1
|
Hamad AA, Mustafa HM, Mohsein OA. Detection of the levels of immune cytokines (IL4, IL5, TNF-α) in school-age and preschoolers with an Ascaris lumbricoides infection. J Parasit Dis 2024; 48:782-787. [PMID: 39493475 PMCID: PMC11528086 DOI: 10.1007/s12639-024-01715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 11/05/2024] Open
Abstract
Gastrointestinal parasite infections have been identified as a significant public health concern in regions with high humidity levels globally. Ascaris lumbricoides, a prevalent human pathogen, is widely distributed throughout several regions globally. It is estimated that around 1.5 billion cases are attributed only to A. Lumbricoides. These types of disorders are associated with a wide range of diseases. Several animal studies have demonstrated the significance of T helper cell type 2 responses to helminths in the digestive system, as well as the crucial role of specific interleukins (ILs), such as IL-4 and IL-5, in eliminating parasites and combating infections. However, there is a limited body of research examining the response of human cytokines to gut helminths, particularly in relation to the cellular reactions to Ascariasis in populations where it is prevalent. This is a case-control study and included 100 children suffering from Ascaris infection, aged between 4 and 15 years, and 50 healthy children as a control group. Samples were collected at Al-Habobbi Teaching Hospital after ethical approval. The children were diagnosed by stool examination and the concentration method was performed. Five milliliter of blood was collected from each participant, and the levels of interleukins 4, interleukins 5 and TNF-α were measured by ELISA. The levels of TNF-α and IL-5 exhibited statistically significant variance between the preschool and school-age groups at P = <0.01. The difference in the level of IL-4 was non-significant between preschool and school-age groups at P > 0.05. The difference in the levels of TNF-α and IL-5 was significant between control and moderate infection (P = <0.05), while that of IL-4 was non-significant (P > 0.05). When comparing control, the modest groups showed significantly higher IL-5 and IL-4 levels (P = >0.05). The difference in TNF-α, IL-5 and IL4 levels between mild and control groups was significant (P < 0.001), except for TNF-α which was not significant (P = 0.86). The difference in levels of interleukins in children according to age group and severity of infection indicates the role of the cellular immune response in the emergence and development of the disease and its severity in children.
Collapse
Affiliation(s)
- Anas Abdullah Hamad
- Department of Microbiology, College of Veterinary Medicine, University of Fallujah, P.O.Box: 31002, Anbar, Fallujah Iraq
| | - Hamssa Majid Mustafa
- College of Medical and Healthy Techniques, Southern Technical University, Shatra, Iraq
| | - Osama A. Mohsein
- Department of Medical Laboratory Techniques, Mazaya University Collage, Nasiriyah, Iraq
- Thi-Qar Health Directorate, Al Habbobi Teaching Hospital, Nasiriyah, Iraq
| |
Collapse
|
2
|
Wang J, Zhao X, Li X, Jin X. Akkermansia muciniphila: a deworming partner independent of type 2 immunity. Gut Microbes 2024; 16:2338947. [PMID: 38717824 PMCID: PMC11086001 DOI: 10.1080/19490976.2024.2338947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
The gut microbiota has coevolved with the host for hundreds of millions of years, playing a beneficial role in host health. Human parasitic helminths are widespread and pose a pervasive global public health issue. Although Type 2 immunity provides partial resistance to helminth infections, the composition of the gut microbiota can change correspondingly. Therefore, it raises the question of what role the gut microbiota plays during helminth infection. Akkermansia muciniphila has emerged as a notable representative of beneficial microorganisms in the gut microbiota. Recent studies indicate that A. muciniphila is not merely associated with helminth infection but is also causally linked to infection. Here, we provide an overview of the crosstalk between A. muciniphila and enteric helminth infection. Our goal is to enhance our understanding of the interplay among A. muciniphila, helminths, and their hosts while also exploring the potential underlying mechanisms.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Animal Sciences, Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiufeng Zhao
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Xianhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, USA
