1
|
Meuskens I, Kristiansen PE, Bardiaux B, Koynarev VR, Hatlem D, Prydz K, Lund R, Izadi-Pruneyre N, Linke D. A poly-proline II helix in YadA from Yersinia enterocolitica serotype O:9 facilitates heparin binding through electrostatic interactions. FEBS J 2024; 291:761-777. [PMID: 37953437 DOI: 10.1111/febs.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Poly-proline II helices are secondary structure motifs frequently found in ligand-binding sites. They exhibit increased flexibility and solvent exposure compared to the strongly hydrogen-bonded α-helices or β-strands and can therefore easily be misinterpreted as completely unstructured regions with an extremely high rotational freedom. Here, we show that the adhesin YadA of Yersinia enterocolitica serotype O:9 contains a poly-proline II helix interaction motif in the N-terminal region. The motif is involved in the interaction of YadAO:9 with heparin, a host glycosaminoglycan. We show that the basic residues within the N-terminal motif of YadA are required for electrostatic interactions with the sulfate groups of heparin. Biophysical methods including CD spectroscopy, solution-state NMR and SAXS all independently support the presence of a poly-proline helix allowing YadAO:9 binding to the rigid heparin. Lastly, we show that host cells deficient in sulfation of heparin and heparan sulfate are not targeted by YadAO:9 -mediated adhesion. We speculate that the YadAO:9 -heparin interaction plays an important and highly strain-specific role in the pathogenicity of Yersinia enterocolitica serotype O:9.
Collapse
Affiliation(s)
- Ina Meuskens
- Department of Biosciences, University of Oslo, Norway
| | | | - Benjamin Bardiaux
- Structural Bioinformatics Unit, CNRS UMR3528, Institut Pasteur, Université de Paris-Cité, France
| | | | - Daniel Hatlem
- Department of Biosciences, University of Oslo, Norway
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Norway
| | - Nadia Izadi-Pruneyre
- Bacterial Transmembrane Systems Unit, CNRS UMR3528, Institut Pasteur, Université de Paris-Cité, France
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
2
|
Tang-Siegel GG, Danforth DR, Tristano J, Ruiz T, Mintz KP. The serotype a-EmaA adhesin of Aggregatibacter actinomycetemcomitans does not require O-PS synthesis for collagen binding activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35551696 DOI: 10.1099/mic.0.001191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aggregatibacter actinomycetemcomitans, a causative agent of periodontitis and non-oral diseases, synthesizes a trimeric extracellular matrix protein adhesin A (EmaA) that mediates collagen binding and biofilm formation. EmaA is found as two molecular forms, which correlate with the serotype of the bacterium. The canonical protein (b-EmaA), associated with serotypes b and c, has a monomeric molecular mass of 202 kDa. The collagen binding activity of b-EmaA is dependent on the presence of O-polysaccharide (O-PS), whereas biofilm activity is independent of O-PS synthesis. The EmaA associated with serotype a strains (a-EmaA) has a monomeric molecular mass of 173 kDa and differs in the amino acid sequence of the functional domain of the protein. In this study, a-emaA was confirmed to encode a protein that forms antenna-like appendages on the surface of the bacterium, which were found to be important for both collagen binding and biofilm formation. In an O-PS-deficient talose biosynthetic (tld) mutant strain, the electrophoretic mobility of the a-EmaA monomers was altered and the amount of membrane-associated EmaA was decreased when compared to the parent strain. The mass of biofilm formed remained unchanged. Interestingly, the collagen binding activity of the mutant strain was similar to the activity associated with the parent strain, which differs from that observed with the canonical b-EmaA isoform. These data suggest that the properties of the a-EmaA isoform are like those of b-EmaA, with the exception that collagen binding activity is independent of the presence or absence of the O-PS.
Collapse
Affiliation(s)
- Gaoyan G Tang-Siegel
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - David R Danforth
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Jake Tristano
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Teresa Ruiz
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Keith P Mintz
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
3
|
A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice. BIOLOGY 2022; 11:biology11020297. [PMID: 35205164 PMCID: PMC8869254 DOI: 10.3390/biology11020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of bacterial infection. This study used different mouse infection models (immunocompetent, lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings derived from mouse infections, and we demonstrated how crucial the exact knowledge about parameters influencing the population dynamics is. Still, we think that computational models will be of great value in the future; however, to foster the development of more complex models, we propose the broad implementation of the interdisciplinary training of mathematicians and biologists. Abstract The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001.
Collapse
|
4
|
Meuskens I, Leva-Bueno J, Millner P, Schütz M, Peyman SA, Linke D. The Trimeric Autotransporter Adhesin YadA of Yersinia enterocolitica Serotype O:9 Binds Glycan Moieties. Front Microbiol 2022; 12:738818. [PMID: 35178035 PMCID: PMC8844515 DOI: 10.3389/fmicb.2021.738818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Yersinia adhesin A (YadA) is a key virulence factor of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA is a trimeric autotransporter adhesin, a class of adhesins that have been shown to enable many Gram-negative pathogens to adhere to/interact with the host extracellular matrix proteins such as collagen, vitronectin, and fibronectin. Here, we show for the first time that YadA of Yersinia enterocolitica serotype O:9 not only interacts with proteinaceous surface molecules but can also attach directly to glycan moieties. We show that YadA from Y. enterocolitica serotype O:9 does not interact with the vitronectin protein itself but exclusively with its N-linked glycans. We also show that YadA can target other glycan moieties as found in heparin, for example. So far, little is known about specific interactions between bacterial autotransporter adhesins and glycans. This could potentially lead to new antimicrobial treatment strategies, as well as diagnostic applications.
Collapse
Affiliation(s)
- Ina Meuskens
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Juan Leva-Bueno
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul Millner
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Monika Schütz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Sally A. Peyman
- Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Li D, Wang X, Xu X, Gu J, Yang Y, Liu T, Wang S, Chen S, Li J. Duck Complement Factor H Binds to Outer Membrane Protein Omp24 of Riemerella anatipestifer. Avian Dis 2021; 65:261-268. [PMID: 34412457 DOI: 10.1637/0005-2086-65.2.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/29/2021] [Indexed: 11/05/2022]
Abstract
The resistance to serum complement-mediated killing is a vital virulence property of microbial pathogens. Complement factor H (FH) is a key negative regulator of the complement alternative pathway (AP) that prevents formation and accelerates the decay of AP C3 convertase and acts as a cofactor in the inactivation of C3b. Pathogens can recruit host FH through their surface proteins to escape the clearance of the complement system. Riemerella anatipestifer could also evade the complement system attack to achieve host infection, but the mechanism is still unclear. In this study, the R. anatipestifer proteins that could interact with FH in host serum were screened and analyzed, and the functions were determined. Affinity chromatography with a Ni-nitrilotriacetic acid Sefinose column and mass spectrometry identified three outer membrane proteins (Omp) of R. anatipestifer, Omp54, Omp53, and Omp24, as potential FH-binding proteins. We then successfully conducted the prokaryotic expression and polyclonal antibody preparation of three candidate proteins. Indirect immunofluorescence assay showed that three candidate proteins were all present in R. anatipestifer. The affinity blotting assay, anti-serum-inhibiting assay, and serum bactericidal assay presented evidence that Omp24 could bind FH. Moreover, FH bound to Omp24 was associated with resistance to the alternative pathway and functional for R. anatipestifer survival in the normal duck serum. These results suggested that R. anatipestifer Omp24 was a FH-binding protein and the interaction with FH blocked the alternative pathway. Recruitment of complement regulatory proteins may facilitate better R. anatipestifer resistance to this vital line of host defense.
