1
|
Hijacking and Use of Host Kinases by Chlamydiae. Pathogens 2020; 9:pathogens9121034. [PMID: 33321710 PMCID: PMC7763869 DOI: 10.3390/pathogens9121034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Chlamydia species are causative agents of sexually transmitted infections, blinding trachoma, and animal infections with zoonotic potential. Being an obligate intracellular pathogen, Chlamydia relies on the host cell for its survival and development, subverting various host cell processes throughout the infection cycle. A key subset of host proteins utilized by Chlamydia include an assortment of host kinase signaling networks which are vital for many chlamydial processes including entry, nutrient acquisition, and suppression of host cell apoptosis. In this review, we summarize the recent advancements in our understanding of host kinase subversion by Chlamydia.
Collapse
|
2
|
Gitsels A, Sanders N, Vanrompay D. Chlamydial Infection From Outside to Inside. Front Microbiol 2019; 10:2329. [PMID: 31649655 PMCID: PMC6795091 DOI: 10.3389/fmicb.2019.02329] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria’s survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Banhart S, Schäfer EK, Gensch JM, Heuer D. Sphingolipid Metabolism and Transport in Chlamydia trachomatis and Chlamydia psittaci Infections. Front Cell Dev Biol 2019; 7:223. [PMID: 31637241 PMCID: PMC6787139 DOI: 10.3389/fcell.2019.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/20/2019] [Indexed: 12/05/2022] Open
Abstract
Chlamydia species infect a large range of vertebral hosts and have become of major economic and public health concern over the last decades. They are obligate intracellular bacteria that undergo a unique cycle of development characterized by the presence of two distinct bacterial forms. After infection of the host cell, Chlamydia are found inside a membrane-bound compartment, the inclusion. The surrounding membrane of the inclusion contributes to the host-Chlamydia interface and specific pathogen-derived Inc proteins shape this interface allowing interactions with distinct cellular proteins. In contrast to many other bacteria, Chlamydia species acquire sphingomyelin from the host cell. In recent years a clearer picture of how Chlamydia trachomatis acquires this lipid emerged showing that the bacteria interact with vesicular and non-vesicular transport pathways that involve the recruitment of specific RAB proteins and the lipid-transfer protein CERT. These interactions contribute to the development of a new sphingomyelin-producing compartment inside the host cell. Interestingly, recruitment of CERT is conserved among different Chlamydia species including Chlamydia psittaci. Here we discuss our current understanding on the molecular mechanisms used by C. trachomatis and C. psittaci to establish these interactions and to create a novel sphingomyelin-producing compartment inside the host cell important for the infection.
Collapse
Affiliation(s)
- Sebastian Banhart
- Unit 'Sexually Transmitted Bacterial Infections', Department for Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Elena K Schäfer
- Unit 'Sexually Transmitted Bacterial Infections', Department for Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Jean-Marc Gensch
- Unit 'Sexually Transmitted Bacterial Infections', Department for Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Dagmar Heuer
- Unit 'Sexually Transmitted Bacterial Infections', Department for Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
4
|
Kunz TC, Kozjak-Pavlovic V. Diverse Facets of Sphingolipid Involvement in Bacterial Infections. Front Cell Dev Biol 2019; 7:203. [PMID: 31608278 PMCID: PMC6761390 DOI: 10.3389/fcell.2019.00203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
Sphingolipids are constituents of the cell membrane that perform various tasks as structural elements and signaling molecules, in addition to regulating many important cellular processes, such as apoptosis and autophagy. In recent years, it has become increasingly clear that sphingolipids and sphingolipid signaling play a vital role in infection processes. In many cases the attachment and uptake of pathogenic bacteria, as well as bacterial development and survival within the host cell depend on sphingolipids. In addition, sphingolipids can serve as antimicrobials, inhibiting bacterial growth and formation of biofilms. This review will give an overview of our current information about these various aspects of sphingolipid involvement in bacterial infections.