| | - Xuemin Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
3
|
Wang HN, Qian WJ, Zhao GL, Li F, Miao YY, Lei B, Sun XH, Wang ZF. L- and T-type Ca 2+ channels dichotomously contribute to retinal ganglion cell injury in experimental glaucoma. Neural Regen Res 2023; 18:1570-1577. [PMID: 36571364 PMCID: PMC10075096 DOI: 10.4103/1673-5374.360277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cell apoptotic death is the main pathological characteristic of glaucoma, which is the leading cause of irreversible blindness. Disruption of Ca2+ homeostasis plays an important role in glaucoma. Voltage-gated Ca2+ channel blockers have been shown to improve vision in patients with glaucoma. However, whether and how voltage-gated Ca2+ channels are involved in retinal ganglion cell apoptotic death are largely unknown. In this study, we found that total Ca2+ current densities in retinal ganglion cells were reduced in a rat model of chronic ocular hypertension experimental glaucoma, as determined by whole-cell patch-clamp electrophysiological recordings. Further analysis showed that L-type Ca2+ currents were downregulated while T-type Ca2+ currents were upregulated at the later stage of glaucoma. Western blot assay and immunofluorescence experiments confirmed that expression of the CaV1.2 subunit of L-type Ca2+ channels was reduced and expression of the CaV3.3 subunit of T-type Ca2+ channels was increased in retinas of the chronic ocular hypertension model. Soluble tumor necrosis factor-α, an important inflammatory factor, inhibited the L-type Ca2+ current of isolated retinal ganglion cells from control rats and enhanced the T-type Ca2+ current. These changes were blocked by the tumor necrosis factor-α inhibitor XPro1595, indicating that both types of Ca2+ currents may be mediated by soluble tumor necrosis factor-α. The intracellular mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and nuclear factor kappa-B signaling pathway mediate the effects of tumor necrosis factor-α. TUNEL assays revealed that mibefradil, a T-type calcium channel blocker, reduced the number of apoptotic retinal ganglion cells in the rat model of chronic ocular hypertension. These results suggest that T-type Ca2+ channels are involved in disrupted Ca2+ homeostasis and apoptosis of retinal ganglion cells in glaucoma, and application of T-type Ca2+ channel blockers, especially a specific CaV3.3 blocker, may be a potential strategy for the treatment of glaucoma.
Collapse
Affiliation(s)
- Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wen-Jing Qian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yan-Ying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Institutes of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xing-Huai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhong-Feng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Hlushko KT, I. Horbachevsky Ternopil National Medical University, Department of Pediatrics No 2, Ternopil, Ukraine, Pavlyshyn HA, I. Horbachevsky Ternopil National Medical University, Department of Pediatrics No 2, Ternopil, Ukraine;. Toxocariasis in children with digestive system diseases. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.05.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Toxocariasis is common among children and causes digestive diseases. The aim of the work was to study the development of toxocariasis in children with digestive diseases. The serum levels of specific IgG to Toxocara canis and Ascaris, levels of IL-4 and TNF-α were determined in 63 children. In addition, tests for parasites and a retrospective survey in order to assess sanitation and hygiene practices were conducted. All children were divided into two groups: group I includes 19 (30.2%) patients seropositive for toxocariasis, and group II – 44 (69.8%) children without any parasites. The level of IL-4 was higher in group I (18.0 ± 6.4 pg/ml) than in group II (7.2 ± 2.0 pg/ml) (P < 0.001. While the level of TNF-α did not differ significantly between groups I (4.5 ± 2.1 pg/ml) and II (3.6 ± 1.1 pg/ml) (P > 0.05). A higher incidence of Toxocara was observed among rural residents (78.9%). Children with toxocariasis more often had soil-pica (42.1%), played with dogs (100%), and did not wash their hands (84.2%) compared to the group of uninfected children. It was noted that hygienic habits and place of living contribute to Toxocara canis infection. IL-4 levels were considerably higher in group I than in group II that can be accounted for the host immune response activation, at the same time, the levels of TNF-α did not differ. Children without toxocariasis had also increased levels of IL-4, which may be related to past helminthic infection. Keywords: children., digestive diseases, interleukin-4, toxocariasis, tumor necrosis factor - α