Collapse
Affiliation(s)
- Delong Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, People's Republic of China
| | - Xiangli Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Xingsheng Xu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Jiulong Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Yunchuan Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Ting Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Siyuan Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Sihuai Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, People's Republic of China
| | - Jixiang Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China, .,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, People's Republic of China
| |
Collapse
|
6
|
Rahbar MR, Zarei M, Jahangiri A, Khalili S, Nezafat N, Negahdaripour M, Fattahian Y, Savardashtaki A, Ghasemi Y. Non-adaptive Evolution of Trimeric Autotransporters in Brucellaceae. Front Microbiol 2020; 11:560667. [PMID: 33281759 PMCID: PMC7688925 DOI: 10.3389/fmicb.2020.560667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Brucella species are Gram-negative, facultative intracellular pathogens. They are the main cause of brucellosis, which has led to a global health burden. Adherence of the pathogen to the host cells is the first step in the infection process. The bacteria can adhere to various biotic and abiotic surfaces using their outer membrane proteins. Trimeric autotransporter adhesins (TAAs) are modular homotrimers of various length and domain complexity. They are a diverse, and widespread gene family constituting the type Vc secretion pathway. These adhesins have been established as virulence factors in Brucellaceae. To date, no comprehensive and exhaustive study has been performed on the trimeric autotransporter family in the genus. In the present study, various bioinformatics tools were used to provide a novel evolutionary insight into the sequence and structure of this protein family in Brucellaceae. To this end, a dataset of all trimeric autotransporters from the Brucella genomes was built. Analyses included but were not limited to sequence alignment, phylogenetic tree constructions, codon-based test for selection, clustering of the sequences, and structure (primary to quaternary) predictions. Batch analyzes of the dataset suggested the existence of a few structural domains within the whole population. BatA from the B. abortus 2308 genome was selected as a reference to describe the features of these structural domains. Furthermore, we examined the structural basis for the observed rigidity and resiliency of the protein structure through a molecular dynamics evaluation, which led us to deduce that the random drift results in the non-adaptive evolution of the trimeric autotransporter genes in the Brucella genus. Notably, the modifications have occurred across the genus without interference of gene transmission.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaser Fattahian
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Thibau A, Dichter AA, Vaca DJ, Linke D, Goldman A, Kempf VAJ. Immunogenicity of trimeric autotransporter adhesins and their potential as vaccine targets. Med Microbiol Immunol 2020; 209:243-263. [PMID: 31788746 PMCID: PMC7247748 DOI: 10.1007/s00430-019-00649-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
The current problem of increasing antibiotic resistance and the resurgence of numerous infections indicate the need for novel vaccination strategies more than ever. In vaccine development, the search for and the selection of adequate vaccine antigens is the first important step. In recent years, bacterial outer membrane proteins have become of major interest, as they are the main proteins interacting with the extracellular environment. Trimeric autotransporter adhesins (TAAs) are important virulence factors in many Gram-negative bacteria, are localised on the bacterial surface, and mediate the first adherence to host cells in the course of infection. One example is the Neisseria adhesin A (NadA), which is currently used as a subunit in a licensed vaccine against Neisseria meningitidis. Other TAAs that seem promising vaccine candidates are the Acinetobacter trimeric autotransporter (Ata), the Haemophilus influenzae adhesin (Hia), and TAAs of the genus Bartonella. Here, we review the suitability of various TAAs as vaccine candidates.
Collapse
Affiliation(s)
- Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Alexander A. Dichter
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, UK
- Molecular and Integrative Biosciences Program, University of Helsinki, Helsinki, Finland
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Leibiger K, Schweers JM, Schütz M. Biogenesis and function of the autotransporter adhesins YadA, intimin and invasin. Int J Med Microbiol 2019; 309:331-337. [PMID: 31176600 DOI: 10.1016/j.ijmm.2019.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 01/15/2023] Open
Abstract
Bacteria often express numerous virulence factors. These virulence factors make them successful pathogens, by e.g. mediating attachment to host cells and thereby facilitating persistence or invasion, or by contributing to the evasion of the host immune system to allow proliferation and spread within the host and in the environment. The site of first contact of Gram negative bacteria with the host is the bacterial outer membrane (OM). Consisting of an asymmetrical lipid bilayer with phospholipids forming the inner, and lipopolysaccharides forming the outer leaflet, the OM harbors numerous integral membrane proteins that are almost exclusively β-barrel proteins. One distinct family of OM β-barrel proteins strongly linked to bacterial virulence are the autotransporter (AT) proteins. During the last years huge progress has been made to better understand the mechanisms underlying the insertion of AT proteins into the OM and also AT function for interaction with the host. This review shortly summarizes our current knowledge about outer membrane protein (OMP) and more specifically AT biogenesis and function. We focused on the AT proteins that we haved studied in most detail: i.e. the Yersinia adhesin A (YadA) and invasin of Yersinia enterocolitica (Ye) as well as its homolog intimin (Int) expressed by enteropathogenic Escherichia coli. In addition, this review provides a short outlook about how we could possibly use this knowledge to fight infection.
Collapse
Affiliation(s)
- Karolin Leibiger
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Jonas Malte Schweers
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Monika Schütz
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.
| |
Collapse
|
9
|
Danforth DR, Tang-Siegel G, Ruiz T, Mintz KP. A Nonfimbrial Adhesin of Aggregatibacter actinomycetemcomitans Mediates Biofilm Biogenesis. Infect Immun 2019; 87:e00704-18. [PMID: 30297525 PMCID: PMC6300624 DOI: 10.1128/iai.00704-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is an inflammatory disease caused by polymicrobial biofilms. The periodontal pathogen Aggregatibacter actinomycetemcomitans displays two proteinaceous surface structures, the fimbriae and the nonfimbrial extracellular matrix binding protein A (EmaA), as observed by electron microscopy. Fimbriae participate in biofilm biogenesis and the EmaA adhesins mediate collagen binding. However, in the absence of fimbriae, A. actinomycetemcomitans still retains the potential to form robust biofilms, suggesting that other surface macromolecules participate in biofilm development. Here, isogenic mutant strains lacking EmaA structures, but still expressing fimbriae, were observed to have reduced biofilm potential. In strains lacking both EmaA and fimbriae, biofilm mass was reduced by 80%. EmaA enhanced biofilm formation in different strains, independent of the fimbriation state or serotype. Confocal microscopy revealed differences in cell density within microcolonies between the EmaA positive and mutant strains. EmaA-mediated biofilm formation was found to be independent of the glycosylation state and the precise three-dimensional conformation of the protein, and thus this function is uncorrelated with collagen binding activity. The data suggest that EmaA is a multifunctional adhesin that utilizes different mechanisms to enhance bacterial binding to collagen and to enhance biofilm formation, both of which are important for A. actinomycetemcomitans colonization and subsequent infection.