Collapse
Affiliation(s)
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Abstract
Both actin and microtubules are major cytoskeletal elements in eukaryotic cells that participate in many cellular processes, including cell division and motility, vesicle and organelle movement, and the maintenance of cell shape. Inside its host cell, the human pathogen Chlamydia trachomatis manipulates the cytoskeleton to promote its survival and enhance its pathogenicity. In particular, Chlamydia induces the drastic rearrangement of both actin and microtubules, which is vital for its entry, inclusion structure and development, and host cell exit. As significant progress in Chlamydia genetics has greatly enhanced our understanding of how this pathogen co-opts the host cytoskeleton, we will discuss the machinery used by Chlamydia to coordinate the reorganization of actin and microtubules.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Fabienne Paumet
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
6
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
7
|
Toledo A, Benach JL. Hijacking and Use of Host Lipids by Intracellular Pathogens. Microbiol Spectr 2015; 3:10.1128/microbiolspec.VMBF-0001-2014. [PMID: 27337282 PMCID: PMC5790186 DOI: 10.1128/microbiolspec.vmbf-0001-2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 12/14/2022] Open
Abstract
Intracellular bacteria use a number of strategies to survive, grow, multiply, and disseminate within the host. One of the most striking adaptations that intracellular pathogens have developed is the ability to utilize host lipids and their metabolism. Bacteria such as Anaplasma, Chlamydia, or Mycobacterium can use host lipids for different purposes, such as a means of entry through lipid rafts, building blocks for bacteria membrane formation, energy sources, camouflage to avoid the fusion of phagosomes and lysosomes, and dissemination. One of the most extreme examples of lipid exploitation is Mycobacterium, which not only utilizes the host lipid as a carbon and energy source but is also able to reprogram the host lipid metabolism. Likewise, Chlamydia spp. have also developed numerous mechanisms to reprogram lipids onto their intracellular inclusions. Finally, while the ability to exploit host lipids is important in intracellular bacteria, it is not an exclusive trait. Extracellular pathogens, including Helicobacter, Mycoplasma, and Borrelia, can recruit and metabolize host lipids that are important for their growth and survival.Throughout this chapter we will review how intracellular and extracellular bacterial pathogens utilize host lipids to enter, survive, multiply, and disseminate in the host.
Collapse
Affiliation(s)
- Alvaro Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Center for Infectious Diseases at the Center for Molecular Medicine, Stony Brook, NY 11794
| | - Jorge L Benach
- Department of Molecular Genetics and Microbiology, Stony Brook University, Center for Infectious Diseases at the Center for Molecular Medicine, Stony Brook, NY 11794
| |
Collapse
|
8
|
Subbarayal P, Karunakaran K, Winkler AC, Rother M, Gonzalez E, Meyer TF, Rudel T. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. PLoS Pathog 2015; 11:e1004846. [PMID: 25906164 PMCID: PMC4408118 DOI: 10.1371/journal.ppat.1004846] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/01/2015] [Indexed: 12/02/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance. Chlamydia trachomatis are major human pathogens causing ocular and sexually transmitted diseases with hundreds of millions of cases per year. Chlamydia replicate inside the host cell in a membrane bound vacuole called inclusion. The current concept on how Chlamydia communicates with the host cell during its replication is based on the identification of the host protein that interacts with Chlamydia. Here, we describe that C. trachomatis-serovar L2 and D use EphA2, a member of the largest class of human receptor tyrosine kinases, as an adherence and entry receptor that is endocytosed together with the bacteria. Cell surface EphA2 receptor is adopted by Chlamydia to function also at the inclusion to support growth and replication and to keep the infected cell in an apoptosis resistant state. Thus, we show that EphA2 is an undiscovered important surface and intracellular signaling receptor that is crucial for chlamydial infection and development.
Collapse
Affiliation(s)
- Prema Subbarayal
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Karthika Karunakaran
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Ann-Cathrin Winkler
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Marion Rother
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Steinbeis Innovation gGmbH, Center for Systems Biomedicine, Stuttgart, Germany
| | - Erik Gonzalez
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Mehlitz A, Rudel T. Modulation of host signaling and cellular responses by Chlamydia. Cell Commun Signal 2013; 11:90. [PMID: 24267514 PMCID: PMC4222901 DOI: 10.1186/1478-811x-11-90] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/19/2013] [Indexed: 01/24/2023] Open
Abstract
Modulation of host cell signaling and cellular functions is key to intracellular survival of pathogenic bacteria. Intracellular growth has several advantages e.g. escape from the humoral immune response and access to a stable nutrient rich environment. Growth in such a preferred niche comes at the price of an ongoing competition between the bacteria and the host as well as other microbes that compete for the very same host resources. This requires specialization and constant evolution of dedicated systems for adhesion, invasion and accommodation. Interestingly, obligate intracellular bacteria of the order Chlamydiales have evolved an impressive degree of control over several important host cell functions. In this review we summarize how Chlamydia controls its host cell with a special focus on signal transduction and cellular modulation.