Collapse
|
5
|
Fadl HO, Amin NM, Wanas H, El-Din SS, Ibrahim HA, Aboulhoda BE, Bocktor NZ. The impact of l-arginine supplementation on the enteral phase of experimental Trichinella spiralis infection in treated and untreated mice. J Parasit Dis 2020; 44:737-747. [PMID: 33184541 DOI: 10.1007/s12639-020-01245-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
The role of nitric oxide (NO) in the immunopathological response during Trichinella spiralis (T. spiralis) infection remains controversial. The amino acid, l-arginine is a NO precursor commonly used by athletes and bodybuilders as a protein supplement. As to our knowledge, there are no published studies which have tested the effect of l-arginine on the intestinal phase of experimental trichinellosis. The present work aims to investigate the effect of l-arginine on the enteral phase of experimental T. spiralis infection in albendazole-treated and untreated mice. Forty BALB/C mice infected orally with T. spiralis larvae were divided into 4 groups as follows: Group A were infected and untreated (control) mice, Group B received albendazole alone, Group C received l-arginine alone, and Group D received both l-arginine and albendazole. Compared to the control group, l-arginine supplementation showed; a significant increase in the intestinal adult worm burden, a significantly high inducible NO synthase (iNOS) expression, elevated immune markers; tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and enhanced apoptosis. Albendazole treated-group had a significant reduction in the adult worm number (90.9%), while combined albendazole-arginine regimen showed a lower percentage of worm reduction (72.7%). During the enteral phase of T. spiralis infection, l-arginine supplementation should be taken cautiously, as it may modulate the proinflammatory immune response and subsequently affect the outcome of the infection and/or treatment.
Collapse
Affiliation(s)
- Hanaa O Fadl
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha M Amin
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hanaa Wanas
- Pharmacology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.,Pharmacology and Toxicology Department, Faculty of Pharmacy, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Shimaa Saad El-Din
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba A Ibrahim
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nardeen Zakka Bocktor
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Muñoz-Carrillo JL, Muñoz-López JL, Muñoz-Escobedo JJ, Maldonado-Tapia C, Gutiérrez-Coronado O, Contreras-Cordero JF, Moreno-García MA. Therapeutic Effects of Resiniferatoxin Related with Immunological Responses for Intestinal Inflammation in Trichinellosis. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:587-599. [PMID: 29320813 PMCID: PMC5776891 DOI: 10.3347/kjp.2017.55.6.587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/22/2017] [Accepted: 11/12/2017] [Indexed: 01/06/2023]
Abstract
The immune response against Trichinella spiralis at the intestinal level depends on the CD4+ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial predominance of the Th1 response and the subsequent domination of Th2 response, which favor the development of intestinal pathology. In this context, the glucocorticoids (GC) are the pharmacotherapy for the intestinal inflammatory response in trichinellosis. However, its therapeutic use is limited, since studies have shown that treatment with GC suppresses the host immune system, favoring T. spiralis infection. In the search for novel pharmacological strategies that inhibit the Th1 immune response (proinflammatory) and assist the host against T. spiralis infection, recent studies showed that resiniferatoxin (RTX) had anti-inflammatory activity, which decreased the serum levels of IL-12, INF-γ, IL-1β, TNF-α, NO, and PGE2, as well the number of eosinophils in the blood, associated with decreased intestinal pathology and muscle parasite burden. These researches demonstrate that RTX is capable to inhibit the production of Th1 cytokines, contributing to the defense against T. spiralis infection, which places it as a new potential drug modulator of the immune response.