Collapse
Affiliation(s)
- David R Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Gaoyan Tang-Siegel
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
10
|
Abstract
Many bacteria, both environmental and pathogenic, exhibit the property of autoaggregation. In autoaggregation (sometimes also called autoagglutination or flocculation), bacteria of the same type form multicellular clumps that eventually settle at the bottom of culture tubes. Autoaggregation is generally mediated by self-recognising surface structures, such as proteins and exopolysaccharides, which we term collectively as autoagglutinins. Although a widespread phenomenon, in most cases the function of autoaggregation is poorly understood, though there is evidence to show that aggregating bacteria are protected from environmental stresses or host responses. Autoaggregation is also often among the first steps in forming biofilms. Here, we review the current knowledge on autoaggregation, the role of autoaggregation in biofilm formation and pathogenesis, and molecular mechanisms leading to aggregation using specific examples.
Collapse
Affiliation(s)
- Thomas Trunk
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hawzeen S Khalil
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Utilization of Variant and Fusion Proteins To Functionally Map the Aggregatibacter actinomycetemcomitans Trimeric Autotransporter Protein ApiA. Infect Immun 2018; 86:IAI.00697-17. [PMID: 29229732 DOI: 10.1128/iai.00697-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/01/2017] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans is a causative agent of localized aggressive periodontitis. Critical to its infection process is the first and essential step of attachment, which is related to the coordinated functions of surface components comprised of proteins and extracellular polysaccharides. One such protein is the outer membrane trimeric autotransporter protein ApiA, a versatile virulence factor with numerous functions, including cell binding, invasion, serum resistance, autoaggregation, and induction of cytokine release. Here we report on the use of Escherichia coli strains expressing protein variants to define the separate functions ascribed to the N terminus and those related to the C terminus. Importantly, a hybrid protein that comprised the N terminus of trimeric ApiA and the β-barrel domain of monomeric autotransporter Aae was constructed, which allowed the expression of a monomer surface-exposed domain of ApiA. Functional and phenotypic analyses demonstrated that the C terminus of ApiA forms an independent domain that is crucial for general stability and trimer formation, which appears to be associated with autoaggregation, biofilm formation, and surface expression. Importantly, the results show that the monomeric form of the N-terminal passenger domain of ApiA, while surface exposed, is sufficient for binding to buccal epithelial cells; however, it is not sufficient to allow aggregation and biofilm formation, strengthening the importance of the role of trimerization in these phenotypes.
Collapse
|
12
|
Bleuler-Martinez S, Stutz K, Sieber R, Collot M, Mallet JM, Hengartner M, Schubert M, Varrot A, Künzler M. Dimerization of the fungal defense lectin CCL2 is essential for its toxicity against nematodes. Glycobiology 2017; 27:486-500. [PMID: 27980000 DOI: 10.1093/glycob/cww113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/09/2016] [Indexed: 11/12/2022] Open
Abstract
Lectins are used as defense effector proteins against predators, parasites and pathogens by animal, plant and fungal innate defense systems. These proteins bind to specific glycoepitopes on the cell surfaces and thereby interfere with the proper cellular functions of the various antagonists. The exact cellular toxicity mechanism is in many cases unclear. Lectin CCL2 of the mushroom Coprinopsis cinerea was previously shown to be toxic for Caenorhabditis elegans and Drosophila melanogaster. This toxicity is dependent on a single, high-affinity binding site for the trisaccharide GlcNAc(Fucα1,3)β1,4GlcNAc, which is a hallmark of nematode and insect N-glycan cores. The carbohydrate-binding site is located at an unusual position on the protein surface when compared to other β-trefoil lectins. Here, we show that CCL2 forms a compact dimer in solution and in crystals. Substitution of two amino acid residues at the dimer interface, R18A and F133A, interfered with dimerization of CCL2 and reduced toxicity but left carbohydrate-binding unaffected. These results, together with the positioning of the two carbohydrate-binding sites on the surface of the protein dimer, suggest that crosslinking of N-glycoproteins on the surface of intestinal cells of invertebrates is a crucial step in the mechanism of CCL2-mediated toxicity. Comparisons of the number and positioning of carbohydrate-binding sites among different dimerizing fungal β-trefoil lectins revealed a considerable variability in the carbohydrate-binding patterns of these proteins, which are likely to correlate with their respective functions.
Collapse
Affiliation(s)
| | - Katrin Stutz
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Ramon Sieber
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Mayeul Collot
- Laboratoire des Biomolécules, UPMC Université Paris 06, Ecole Normale Supérieure, Paris, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, UPMC Université Paris 06, Ecole Normale Supérieure, Paris, France
| | - Michael Hengartner
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mario Schubert
- Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmattstr. 20, 8093 Zürich, Switzerland.,Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Annabelle Varrot
- CERMAV, UPR5301, CNRS and Université Grenoble Alpes, 38041 Grenoble, France
| | - Markus Künzler
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Weirich J, Bräutigam C, Mühlenkamp M, Franz-Wachtel M, Macek B, Meuskens I, Skurnik M, Leskinen K, Bohn E, Autenrieth I, Schütz M. Identifying components required for OMP biogenesis as novel targets for antiinfective drugs. Virulence 2017; 8:1170-1188. [PMID: 28118090 PMCID: PMC5711350 DOI: 10.1080/21505594.2016.1278333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of multiresistant Gram-negative bacteria requires new therapies for combating bacterial infections. Targeting the biogenesis of virulence factors could be an alternative strategy instead of killing bacteria with antibiotics. The outer membrane (OM) of Gram-negative bacteria acts as a physical barrier. At the same time it facilitates the exchange of molecules and harbors a multitude of proteins associated with virulence. In order to insert proteins into the OM, an essential oligomeric membrane-associated protein complex, the ß-barrel assembly machinery (BAM) is required. Being essential for the biogenesis of outer membrane proteins (OMPs) the BAM and also periplasmic chaperones may serve as attractive targets to develop novel antiinfective agents. Herein, we aimed to elucidate which proteins belonging to the OMP biogenesis machinery have the most important function in granting bacterial fitness, OM barrier function, facilitating biogenesis of dedicated virulence factors and determination of overall virulence. To this end we used the enteropathogen Yersinia enterocolitica as a model system. We individually knocked out all non-essential components of the BAM (BamB, C and E) as well as the periplasmic chaperones DegP, SurA and Skp. In summary, we found that the most profound phenotypes were produced by the loss of BamB or SurA with both knockouts resulting in significant attenuation or even avirulence of Ye in a mouse infection model. Thus, we assume that both BamB and SurA are promising targets for the development of new antiinfective drugs in the future.
