dispersion stage. Transcripts of the CPS gene cluster were at basal levels in the heat-exposed cell owing to reduced cellular levels of SmcR. At least two proteases induced by heat shock, ClpPA and Lon, were responsible for determining the instability of SmcR. In vitro and in vivo assays demonstrated that SmcR levels were regulated via proteolysis by these proteases, with preferential proteolysis of monomeric SmcR. Thus, CPS production was not induced by QS when bacteria were heat treated. Further studies performed with other Vibrio species demonstrated that high temperature deactivated the QS circuits by increased proteolysis of their QS master regulators, thus resulting in alterations to the QS-regulated phenotypes, including biofilm formation. The term "quorum-sensing mechanism" is used to describe diverse bacterial cell density-dependent activities that are achieved by sensing of the signaling molecules and subsequent signal transduction to the master regulators. These well-known bacterial regulatory systems regulate the expression of diverse virulence factors and the construction of biofilms in pathogenic bacteria. There have been numerous studies designed to control bacterial quorum sensing by using small molecules to antagonize the quorum-sensing regulatory components or to interfere with the signaling molecules. In the present study, we showed that the quorum-sensing regulatory circuits of pathogenic Vibrio species were deactivated by heat shock treatment via highly increased proteolysis of the master transcription factors. Our results showed a new mode of quorum deactivation which can be achieved under conditions of high but nonlethal temperature even if the ambient signaling molecules may reach the levels representing high cell density.
Collapse
|
17
|
Carkaci D, Højholt K, Nielsen XC, Dargis R, Rasmussen S, Skovgaard O, Fuursted K, Andersen PS, Stegger M, Christensen JJ. Genomic characterization, phylogenetic analysis, and identification of virulence factors in Aerococcus sanguinicola and Aerococcus urinae strains isolated from infection episodes. Microb Pathog 2017; 112:327-340. [PMID: 28943151 DOI: 10.1016/j.micpath.2017.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 11/18/2022]
Abstract
Aerococcus sanguinicola and Aerococcus urinae are emerging pathogens in clinical settings mostly being causative agents of urinary tract infections (UTIs), urogenic sepsis and more seldomly complicated infective endocarditis (IE). Limited knowledge exists concerning the pathogenicity of these two species. Eight clinical A. sanguinicola (isolated from 2009 to 2015) and 40 clinical A. urinae (isolated from 1984 to 2015) strains from episodes of UTIs, bacteremia, and IE were whole-genome sequenced (WGS) to analyze genomic diversity and characterization of virulence genes involved in the bacterial pathogenicity. A. sanguinicola genome sizes were 2.06-2.12 Mb with 47.4-47.6% GC-contents, and 1783-1905 genes were predicted whereof 1170 were core-genes. In case of A. urinae strains, the genome sizes were 1.93-2.44 Mb with 41.6-42.6% GC-contents, and 1708-2256 genes of which 907 were core-genes. Marked differences were observed within A. urinae strains with respect to the average genome sizes, number and sequence identity of core-genes, proteome conservations, phylogenetic analysis, and putative capsular polysaccharide (CPS) loci sequences. Strains of A. sanguinicola showed high degree of homology. Phylogenetic analyses showed the 40 A. urinae strains formed two clusters according to two time periods: 1984-2004 strains and 2010-2015 strains. Genes that were homologs to virulence genes associated with bacterial adhesion and antiphagocytosis were identified by aligning A. sanguinicola and A. urinae pan- and core-genes against Virulence Factors of Bacterial Pathogens (VFDB). Bacterial adherence associated gene homologs were present in genomes of A. sanguinicola (htpB, fbpA, lmb, and ilpA) and A. urinae (htpB, lap, lmb, fbp54, and ilpA). Fifteen and 11-16 CPS gene homologs were identified in genomes of A. sanguinicola and A. urinae strains, respectively. Analysis of these genes identified one type of putative CPS locus within all A. sanguinicola strains. In A. urinae genomes, five different CPS loci types were identified with variations in CPS locus sizes, genetic content, and structural organization. In conclusion, this is the first study dealing with WGS and comparative genomics of clinical A. sanguinicola and A. urinae strains from episodes of UTIs, bacteremia, and IE. Gene homologs associated with antiphagocytosis and bacterial adherence were identified and genetic variability was observed within A. urinae genomes. These findings contribute with important knowledge and basis for future molecular and experimental pathogenicity study of UTIs, bacteremia, and IE causing A. sanguinicola and A. urinae strains.