Collapse
Affiliation(s)
- José Luis Muñoz-Carrillo
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México.,Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza, Nuevo León, México
| | | | | | - Claudia Maldonado-Tapia
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México
| | - Oscar Gutiérrez-Coronado
- Laboratory of Immunology, Department of Earth and Life Sciences, University Center of Los Lagos, University of Guadalajara, Lagos de Moreno, Jalisco, México
| | - Juan Francisco Contreras-Cordero
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza, Nuevo León, México
| | - María Alejandra Moreno-García
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México
| |
Collapse
|
7
|
Muñoz-Carrillo JL, Contreras-Cordero JF, Muñoz-López JL, Maldonado-Tapia CH, Muñoz-Escobedo JJ, Moreno-García MA. Resiniferatoxin modulates the Th1 immune response and protects the host during intestinal nematode infection. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/26/2017] [Indexed: 12/19/2022]
Affiliation(s)
- J. L. Muñoz-Carrillo
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
- Laboratory of Immunology and Virology, Faculty of Biological Sciences; Autonomous University of Nuevo Leon; San Nicolás de los Garza Nuevo León México
| | - J. F. Contreras-Cordero
- Laboratory of Immunology and Virology, Faculty of Biological Sciences; Autonomous University of Nuevo Leon; San Nicolás de los Garza Nuevo León México
| | | | - C. H. Maldonado-Tapia
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| | - J. J. Muñoz-Escobedo
- Academic Unit of Odontology; Autonomous University of Zacatecas; Zacatecas México
| | - M. A. Moreno-García
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| |
Collapse
|
8
|
Muñoz-Carrillo JL, Muñoz-Escobedo JJ, Maldonado-Tapia CH, Chávez-Ruvalcaba F, Moreno-García MA. Resiniferatoxin lowers TNF-α, NO and PGE2in the intestinal phase and the parasite burden in the muscular phase ofTrichinella spiralisinfection. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/18/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- J. L. Muñoz-Carrillo
- Laboratory of Cell Biology and Microbiology; Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| | - J. J. Muñoz-Escobedo
- Academic Unit of Odontology; Autonomous University of Zacatecas; Zacatecas México
| | - C. H. Maldonado-Tapia
- Laboratory of Cell Biology and Microbiology; Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| | - F. Chávez-Ruvalcaba
- Laboratory of Cell Biology and Microbiology; Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| | - M. A. Moreno-García
- Laboratory of Cell Biology and Microbiology; Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| |
Collapse
|
9
|
Roy A, Sawesi O, Pettersson U, Dagälv A, Kjellén L, Lundén A, Åbrink M. Serglycin proteoglycans limit enteropathy in Trichinella spiralis-infected mice. BMC Immunol 2016; 17:15. [PMID: 27267469 PMCID: PMC4897876 DOI: 10.1186/s12865-016-0155-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/01/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Serglycin proteoglycans are essential for maturation of secretory granules and for the correct granular storage of cationic proteases in hematopoietic cells, e.g. mast cells. However, little is known about the in vivo functions of serglycin proteoglycans during infection. Here we investigated the potential role of serglycin proteoglycans in host defense after infection with the nematode Trichinella spiralis. RESULTS Twelve days post infection lack of serglycin proteoglycans caused significantly increased enteropathy. The serglycin-deficient mice showed significantly increased intestinal worm burden, reduced recruitment of mast cells to the intestinal crypts, decreased levels of the mast cell proteases MCPT5 and MCPT6 in intestinal tissue, decreased serum levels of TNF-α, IL-1β, IL-10 and IL-13, increased levels of IL-4 and total IgE in serum, and increased intestinal levels of the neutrophil markers myeloperoxidase and elastase, as compared to wild type mice. At five weeks post infection, increased larvae burden and inflammation were seen in the muscle tissue of the serglycin-deficient mice. CONCLUSIONS Our results demonstrate that the serglycin-deficient mice were more susceptible to T. spiralis infection and displayed an unbalanced immune response compared to wild type mice. These findings point to an essential regulatory role of serglycin proteoglycans in immunity.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Osama Sawesi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Ulrika Pettersson
- Department of Pathology and Wildlife Diseases, The National Veterinary Institute, Uppsala, Sweden
| | - Anders Dagälv
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Lundén
- Department of Microbiology, The National Veterinary Institute, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden.