Collapse
Affiliation(s)
- Johanna Weirich
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Cornelia Bräutigam
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Melanie Mühlenkamp
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | | | - Boris Macek
- b Proteome Center Tübingen, Universität Tübingen , Tübingen , Germany
| | - Ina Meuskens
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Mikael Skurnik
- c Department of Bacteriology and Immunology , Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki , Helsinki , Finland
| | - Katarzyna Leskinen
- c Department of Bacteriology and Immunology , Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki , Helsinki , Finland
| | - Erwin Bohn
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Ingo Autenrieth
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Monika Schütz
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| |
Collapse
|
14
|
Abstract
Type V secretion denotes a variety of secretion systems that cross the outer membrane in Gram-negative bacteria but that depend on the Sec machinery for transport through the inner membrane. They are possibly the simplest bacterial secretion systems, because they consist only of a single polypeptide chain (or two chains in the case of two-partner secretion). Their seemingly autonomous transport through the outer membrane has led to the term "autotransporters" for various subclasses of type V secretion. In this chapter, we review the structure and function of these transporters and review recent findings on additional factors involved in the secretion process, which have put the term "autotransporter" to debate.
Collapse
|
15
|
Mühlenkamp MC, Hallström T, Autenrieth IB, Bohn E, Linke D, Rinker J, Riesbeck K, Singh B, Leo JC, Hammerschmidt S, Zipfel PF, Schütz MS. Vitronectin Binds to a Specific Stretch within the Head Region of Yersinia Adhesin A and Thereby Modulates Yersinia enterocolitica Host Interaction. J Innate Immun 2016; 9:33-51. [PMID: 27798934 DOI: 10.1159/000449200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/17/2016] [Indexed: 01/02/2023] Open
Abstract
Complement resistance is an important virulence trait of Yersinia enterocolitica (Ye). The predominant virulence factor expressed by Ye is Yersinia adhesin A (YadA), which enables bacterial attachment to host cells and extracellular matrix and additionally allows the acquisition of soluble serum factors. The serum glycoprotein vitronectin (Vn) acts as an inhibitory regulator of the terminal complement complex by inhibiting the lytic pore formation. Here, we show YadA-mediated direct interaction of Ye with Vn and investigated the role of this Vn binding during mouse infection in vivo. Using different Yersinia strains, we identified a short stretch in the YadA head domain of Ye O:9 E40, similar to the 'uptake region' of Y. pseudotuberculosis YPIII YadA, as crucial for efficient Vn binding. Using recombinant fragments of Vn, we found the C-terminal part of Vn, including heparin-binding domain 3, to be responsible for binding to YadA. Moreover, we found that Vn bound to the bacterial surface is still functionally active and thus inhibits C5b-9 formation. In a mouse infection model, we demonstrate that Vn reduces complement-mediated killing of Ye O:9 E40 and, thus, improved bacterial survival. Taken together, these findings show that YadA-mediated Vn binding influences Ye pathogenesis.
Collapse
Affiliation(s)
- Melanie C Mühlenkamp
- Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yersinia enterocolitica YopH-Deficient Strain Activates Neutrophil Recruitment to Peyer's Patches and Promotes Clearance of the Virulent Strain. Infect Immun 2016; 84:3172-3181. [PMID: 27550935 DOI: 10.1128/iai.00568-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/18/2016] [Indexed: 01/06/2023] Open
Abstract
Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier.
Collapse
|
17
|
An Acinetobacter trimeric autotransporter adhesin reaped from cells exhibits its nonspecific stickiness via a highly stable 3D structure. Sci Rep 2016; 6:28020. [PMID: 27305955 PMCID: PMC4910087 DOI: 10.1038/srep28020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/27/2016] [Indexed: 11/24/2022] Open
Abstract
Trimeric autotransporter adhesins (TAAs), cell surface proteins of Gram-negative bacteria, mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific, high adhesiveness to abiotic material surfaces as well as to biotic surfaces. AtaA is a homotrimer of polypeptides comprising 3,630 amino acids and forms long nanofibers; therefore, it is too large and structurally complex to be produced as a recombinant protein. In this study, we isolated AtaA’s passenger domain (AtaA PSD), which is translocated to the cell surface through the C-terminal transmembrane domain and exhibits biological functions, using a new method. We introduced a protease recognition site and reaped AtaA nanofibers 225 nm in length from the cell surface through proteolytic cleavage with a specific protease. Biochemical and biophysical analyses of the purified native AtaA PSD revealed that it has a stable structure under alkaline and acidic conditions. Temperatures above 80 °C, which disrupted AtaA’s higher-order structure but maintained the full-length AtaA polypeptide, inactivated AtaA’s nonspecific adhesiveness, suggesting that the stickiness of AtaA requires its 3D structure. This finding refutes the widespread but vague speculation that large unfolded polypeptides readily stick to various surfaces.
Collapse
|
18
|
Wang L, Qin W, Zhang J, Bao C, Zhang H, Che Y, Sun C, Gu J, Feng X, Du C, Han W, Richard PL, Lei L. Adh enhances Actinobacillus pleuropneumoniae pathogenicity by binding to OR5M11 and activating p38 which induces apoptosis of PAMs and IL-8 release. Sci Rep 2016; 6:24058. [PMID: 27046446 PMCID: PMC4820727 DOI: 10.1038/srep24058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
Members of the Trimeric Autotransporter Adhesin (TAA) family play a crucial role in the adhesion of Gram-negative pathogens to host cells, but the immunopathogenesis of TAAs remains unknown. Our previous studies demonstrated that Adh from Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is required for full bacterial pathogenicity. Alveolar macrophages are the first line of defense against respiratory infections. This study compared the interactions between porcine alveolar macrophages (PAMs) and wild-type A. pleuropneumoniae (5b WT) or an Adh-deletion strain (5b ΔAdh) via gene microarray, immunoprecipitation and other technologies. We found that Adh was shown to interact with the PAMs membrane protein OR5M11, an olfactory receptor, resulting in the high-level secretion of IL-8 by activation of p38 MAPK signaling pathway. Subsequently, PAMs apoptosis via the activation of the Fax and Bax signaling pathways was observed, followed by activation of caspases 8, 9, and 3. The immunological pathogenic roles of Adh were also confirmed in both murine and piglets infectious models in vivo. These results identify a novel immunological strategy for TAAs to boost the pathogenicity of A. pleuropneumoniae. Together, these datas reveal the high versatility of the Adh protein as a virulence factor and provide novel insight into the immunological pathogenic role of TAAs.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China.,College of Animal Science, Henan Institute of Science and Technology, Xinxiang, P. R. China
| | - Wanhai Qin
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | - Jing Zhang
- Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Chuntong Bao
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | - Hu Zhang
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | - Yanyi Che
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | - Changjiang Sun
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | - Jingmin Gu
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | - Xin Feng
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | - Chongtao Du
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | - Wenyu Han
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | | | - Liancheng Lei
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| |
Collapse
|
19
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, Warsaw, 02-106, Poland.,Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
20
|
Koiwai K, Hartmann MD, Linke D, Lupas AN, Hori K. Structural Basis for Toughness and Flexibility in the C-terminal Passenger Domain of an Acinetobacter Trimeric Autotransporter Adhesin. J Biol Chem 2015; 291:3705-24. [PMID: 26698633 DOI: 10.1074/jbc.m115.701698] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 11/06/2022] Open
Abstract
Trimeric autotransporter adhesins (TAAs) on the cell surface of Gram-negative pathogens mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific high adhesiveness to abiotic material surfaces as well as to biotic surfaces. It consists of a passenger domain secreted by the C-terminal transmembrane anchor domain (TM), and the passenger domain contains an N-terminal head, N-terminal stalk, C-terminal head (Chead), and C-terminal stalk (Cstalk). The Chead-Cstalk-TM fragment, which is conserved in many Acinetobacter TAAs, has by itself the head-stalk-anchor architecture of a complete TAA. Here, we show the crystal structure of the Chead-Cstalk fragment, AtaA_C-terminal passenger domain (CPSD), providing the first view of several conserved TAA domains. The YadA-like head (Ylhead) of the fragment is capped by a unique structure (headCap), composed of three β-hairpins and a connector motif; it also contains a head insert motif (HIM1) before its last inner β-strand. The headCap, Ylhead, and HIM1 integrally form a stable Chead structure. Some of the major domains of the CPSD fragment are inherently flexible and provide bending sites for the fiber between segments whose toughness is ensured by topological chain exchange and hydrophobic core formation inside the trimer. Thus, although adherence assays using in-frame deletion mutants revealed that the characteristic adhesive sites of AtaA reside in its N-terminal part, the flexibility and toughness of the CPSD part provide the resilience that enables the adhesive properties of the full-length fiber across a wide range of conditions.