Collapse
Affiliation(s)
- Adrian Mehlitz
- University of Wuerzburg, Biocenter, Department of Microbiology, Am Hubland, D-97074, Wuerzburg, Germany.
| | | |
Collapse
|
10
|
Vesicle-associated membrane protein 4 and syntaxin 6 interactions at the chlamydial inclusion. Infect Immun 2013; 81:3326-37. [PMID: 23798538 DOI: 10.1128/iai.00584-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The predominant players in membrane fusion events are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family of proteins. We hypothesize that SNARE proteins mediate fusion events at the chlamydial inclusion and are important for chlamydial lipid acquisition. We have previously demonstrated that trans-Golgi SNARE syntaxin 6 localizes to the chlamydial inclusion. To investigate the role of syntaxin 6 at the chlamydial inclusion, we examined the localization and function of another trans-Golgi SNARE and syntaxin 6-binding partner, vesicle-associated membrane protein 4 (VAMP4), at the chlamydial inclusion. In this study, we demonstrate that syntaxin 6 and VAMP4 colocalize to the chlamydial inclusion and interact at the chlamydial inclusion. Furthermore, in the absence of VAMP4, syntaxin 6 is not retained at the chlamydial inclusion. Small interfering RNA (siRNA) knockdown of VAMP4 inhibited chlamydial sphingomyelin acquisition, correlating with a log decrease in infectious progeny. VAMP4 retention at the inclusion was shown to be dependent on de novo chlamydial protein synthesis, but unlike syntaxin 6, VAMP4 recruitment is observed in a species-dependent manner. Notably, VAMP4 knockdown inhibits sphingomyelin trafficking only to inclusions in which it localizes. These data support the hypothesis that VAMP proteins play a central role in mediating eukaryotic vesicular interactions at the chlamydial inclusion and, thus, support chlamydial lipid acquisition and chlamydial development.
Collapse
|
11
|
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen, which lacks a system that allows genetic manipulation. Therefore, chlamydial researchers must manipulate the host cell to better understand chlamydial biology. Host-derived lipid acquisition is critical for chlamydial survival within the host. Hence, the ability to track and purify sphingolipids in/from chlamydial infected cells has become an integral part of pivotal studies in chlamydial biology. This unit outlines protocols that provide details about labeling eukaryotic cells with exogenous lipids to examine Golgi-derived lipid trafficking to the chlamydial inclusion and then performing imaging studies or lipid extractions for quantification. Details are provided to allow these protocols to be applied to subconfluent, polarized, or siRNA knockdown cells. In addition, one will find important experimental design considerations and techniques. These methods are powerful tools to aid in the understanding of mechanisms, which allow C. trachomatis to manipulate and usurp host cell trafficking pathways.
Collapse
Affiliation(s)
- Elizabeth R Moore
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
12
|
Abstract
Chlamydia species are obligate intracellular pathogens that are important causes of human genital tract, ocular and respiratory infections. The bacteria replicate within a specialized membrane-bound compartment termed the inclusion and require host-derived lipids for intracellular growth and development. Emerging evidence indicates that Chlamydia has evolved clever strategies to fulfil its lipid needs by interacting with multiple host cell compartments and redirecting trafficking pathways to its intracellular niche. In this review, we highlight recent findings that have significantly expanded our understanding of how Chlamydia exploit lipid trafficking pathways to ensure the survival of this important human pathogen.
Collapse
Affiliation(s)
- Cherilyn A Elwell
- Departments of Medicine, University of California, San Francisco, CA, USA.
| | | |
Collapse
|