| |
Collapse
|
10
|
Soluble Tumor Necrosis Factor Alpha Promotes Retinal Ganglion Cell Death in Glaucoma via Calcium-Permeable AMPA Receptor Activation. J Neurosci 2015; 35:12088-102. [PMID: 26338321 DOI: 10.1523/jneurosci.1273-15.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of ocular hypertension. Administration of XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers the upregulation of Ca(2+)-permeable AMPA receptor (CP-AMPAR) expression in RGCs of glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in glaucoma. SIGNIFICANCE STATEMENT Tumor necrosis factor α (TNFα) has been implicated in retinal ganglion cell (RGC) death, but how TNFα exerts this effect is poorly understood. We report that ocular hypertension, a major risk factor in glaucoma, upregulates TNFα production by Müller cells and microglia. Inhibition of soluble TNFα using a dominant-negative strategy effectively promotes RGC survival. We find that TNFα stimulates the expression of calcium-permeable AMPA receptors (CP-AMPAR) in RGCs, a response that does not depend on abnormal GluA2 mRNA editing but on selective downregulation of the GluA2 subunit by these neurons. Consistent with this, CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA glutamate receptors in glaucomatous damage. This study identifies a novel mechanism by which glia-derived soluble TNFα modulates neuronal death in glaucoma.
Collapse
|
11
|
Pontejo SM, Alejo A, Alcami A. Poxvirus-encoded TNF decoy receptors inhibit the biological activity of transmembrane TNF. J Gen Virol 2015; 96:3118-3123. [PMID: 26242179 DOI: 10.1099/jgv.0.000255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Poxviruses encode up to four different soluble TNF receptors, named cytokine response modifier B (CrmB), CrmC, CrmD and CrmE. These proteins mimic the extracellular domain of the cellular TNF receptors to bind and inhibit the activity of TNF and, in some cases, other TNF superfamily ligands. Most of these ligands are released after the enzymic cleavage of a membrane precursor. However, transmembrane TNF (tmTNF) is not only a precursor of soluble TNF but also exerts specific pro-inflammatory and immunological activities. Here, we report that viral TNF receptors bound and inhibited tmTNF and describe some interesting differences in their activity against the soluble cytokine. Thus, CrmE, which does not inhibit mouse soluble TNF, could block murine tmTNF-induced cytotoxicity. We propose that this anti-tmTNF effect should be taken into consideration when assessing the role of viral TNF decoy receptors in the pathogenesis of poxvirus.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Centro de Biologia Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid), 28049 Madrid, Spain
| | - Ali Alejo
- Centro de Investigacion en Sanidad Animal (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria), 28130 Valdeolmos, Madrid, Spain
| | - Antonio Alcami
- Centro de Biologia Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
12
|
Oliveira-Sequeira TCG, David ÉB, Ribeiro C, Guimarães S, Masseno APB, Katagiri S, Sequeira JL. Effect of Bifidobacterium animalis on mice infected with Strongyloides venezuelensis. Rev Inst Med Trop Sao Paulo 2014; 56:105-9. [PMID: 24626410 PMCID: PMC4085849 DOI: 10.1590/s0036-46652014000200003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/23/2013] [Indexed: 11/22/2022] Open
Abstract
The administration of viable Bifidobacterium animalis was tested to induce resistance against Strongyloides venezuelensis infection in mice. Effects on parasite burden, worm length, egg output, and intestinal mucosal histology were evaluated. The oral administration of B. animalis, strain 04450B, starting 14 days before the inoculation of nematode larvae significantly decreased the worm burden and egg output. In probiotic treated animals, the percent reduction of adult worms in the intestine was of 33% and the reduction of egg production was of 21%, compared with those of the control group. The duodenum villous height and villous/crypt ratio were significantly higher in probiotic-treated mice, indicating that this group could be experiencing less intestinal damage. The present findings revealed that the administration of B. animalis for the amelioration of host response to nematode infections is biologically plausible and could have some potential for impacting public health. Meanwhile, further study is needed to delineate the nature and identity of the factor(s) involved in these beneficial effects.