Collapse
Affiliation(s)
- Kotaro Koiwai
- From the Department of Biotechnology, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan, the Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Marcus D Hartmann
- the Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany, and
| | - Dirk Linke
- the Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany, and the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Andrei N Lupas
- the Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany, and
| | - Katsutoshi Hori
- From the Department of Biotechnology, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan,
| |
Collapse
|
21
|
Role of β1 integrins and bacterial adhesins for Yop injection into leukocytes in Yersinia enterocolitica systemic mouse infection. Int J Med Microbiol 2015; 306:77-88. [PMID: 26718660 DOI: 10.1016/j.ijmm.2015.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/19/2015] [Accepted: 12/13/2015] [Indexed: 11/22/2022] Open
Abstract
Injection of Yersinia outer proteins (Yops) into host cells by a type III secretion system is an important immune evasion mechanism of Yersinia enterocolitica (Ye). In this process Ye invasin (Inv) binds directly while Yersinia adhesin A (YadA) binds indirectly via extracellular matrix (ECM) proteins to β1 integrins on host cells. Although leukocytes turned out to be an important target of Yop injection by Ye, it was unclear which Ye adhesins and which leukocyte receptors are required for Yop injection. To explain this, we investigated the role of YadA, Inv and β1 integrins for Yop injection into leukocytes and their impact on the course of systemic Ye infection in mice. Ex vivo infection experiments revealed that adhesion of Ye via Inv or YadA is sufficient to promote Yop injection into leukocytes as revealed by a β-lactamase reporter assay. Serum factors inhibit YadA- but not Inv-mediated Yop injection into B and T cells, shifting YadA-mediated Yop injection in the direction of neutrophils and other myeloid cells. Systemic Ye mouse infection experiments demonstrated that YadA is essential for Ye virulence and Yop injection into leukocytes, while Inv is dispensable for virulence and plays only a transient and minor role for Yop injection in the early phase of infection. Ye infection of mice with β1 integrin-depleted leukocytes demonstrated that β1 integrins are dispensable for YadA-mediated Yop injection into leukocytes, but contribute to Inv-mediated Yop injection. Despite reduced Yop injection into leukocytes, β1 integrin-deficient mice exhibited an increased susceptibility for Ye infection, suggesting an important role of β1 integrins in immune defense against Ye. This study demonstrates that Yop injection into leukocytes by Ye is largely mediated by YadA exploiting, as yet unknown, leukocyte receptors.
Collapse
|
22
|
Qin W, Wang L, Lei L. New findings on the function and potential applications of the trimeric autotransporter adhesin. Antonie van Leeuwenhoek 2015; 108:1-14. [PMID: 26014492 DOI: 10.1007/s10482-015-0477-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/08/2015] [Indexed: 11/27/2022]
Abstract
Trimeric autotransporter adhesins (TAAs) are located on the surface of many pathogenic Gram-negative bacteria. TAAs belong to the autotransporter protein family and consist of three identical monomers. These obligate homotrimeric proteins are secreted through the bacterial type Vc secretion system and share a common molecular organization that each monomer consists of a N-terminal "passenger" domain and a C-terminal translocation domain. TAAs are important virulence factors that are involved in bacterial life cycle and participate in mediating infection, invasion, dissemination and evasion of host immune responses. TAAs have also proved to be useful for many applications, such as vaccines and disease biomarkers. We here mainly focused on new findings on bio-function and application of TAAs in addition to their common structure and secretion mechanisms.