Collapse
Affiliation(s)
- Derya Carkaci
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark; Department of Science and Environment, Roskilde University, Roskilde, Denmark; Department of Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark.
| | - Katrine Højholt
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark; Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Rimtas Dargis
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark.
| | - Simon Rasmussen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Kurt Fuursted
- Department of Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark.
| | - Paal Skytt Andersen
- Department of Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark; Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Marc Stegger
- Department of Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark.
| | - Jens Jørgen Christensen
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Jang KK, Gil SY, Lim JG, Choi SH. Regulatory Characteristics of Vibrio vulnificus gbpA Gene Encoding a Mucin-binding Protein Essential for Pathogenesis. J Biol Chem 2016; 291:5774-5787. [PMID: 26755724 DOI: 10.1074/jbc.m115.685321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Binding to mucin is the initial step for enteropathogens to establish pathogenesis. An open reading frame, gbpA, of Vibrio vulnificus was identified and characterized in this study. Compared with wild type, the gbpA mutant was impaired in binding to mucin-agar and the mucin-secreting HT29-methotrexate cells, and the impaired mucin binding was restored by the purified GbpA provided exogenously. The gbpA mutant had attenuated virulence and ability of intestinal colonization in a mouse model, indicating that GbpA is a mucin-binding protein and essential for pathogenesis of V. vulnificus. The gbpA transcription was growth phase-dependent, reaching a maximum during the exponential phase. The Fe-S cluster regulator (IscR) and the cyclic AMP receptor protein (CRP) coactivated, whereas SmcR, a LuxR homologue, repressed gbpA. The cellular levels of IscR, CRP, and SmcR were not significantly affected by one another, indicating that the regulator proteins function cooperatively to regulate gbpA rather than sequentially in a regulatory cascade. The regulatory proteins directly bind upstream of the gbpA promoter PgbpA. DNase I protection assays, together with the deletion analyses of PgbpA, demonstrated that IscR binds to two specific sequences centered at -164.5 and -106, and CRP and SmcR bind specifically to the sequences centered at -68 and -45, respectively. Furthermore, gbpA was induced by exposure to H2O2, and the induction appeared to be mediated by elevated intracellular levels of IscR. Consequently, the combined results indicated that IscR, CRP, and SmcR cooperate for precise regulation of gbpA during the V. vulnificus pathogenesis.
Collapse
Affiliation(s)
- Kyung Ku Jang
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - So Yeon Gil
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Jong Gyu Lim
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Sang Ho Choi
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea.
| |
Collapse
|
19
|
Lee SJ, Jung YH, Song EJ, Jang KK, Choi SH, Han HJ. Vibrio vulnificus VvpE Stimulates IL-1β Production by the Hypomethylation of the IL-1β Promoter and NF-κB Activation via Lipid Raft–Dependent ANXA2 Recruitment and Reactive Oxygen Species Signaling in Intestinal Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2282-2293. [DOI: 10.4049/jimmunol.1500951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
An inflammatory response is a hallmark of necrosis evoked by bacterial pathogens. Vibrio vulnificus, VvpE, is an elastase that is responsible for tissue necrosis and inflammation; however, the molecular mechanism by which it regulates host cell death has not been characterized. In the present study, we investigate the cellular mechanism of VvpE with regard to host cell death and the inflammatory response of human intestinal epithelial (INT-407) cells. The recombinant protein (r)VvpE (50 pg/ml) caused cytotoxicity mainly via necrosis coupled with IL-1β production. The necrotic cell death induced by rVvpE is highly susceptible to the knockdown of annexin A (ANXA)2 and the sequestration of membrane cholesterol. We found that rVvpE induces the recruitment of NADPH oxidase 2 and neutrophil cytosolic factor 1 into membrane lipid rafts coupled with ANXA2 to facilitate the production of reactive oxygen species (ROS). The bacterial signaling of rVvpE through ROS production is uniquely mediated by the phosphorylation of redox-sensitive transcription factor NF-κB. The silencing of NF-κB inhibited IL-1β production during necrosis. rVvpE induced hypomethylation and region-specific transcriptional occupancy by NF-κB in the IL-1β promoter and has the ability to induce pyroptosis via NOD-, LRR-, and pyrin domain–containing 3 inflammasome. In a mouse model of V. vulnificus infection, the mutation of the vvpE gene from V. vulnificus negated the proinflammatory responses and maintained the physiological levels of the proliferation and migration of enterocytes. These results demonstrate that VvpE induces the hypomethylation of the IL-1β promoter and the transcriptional regulation of NF-κB through lipid raft–dependent ANXA2 recruitment and ROS signaling to promote IL-1β production in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sei-Jung Lee
- *Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea
- †Brain Korea 21 Program for Leading Universities and Students (BK21 PLUS) Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea; and
| | - Young Hyun Jung
- *Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea
- †Brain Korea 21 Program for Leading Universities and Students (BK21 PLUS) Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea; and
| | - Eun Ju Song
- *Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea
- †Brain Korea 21 Program for Leading Universities and Students (BK21 PLUS) Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea; and
| | - Kyung Ku Jang
- ‡Department of Agricultural Biotechnology, National Research Laboratory of Molecular Microbiology and Toxicology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Sang Ho Choi
- ‡Department of Agricultural Biotechnology, National Research Laboratory of Molecular Microbiology and Toxicology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Ho Jae Han
- *Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea
- †Brain Korea 21 Program for Leading Universities and Students (BK21 PLUS) Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea; and
| |
Collapse
|
20
|
Vibrio vulnificus VvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production in intestinal epithelial cells. Cell Death Dis 2015; 6:1655. [PMID: 25695598 PMCID: PMC4669806 DOI: 10.1038/cddis.2015.19] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 01/29/2023]
Abstract
The Gram-negative bacterium Vibrio vulnificus produces hemolysin (VvhA), which induces cytotoxicity in mammalian cells. However, our understanding of the cytotoxic mechanism and the modes of action of VvhA are still fragmentary and incomplete. The recombinant protein (r) VvhA (50 pg/ml) significantly induces necrotic cell death and apoptosis in human intestinal epithelial (INT-407) cells. The apoptotic cell death induced by rVvhA is highly susceptible to the sequestration of cholesterol by methyl-β-cyclodextrin, whereas for necrotic cell death, this shows a marginal effect. We found that rVvhA induces the aggregation of lipid raft components coupled with NADPH oxidase enzymes, in which rVvhA increased the interaction of NADPH oxidase 2 (NOX2, gp91phox) with a cytosolic protein NCF1 (p47phox) to facilitate the production of reactive oxygen species (ROS). rVvhA uniquely stimulated a conventional PKC isoform PKCα and induced the phosphorylation of both ERK and JNK, which are responsible for the activation of transcription factor NF-κB. rVvhA induced an NF-κB-dependent imbalance of the Bcl-2/Bax ratio, the release of mitochondrial cytochrome c, and caspase-3/-9 activation during its promotion of apoptotic cell death. In addition, rVvhA has the ability to inhibit the expression of cell cycle-related proteins, such as CDK2, CDK4, cyclin D1, and cyclin E. These results demonstrate that rVvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production by the distinct activation of PKCα and ERK/JNK in intestinal epithelial cells.
Collapse
|
21
|
Kovacs-Simon A, Leuzzi R, Kasendra M, Minton N, Titball RW, Michell SL. Lipoprotein CD0873 is a novel adhesin of Clostridium difficile. J Infect Dis 2014; 210:274-84. [PMID: 24482399 DOI: 10.1093/infdis/jiu070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is a cause of antibiotic-associated diarrhea and colitis, a healthcare-associated intestinal disease. Colonization of the gut is a critical step in the course of infection. The C. difficile lipoprotein CD0873 was identified as a putative adhesin through a bioinformatics approach. Surface exposure of CD0873 was confirmed and a CD0873 mutant was generated. The CD0873 mutant showed a significant reduction in adherence to Caco-2 cells and wild-type bacteria preincubated with anti-CD0873 antibodies showed significantly decreased adherence to Caco-2 cells. In addition, we demonstrated that purified recombinant CD0873 protein alone associates with Caco-2 cells. This is the first definitive identification of a C. difficile adhesin, which now allows work to devise improved measures for preventing and treating disease.
Collapse
Affiliation(s)
- Andrea Kovacs-Simon
- Biosciences, College of Life and Environmental Sciences, University of Exeter
| | - Rosanna Leuzzi
- Research Center, Novartis Vaccines and Diagnostics, Siena, Italy
| | | | - Nigel Minton
- Clostridia Research Group, School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, United Kingdom
| | - Richard W Titball
- Biosciences, College of Life and Environmental Sciences, University of Exeter
| | - Stephen L Michell
- Biosciences, College of Life and Environmental Sciences, University of Exeter
| |
Collapse
|
22
|
Lee NY, Lee HY, Lee KH, Han SH, Park SJ. Vibrio vulnificus IlpA induces MAPK-mediated cytokine production via TLR1/2 activation in THP-1 cells, a human monocytic cell line. Mol Immunol 2011; 49:143-54. [PMID: 21903273 DOI: 10.1016/j.molimm.2011.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/01/2011] [Accepted: 08/06/2011] [Indexed: 01/28/2023]
Abstract
Vibrio vulnificus is a pathogenic bacterium causing primary septicemia, which is followed by a classical septic shock pathway including an overwhelming inflammatory cytokine response. V. vulnificus IlpA is a potent immunogenic lipoprotein that triggers cytokine production in human monocytes by activating the toll-like receptor 2 (TLR2). In this study, we further defined the IlpA signaling pathways involved in cytokine production in the human monocytic cell line, THP-1. TLR2 was involved in cytokine production by complexing with TLR1, but not with TLR6. MyD88 was necessary for IlpA-induced cytokine expression through TLR1/TLR2. Three mitogen activated protein kinases (MAPK), p38, ERK1/2, and JNK, were activated in THP-1 cells stimulated with recombinant IlpA (rIlpA). Selective inhibition of each MAPK resulted in significant decrease of rIlpA-induced cytokine production. Especially, functional TLR2 was necessary for IlpA-induced activation of p38 and JNK. IlpA augmented the DNA-binding activity of nuclear factor-kappaB (NF-κB) and activator protein-1 (AP-1) transcriptional factors to their recognition sites in THP-1 cells. These results suggest that serial activation of TLR1/TLR2, MyD88, the three MAPKs, and NF-κB/AP-1 comprises the signaling pathway responsible for proinflammatory cytokine production by V. vulnificus IlpA.
Collapse
Affiliation(s)
- Na Yeon Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | | | | | | | | |
Collapse
|