Collapse
Affiliation(s)
- Teresa Cristina Goulart Oliveira-Sequeira
- Parasitology Department, Institute of Bioscience, São Paulo State University (UNESP), 18618-000BotucatuSP, Brazil, Parasitology Department, Institute of Bioscience, São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
| | - Érica Boarato David
- Parasitology Department, Institute of Bioscience, São Paulo State University (UNESP), 18618-000BotucatuSP, Brazil, Parasitology Department, Institute of Bioscience, São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
| | - Cláudia Ribeiro
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-000BotucatuSP, Brazil, College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
| | - Semíramis Guimarães
- Parasitology Department, Institute of Bioscience, São Paulo State University (UNESP), 18618-000BotucatuSP, Brazil, Parasitology Department, Institute of Bioscience, São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
| | - Ana Paula Batista Masseno
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-000BotucatuSP, Brazil, College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
| | - Satie Katagiri
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-000BotucatuSP, Brazil, College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
| | - Julio Lopes Sequeira
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-000BotucatuSP, Brazil, College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
| |
Collapse
|
13
|
Yu YR, Liu XC, Zhang JS, Ji CY, Qi YF. Taurine drinking attenuates the burden of intestinal adult worms and muscle larvae in mice with Trichinella spiralis infection. Parasitol Res 2013; 112:3457-63. [PMID: 23832642 DOI: 10.1007/s00436-013-3525-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 06/25/2013] [Indexed: 01/25/2023]
Abstract
The parasitic nematode Trichinella spiralis can cause trichinellosis, which leads to pathological processes in the intestine and muscle. The intestinal invasion determines the development, subsequent course, and consequences of the disease. Gastrointestinal nematode infection, including with T. spiralis, is accompanied by a rapid and reversible expansion of mucosal mast cell and goblet cell in the intestinal epithelium, which play important roles in the host immune response to parasite and worm expulsion from the intestine. Taurine and its derivatives have anti-infection and anti-inflammatory properties. We investigated whether taurine supplementation in mice could influence the development and pathological processes of infection with T. spiralis. Supplementing 1% taurine in drinking water in mice infected with T. spiralis could alleviate the burden of intestinal adult worms on days 7 and 10 postinfection (all p < 0.01) and the formation of infective muscle larvae in striated muscle during T. spiralis infection (p < 0.01). As compared with T. spiralis infection alone, taurine treatment increased the number of goblet cells on days 7, 10, and 15 (p < 0.01 and p < 0.05) and alleviated intestinal mucosal mast cell hyperplasia on days 10 and 15 (all p < 0.01). So taurine supplementation in drinking water increased infection-induced intestinal goblet cell hyperplasia and ameliorated mucosal mastocytosis. Thus, taurine can ameliorate the pathological processes of trichinellosis and may be of great value for the treatment and prevention of infection with T. spiralis and other gastrointestinal nematodes.