Collapse
Affiliation(s)
- Wanhai Qin
- College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China,
| | | | | |
Collapse
|
23
|
Keller B, Mühlenkamp M, Deuschle E, Siegfried A, Mössner S, Schade J, Griesinger T, Katava N, Braunsdorf C, Fehrenbacher B, Jiménez‐Soto LF, Schaller M, Haas R, Genth H, Retta SF, Meyer H, Böttcher RT, Zent R, Schütz M, Autenrieth IB, Bohn E. Yersinia enterocolitica
exploits different pathways to accomplish adhesion and toxin injection into host cells. Cell Microbiol 2015; 17:1179-204. [DOI: 10.1111/cmi.12429] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Birgit Keller
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Melanie Mühlenkamp
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Eva Deuschle
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Alexandra Siegfried
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Sara Mössner
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Jessica Schade
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Tanja Griesinger
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Nenad Katava
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | | | | | | | - Martin Schaller
- Department of Dermatology Eberhard Karls University Tübingen Germany
| | - Rainer Haas
- Max von Pettenkofer‐Institut Ludwig‐Maximilians University Munich Germany
| | - Harald Genth
- Institute of Toxicology Medical School Hannover Hannover Germany
| | - Saverio F. Retta
- Department of Clinical and Biological Sciences University of Torino Orbassano Italy
| | - Hannelore Meyer
- Max Planck Institut für Biochemie Martinsried Germany
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene Technische Universität München Germany
| | | | - Roy Zent
- Department of Medicine (Division of Nephrology) Vanderbilt University Medical Center Nashville TN USA
| | - Monika Schütz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
- Department of Medicine (Division of Nephrology) Vanderbilt University Medical Center Nashville TN USA
| | - Ingo B. Autenrieth
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
- German Centre of Infection Research (DZIF) Partner Site Tübingen Germany
| | - Erwin Bohn
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| |
Collapse
|
24
|
|
25
|
Liu X, Luo Y, Mohamed OA, Liu D, Wei G. Global transcriptome analysis of Mesorhizobium alhagi CCNWXJ12-2 under salt stress. BMC Microbiol 2014; 14:1. [PMID: 25539655 PMCID: PMC4302635 DOI: 10.1186/s12866-014-0319-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/11/2014] [Indexed: 11/24/2022] Open
Abstract
Background Mesorhizobium alhagi CCNWXJ12-2 is a α-proteobacterium which could be able to fix nitrogen in the nodules formed with Alhagi sparsifolia in northwest of China. Desiccation and high salinity are the two major environmental problems faced by M. alhagi CCNWXJ12-2. In order to identify genes involved in salt-stress adaption, a global transcriptional analysis of M. alhagi CCNWXJ12-2 growing under salt-free and high salt conditions was carried out. The next generation sequencing technology, RNA-Seq, was used to obtain the transcription profiles. Results We have compared the transcriptome of M. alhagi growing in TY medium under high salt conditions (0.4 M NaCl) with salt free conditions as a control. A total of 1,849 differentially expressed genes (fold change ≧ 2) were identified and 933 genes were downregulated while 916 genes were upregulated under high salt condition. Except for the upregulation of some genes proven to be involved in salt resistance, we found that the expression levels of protein secretion systems were changed under high salt condition and the expression levels of some heat shock proteins were reduced by salt stress. Notably, a gene encoding YadA domain-containing protein (yadA), a gene encoding trimethylamine methyltransferase (mttB) and a gene encoding formate--tetrahydrofolate ligase (fhs) were highly upregulated. Growth analysis of the three gene knockout mutants under salt stress demonstrated that yadA was involved in salt resistance while the other two were not. Conclusions To our knowledge, this is the first report about transcriptome analysis of a rhizobia using RNA-Seq to elucidate the salt resistance mechanism. Our results showed the complex mechanism of bacterial adaption to salt stress and it was a systematic work for bacteria to cope with the high salinity environmental problems. Therefore, these results could be helpful for further investigation of the bacterial salt resistance mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0319-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Gehong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
26
|
Oberhettinger P, Leo JC, Linke D, Autenrieth IB, Schütz MS. The inverse autotransporter intimin exports its passenger domain via a hairpin intermediate. J Biol Chem 2014; 290:1837-49. [PMID: 25488660 DOI: 10.1074/jbc.m114.604769] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autotransporter proteins comprise a large family of virulence factors that consist of a β-barrel translocation unit and an extracellular effector or passenger domain. The β-barrel anchors the protein to the outer membrane of Gram-negative bacteria and facilitates the transport of the passenger domain onto the cell surface. By inserting an epitope tag into the N terminus of the passenger domain of the inverse autotransporter intimin, we generated a mutant defective in autotransport. Using this stalled mutant, we could show that (i) at the time point of stalling, the β-barrel appears folded; (ii) the stalled autotransporter is associated with BamA and SurA; (iii) the stalled intimin is decorated with large amounts of SurA; (iv) the stalled autotransporter is not degraded by periplasmic proteases; and (v) inverse autotransporter passenger domains are translocated by a hairpin mechanism. Our results suggest a function for the BAM complex not only in insertion and folding of the β-barrel but also for passenger translocation.
Collapse
Affiliation(s)
- Philipp Oberhettinger
- From the Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany and
| | - Jack C Leo
- the Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Dirk Linke
- the Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Ingo B Autenrieth
- From the Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany and
| | - Monika S Schütz
- From the Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany and
| |
Collapse
|
27
|
Ulrich T, Oberhettinger P, Schütz M, Holzer K, Ramms AS, Linke D, Autenrieth IB, Rapaport D. Evolutionary conservation in biogenesis of β-barrel proteins allows mitochondria to assemble a functional bacterial trimeric autotransporter protein. J Biol Chem 2014; 289:29457-70. [PMID: 25190806 DOI: 10.1074/jbc.m114.565655] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Yersinia adhesin A (YadA) belongs to a class of bacterial adhesins that form trimeric structures. Their mature form contains a passenger domain and a C-terminal β-domain that anchors the protein in the outer membrane (OM). Little is known about how precursors of such proteins cross the periplasm and assemble into the OM. In the present study we took advantage of the evolutionary conservation in the biogenesis of β-barrel proteins between bacteria and mitochondria. We previously observed that upon expression in yeast cells, bacterial β-barrel proteins including the transmembrane domain of YadA assemble into the mitochondrial OM. In the current study we found that when expressed in yeast cells both the monomeric and trimeric forms of full-length YadA were detected in mitochondria but only the trimeric species was fully integrated into the OM. The oligomeric form was exposed on the surface of the organelle in its native conformation and maintained its capacity to adhere to host cells. The co-expression of YadA with a mitochondria-targeted form of the bacterial periplasmic chaperone Skp, but not with SurA or SecB, resulted in enhanced levels of both forms of YadA. Taken together, these results indicate that the proper assembly of trimeric autotransporter can occur also in a system lacking the lipoproteins of the BAM machinery and is specifically enhanced by the chaperone Skp.
Collapse
Affiliation(s)
- Thomas Ulrich
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Philipp Oberhettinger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany, and
| | - Monika Schütz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany, and
| | - Katharina Holzer
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Anne S Ramms
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Dirk Linke
- Department of Protein Evolution, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ingo B Autenrieth
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany, and
| | - Doron Rapaport
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany,
| |
Collapse
|
28
|
Fusco WG, Choudhary NR, Routh PA, Ventevogel MS, Smith VA, Koch GG, Almond GW, Orndorff PE, Sempowski GD, Leduc I. The Haemophilus ducreyi trimeric autotransporter adhesin DsrA protects against an experimental infection in the swine model of chancroid. Vaccine 2014; 32:3752-8. [PMID: 24844153 DOI: 10.1016/j.vaccine.2014.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/02/2014] [Accepted: 05/09/2014] [Indexed: 01/09/2023]
Abstract
Adherence of pathogens to cellular targets is required to initiate most infections. Defining strategies that interfere with adhesion is therefore important for the development of preventative measures against infectious diseases. As an adhesin to host extracellular matrix proteins and human keratinocytes, the trimeric autotransporter adhesin DsrA, a proven virulence factor of the Gram-negative bacterium Haemophilus ducreyi, is a potential target for vaccine development. A recombinant form of the N-terminal passenger domain of DsrA from H. ducreyi class I strain 35000HP, termed rNT-DsrAI, was tested as a vaccine immunogen in the experimental swine model of H. ducreyi infection. Viable homologous H. ducreyi was not recovered from any animal receiving four doses of rNT-DsrAI administered with Freund's adjuvant at two-week intervals. Control pigs receiving adjuvant only were all infected. All animals receiving the rNT-DsrAI vaccine developed antibody endpoint titers between 3.5 and 5 logs. All rNT-DsrAI antisera bound the surface of the two H. ducreyi strains used to challenge immunized pigs. Purified anti-rNT-DsrAI IgG partially blocked binding of fibrinogen at the surface of viable H. ducreyi. Overall, immunization with the passenger domain of the trimeric autotransporter adhesin DsrA accelerated clearance of H. ducreyi in experimental lesions, possibly by interfering with fibrinogen binding.
Collapse
Affiliation(s)
- William G Fusco
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Neelima R Choudhary
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patty A Routh
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Melissa S Ventevogel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie A Smith
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gary G Koch
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Glen W Almond
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Paul E Orndorff
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Isabelle Leduc
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Trimeric autotransporter DsrA is a major mediator of fibrinogen binding in Haemophilus ducreyi. Infect Immun 2013; 81:4443-52. [PMID: 24042118 DOI: 10.1128/iai.00743-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus ducreyi is the etiologic agent of the sexually transmitted genital ulcer disease chancroid. In both natural and experimental chancroid, H. ducreyi colocalizes with fibrin at the base of the ulcer. Fibrin is obtained by cleavage of the serum glycoprotein fibrinogen (Fg) by thrombin to initiate formation of the blood clot. Fg binding proteins are critical virulence factors in medically important Gram-positive bacteria. H. ducreyi has previously been shown to bind Fg in an agglutination assay, and the H. ducreyi Fg binding protein FgbA was identified in ligand blotting with denatured proteins. To better characterize the interaction of H. ducreyi with Fg, we examined Fg binding to intact, viable H. ducreyi bacteria and identified a novel Fg binding protein. H. ducreyi bound unlabeled Fg in a dose-dependent manner, as measured by two different methods. In ligand blotting with total denatured cellular proteins, digoxigenin (DIG)-Fg bound only two H. ducreyi proteins, the trimeric autotransporter DsrA and the lectin DltA; however, only the isogenic dsrA mutant had significantly less cell-associated Fg than parental strains in Fg binding assays with intact bacteria. Furthermore, expression of DsrA, but not DltA or an empty vector, rendered the non-Fg-binding H. influenzae strain Rd capable of binding Fg. A 13-amino-acid sequence in the C-terminal section of the passenger domain of DsrA appears to be involved in Fg binding by H. ducreyi. Taken together, these data suggest that the trimeric autotransporter DsrA is a major determinant of Fg binding at the surface of H. ducreyi.
Collapse
|
30
|
Functional characterization of Burkholderia pseudomallei trimeric autotransporters. Infect Immun 2013; 81:2788-99. [PMID: 23716608 DOI: 10.1128/iai.00526-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is a tier 1 select agent and the causative agent of melioidosis, a severe and often fatal disease with symptoms ranging from acute pneumonia and septic shock to a chronic infection characterized by abscess formation in the lungs, liver, and spleen. Autotransporters (ATs) are exoproteins belonging to the type V secretion system family, with many playing roles in pathogenesis. The genome of B. pseudomallei strain 1026b encodes nine putative trimeric AT proteins, of which only four have been described. Using a bioinformatic approach, we annotated putative domains within each trimeric AT protein, excluding the well-studied BimA protein, and found short repeated sequences unique to Burkholderia species, as well as an unexpectedly large proportion of ATs with extended signal peptide regions (ESPRs). To characterize the role of trimeric ATs in pathogenesis, we constructed disruption or deletion mutations in each of eight AT-encoding genes and evaluated the resulting strains for adherence to, invasion of, and plaque formation in A549 cells. The majority of the ATs (and/or the proteins encoded downstream) contributed to adherence to and efficient invasion of A549 cells. Using a BALB/c mouse model of infection, we determined the contributions of each AT to bacterial burdens in the lungs, liver, and spleen. At 48 h postinoculation, only one strain, Bp340::pDbpaC, demonstrated a defect in dissemination and/or survival in the liver, indicating that BpaC is required for wild-type virulence in this model.
Collapse
|
31
|
Schindler MKH, Schütz MS, Mühlenkamp MC, Rooijakkers SHM, Hallström T, Zipfel PF, Autenrieth IB. Yersinia enterocolitica YadA mediates complement evasion by recruitment and inactivation of C3 products. THE JOURNAL OF IMMUNOLOGY 2012; 189:4900-8. [PMID: 23071281 DOI: 10.4049/jimmunol.1201383] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Yersinia adhesin A (YadA) is a major virulence factor of Yersinia enterocolitica. YadA mediates host cell binding and autoaggregation and protects the pathogen from killing by the complement system. Previous studies demonstrated that YadA is the most important single factor mediating serum resistance of Y. enterocolitica, presumably by binding C4b binding protein (C4BP) and factor H, which are both complement inhibitors. Factor H acts as a cofactor for factor I-mediated cleavage of C3b into the inactive form iC3b and thus prevents formation of inflammatory effector compounds and the terminal complement complex. In this study, we challenged the current direct binding model of factor H to YadA and show that Y. enterocolitica YadA recruits C3b and iC3b directly, without the need of an active complement cascade or additional serum factors. Enhanced binding of C3b does not decrease survival of YadA-expressing Yersiniae because C3b becomes readily inactivated by factor H and factor I. Binding of factor H to YadA is greatly reduced in the absence of C3. Experiments using Yersinia lacking YadA or expressing YadA with reduced trimeric stability clearly demonstrate that both the presence and full trimeric stability of YadA are essential for complement resistance. A novel mechanism of factor H binding is presented in which YadA exploits recruitment of C3b or iC3b to attract large amounts of factor H. As a consequence, formation of the terminal complement complex is limited and bacterial survival is enhanced. These findings add a new aspect of how Y. enterocolitica effectively evades the host complement system.
Collapse
Affiliation(s)
- Magnus K H Schindler
- Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Oberhettinger P, Schütz M, Leo JC, Heinz N, Berger J, Autenrieth IB, Linke D. Intimin and invasin export their C-terminus to the bacterial cell surface using an inverse mechanism compared to classical autotransport. PLoS One 2012; 7:e47069. [PMID: 23056583 PMCID: PMC3467248 DOI: 10.1371/journal.pone.0047069] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022] Open
Abstract
Invasin and intimin are major virulence factors of enteropathogenic Yersiniae and Escherichia coli, mediating invasion into and intimate adherence to host cells, respectively. Several studies have hinted that extracellular portion of these homologous proteins might be exported via an autotransport mechanism, but rigorous experimental proof has been lacking. Here, we present a topology model for invasin and intimin, consistent with the hypothesis that the N-terminal β-barrel domain acts as a translocation pore to secrete the C-terminal passenger domain. We confirmed this topology model by inserting epitope tags into the loops of the β-barrel. We further show that obstructing the pore of β-barrel hinders the export of the passenger domain. As for classical autotransport, the biogenesis of invasin and intimin is dependent on the Bam complex and the periplasmic chaperone SurA, whereas the chaperone/protease DegP is involved in quality control. However, compared to classical autotransporters (Type Va secretion), the domain structure of intimin and invasin is inverted. We conclude that proteins of the intimin and invasin family constitute a novel group of autotransported proteins, and propose that this class of autotransporters be termed Type Ve secretion.