Collapse
Affiliation(s)
- Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China,
| | | | | | | | | |
Collapse
|
14
|
Hernández-Cervantes R, Quintanar-Stephano A, Moreno-Méndoza N, López-Griego L, López-Salazar V, Hernández-Bello R, Carrero JC, Morales-Montor J. Regulation of intestinal immune response by selective removal of the anterior, posterior, or entire pituitary gland in Trichinella spiralis infected golden hamsters. PLoS One 2013; 8:e59486. [PMID: 23555042 PMCID: PMC3598742 DOI: 10.1371/journal.pone.0059486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 02/14/2013] [Indexed: 12/04/2022] Open
Abstract
The influence of anterior pituitary hormones on the gastrointestinal tract of humans and animals has been previously reported. Hypophysectomy (HYPOX) in the rat causes atrophy of the intestinal mucosa, and reduction of gastric secretion and intestinal absorption, as well as increased susceptibility to bacterial and viral infections. However, to our knowledge, no findings have been published concerning the immune response following HYPOX during worm infection, particularly that which is caused by the nematode Trichinella spiralis. The aim of this work was to analyze the effects of total or partial HYPOX on colonization of T. spiralis in the intestinal lumen, together with duodenal and splenic cytokine expression. Our results indicate that 5 days post infection, only neurointermediate pituitary lobectomy (NIL) reduces the number of intestinally recovered T. spiralis larvae. Using semiquantitative inmunofluorescent laser confocal microscopy, we observed that the mean intensity of all tested Th1 cytokines was markedly diminished, even in the duodenum of infected controls. In contrast, a high level of expression of these cytokines was noted in the NIL infected hamsters. Likewise, a significant decrease in the fluorescence intensity of Th2 cytokines (with the exception of IL-4) was apparent in the duodenum of control and sham infected hamsters, compared to animals with NIL surgeries, which showed an increase in the expression of IL-5 and IL-13. Histology of duodenal mucosa from NIL hamsters showed an exacerbated inflammatory infiltrate located along the lamina propria, which was related to the presence of the parasite. We conclude that hormones from each pituitary lobe affect the gastrointestinal immune responses to T. spiralis through various mechanisms.
Collapse
Affiliation(s)
- Rosalía Hernández-Cervantes
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México Distrito Federal, México
| | - Andrés Quintanar-Stephano
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes, México
| | - Norma Moreno-Méndoza
- Departamento de Biología Celular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México Distrito Federal, México
| | - Lorena López-Griego
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México Distrito Federal, México
| | - Valeria López-Salazar
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México Distrito Federal, México
| | - Romel Hernández-Bello
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México Distrito Federal, México
- Departamento de Microbiología, Facultad de Medicina. Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, México
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México Distrito Federal, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México Distrito Federal, México
| |
Collapse
|
15
|
Brambilla R, Ashbaugh JJ, Magliozzi R, Dellarole A, Karmally S, Szymkowski DE, Bethea JR. Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. ACTA ACUST UNITED AC 2011; 134:2736-54. [PMID: 21908877 DOI: 10.1093/brain/awr199] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tumour necrosis factor is linked to the pathophysiology of various neurodegenerative disorders including multiple sclerosis. Tumour necrosis factor exists in two biologically active forms, soluble and transmembrane. Here we show that selective inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis. Treatment with XPro1595, a selective soluble tumour necrosis factor blocker, improves the clinical outcome, whereas non-selective inhibition of both forms of tumour necrosis factor with etanercept does not result in protection. The therapeutic effect of XPro1595 is associated with axon preservation and improved myelin compaction, paralleled by increased expression of axon-specific molecules (e.g. neurofilament-H) and reduced expression of non-phosphorylated neurofilament-H which is associated with axon damage. XPro1595-treated mice show significant remyelination accompanied by elevated expression of myelin-specific genes and increased numbers of oligodendrocyte precursors. Immunohistochemical characterization of tumour necrosis factor receptors in the spinal cord following experimental autoimmune encephalomyelitis shows tumour necrosis factor receptor 1 expression in neurons, oligodendrocytes and astrocytes, while tumour necrosis factor receptor 2 is localized in oligodendrocytes, oligodendrocyte precursors, astrocytes and macrophages/microglia. Importantly, a similar pattern of expression is found in post-mortem spinal cord of patients affected by progressive multiple sclerosis, suggesting that pharmacological modulation of tumour necrosis factor receptor signalling may represent an important target in affecting not only the course of mouse experimental autoimmune encephalomyelitis but human multiple sclerosis as well. Collectively, our data demonstrate that selective inhibition of soluble tumour necrosis factor improves recovery following experimental autoimmune encephalomyelitis, and that signalling mediated by transmembrane tumour necrosis factor is essential for axon and myelin preservation as well as remyelination, opening the possibility of a new avenue of treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Roberta Brambilla
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|