Collapse
Affiliation(s)
- Philipp Oberhettinger
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Monika Schütz
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Jack C. Leo
- Abteilung 1, Max Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Nadja Heinz
- Abteilung 1, Max Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Jürgen Berger
- Abteilung 1, Max Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Ingo B. Autenrieth
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Dirk Linke
- Abteilung 1, Max Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| |
Collapse
|
33
|
A naturally occurring single-residue mutation in the translocator domain of Neisseria meningitidis NhhA affects trimerization, surface localization, and adhesive capabilities. Infect Immun 2011; 79:4308-21. [PMID: 21844231 DOI: 10.1128/iai.00198-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis NhhA (Neisseria hia/hsf homologue A) is an oligomeric outer membrane protein belonging to the family of trimeric autotransporter adhesins. NhhA mediates the interaction of N. meningitidis with human epithelial cells and components of the extracellular matrix. The recombinant protein is able to induce bactericidal antibodies and hence has also been considered a potential vaccine candidate. In this study, we analyzed the production of NhhA in a large panel of N. meningitidis strains belonging to different serogroups and clonal complexes. We found that trimeric NhhA was produced at different levels by the various strains tested. In some strains belonging to the clonal complex ST41/44, the protein is detectable only as a monomer. Sequencing of the nhhA gene and generation of complementing strains in different genetic backgrounds have proved that a single mutation (Gly to Asp) in the translocator domain affected both trimerization and surface localization of NhhA. In vitro infection assays showed that this mutation impairs meningococcal NhhA-mediated adhesion, suggesting that strains carrying the mutation may rely on different strategies or molecules to mediate interaction with host cells. Finally, we demonstrated that N. meningitidis ST41/44 strains producing the mutated form did not induce killing mediated by NhhA-specific bactericidal antibodies. Our data help to elucidate the secretion mechanisms of trimeric autotransporters and to understand the contribution of NhhA in the evolutionary process of host-Neisseria interactions. Also, they might have important implications for the evaluation of NhhA as a vaccine candidate.
Collapse
|
34
|
Trimeric autotransporter adhesin-dependent adherence of Bartonella henselae, Bartonella quintana, and Yersinia enterocolitica to matrix components and endothelial cells under static and dynamic flow conditions. Infect Immun 2011; 79:2544-53. [PMID: 21536788 DOI: 10.1128/iai.01309-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Trimeric autotransporter adhesins (TAAs) are important virulence factors of Gram-negative bacteria responsible for adherence to extracellular matrix (ECM) and host cells. Here, we analyzed three different TAAs (Bartonella adhesin A [BadA] of Bartonella henselae, variably expressed outer membrane proteins [Vomps] of Bartonella quintana, and Yersinia adhesin A [YadA] of Yersinia enterocolitica) for mediating bacterial adherence to ECM and endothelial cells. Using static (cell culture vials) and dynamic (capillary flow chambers) experimental settings, adherence of wild-type bacteria and of the respective TAA-negative strains was analyzed. Under static conditions, ECM adherence of B. henselae, B. quintana, and Y. enterocolitica was strongly dependent on the expression of their particular TAAs. YadA of Y. enterocolitica did not mediate bacterial binding to plasma or cellular fibronectin under either static or dynamic conditions. TAA-dependent host cell adherence appeared more significant under dynamic conditions although the total number of bound bacteria was diminished compared to the number under static conditions. Dynamic models expand the methodology to perform bacterial adherence experiments under more realistic, bloodstream-like conditions and allow dissection of the biological role of TAAs in ECM and host cell adherence under static and dynamic conditions.
Collapse
|
35
|
Lehr U, Schütz M, Oberhettinger P, Ruiz-Perez F, Donald JW, Palmer T, Linke D, Henderson IR, Autenrieth IB. C-terminal amino acid residues of the trimeric autotransporter adhesin YadA of Yersinia enterocolitica are decisive for its recognition and assembly by BamA. Mol Microbiol 2010; 78:932-46. [PMID: 20815824 DOI: 10.1111/j.1365-2958.2010.07377.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Bam complex is a highly conserved multiprotein machine essential for the assembly of β-barrel outer membrane proteins. It is composed of the essential outer membrane protein BamA and four outer membrane associated lipoproteins BamB-E. The Yersinia enterocolitica Adhesin A (YadA) is the prototype of trimeric auotransporter adhesins (TAAs), consisting of a head, stalk and a β-barrel membrane anchor. To investigate the role of BamA in biogenesis of TAAs, we expressed YadA in a BamA-depleted strain of Escherichia coli, which resulted in degradation of YadA. Yeast-two-hybrid experiments and immunofluorescence studies revealed that BamA and YadA interact directly and colocalize. As BamA recognizes the C-terminus of OMPs, we exchanged the nine most C-terminal amino acids of YadA. Substitution of the amino acids in position 1, 3 or 5 from the C-terminus with glycine resulted in DegP-dependent degradation of YadA. Despite degradation all YadA proteins assembled in the outer membrane. In summary we demonstrate that (i) BamA is essential for biogenesis of the TAA YadA, (ii) BamA interacts directly with YadA, (iii) the C-terminal amino acid motif of YadA is important for the BamA-dependent assembly and differs slightly compared with other OMPs, and (iv) BamA and YadA colocalize.
Collapse
Affiliation(s)
- U Lehr
- Institute for Medical Microbiology und Hygiene, University Hospital Tübingen, Elfriede-Aulhornstr. 6, Tübingen D-72076, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Adhesion, invasion, and agglutination mediated by two trimeric autotransporters in the human uropathogen Proteus mirabilis. Infect Immun 2010; 78:4882-94. [PMID: 20805336 DOI: 10.1128/iai.00718-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fimbriae of the human uropathogen Proteus mirabilis are the only characterized surface proteins that contribute to its virulence by mediating adhesion and invasion of the uroepithelia. PMI2122 (AipA) and PMI2575 (TaaP) are annotated in the genome of strain HI4320 as trimeric autotransporters with "adhesin-like" and "agglutinating adhesin-like" properties, respectively. The C-terminal 62 amino acids (aa) in AipA and 76 aa in TaaP are homologous to the translocator domains of YadA from Yersinia enterocolitica and Hia from Haemophilus influenzae. Comparative protein modeling using the Hia three-dimensional structure as a template predicted that each of these domains would contain four antiparallel beta sheets and that they formed homotrimers. Recombinant AipA and TaaP were seen as ∼28 kDa and ∼78 kDa, respectively, in Escherichia coli, and each also formed high-molecular-weight homotrimers, thus supporting this model. E. coli synthesizing AipA or TaaP bound to extracellular matrix proteins with a 10- to 60-fold-higher level of affinity than the control strain. Inactivation of aipA in P. mirabilis strains significantly (P < 0.01) reduced the mutants' ability to adhere to or invade HEK293 cell monolayers, and the functions were restored upon complementation. A 51-aa-long invasin region in the AipA passenger domain was required for this function. E. coli expressing TaaP mediated autoagglutination, and a taaP mutant of P. mirabilis showed significantly (P < 0.05) more reduced aggregation than HI4320. Gly-247 in AipA and Gly-708 in TaaP were indispensable for trimerization and activity. AipA and TaaP individually offered advantages to P. mirabilis in a murine model. This is the first report characterizing trimeric autotransporters in P. mirabilis as afimbrial surface adhesins and autoagglutinins.
Collapse
|