1
|
Ruddell B, Hassall A, Sahin O, Plummer PJ, Zhang Q, Kreuder AJ. Small RNA CjNC110 regulates the activated methyl cycle to enable optimal chicken colonization by Campylobacter jejuni. mSphere 2025; 10:e0083224. [PMID: 39772717 PMCID: PMC11774046 DOI: 10.1128/msphere.00832-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Post-transcriptional gene regulation by non-coding small RNAs (sRNAs) is critical for colonization and survival of enteric pathogens, including the zoonotic pathogen Campylobacter jejuni. In this study, we utilized C. jejuni IA3902 (a representative isolate of the sheep abortion clone) and C. jejuni W7 (a highly motile variant of NCTC 11168, a human gastroenteritis strain) to further investigate regulation by sRNA CjNC110. Both motility and autoagglutination ability were confirmed to be phenotypes of conserved regulation by CjNC110. However, we demonstrated that W7∆CjNC110 does not change chicken colonization levels compared to W7 wild type, directly contrasting IA3902∆CjNC110, which had decreased colonization ability. Subsequently, we determined strain-specific phenotype variation between W7∆CjNC110 and IA3902∆CjNC110 when examining intracellular L-methionine (L-met) levels controlled by the activated methyl cycle (AMC). We hypothesized that the presence of a secondary system for L-met production conferred by MetAB in W7 but not IA3902 might explain the difference in both chicken colonization and L-met availability. Insertion of metAB within IA3902∆CjNC110 (naturally absent) restored intracellular L-met levels in IA3902∆CjNC110::metAB and overcame the colonization defect that resulted from mutagenesis of CjNC110 in IA3902. Deletion of metAB in W7∆CjNC110 (naturally present) led to a decrease in L-met in W7∆CjNC110∆metAB and a colonization defect which was otherwise masked in W7∆CjNC110. Our results indicate that regulation of the AMC leading to altered L-met availability is a conserved regulatory function of CjNC110 in C. jejuni and confirm that L-met generation via the AMC as activated by CjNC110 is critical for optimal host colonization.IMPORTANCEDuring this study, the regulatory action and conservation of function of CjNC110 between two different zoonotically important Campylobacter jejuni strains were examined. Critically, this work for the first time reveals regulation of L-methionine (L-met) production within the activated methyl cycle (AMC) by small RNA (sRNA) CjNC110 as a key factor driving C. jejuni optimal chicken colonization. As a growing body of evidence suggests that maintenance of L-met homeostasis appears to be critical for C. jejuni colonization, interventions targeting the AMC could provide a critical control point for therapeutic drug options to combat this zoonotic pathogen. Our results also indicate that even for conserved sRNAs such as CjNC110, strain-specific differences in phenotypes regulated by sRNAs may exist, independent of conserved regulatory action. Depending on the strain examined and accessory genomic content present, conserved regulatory actions might be masked, thus investigation in multiple strains may be warranted.
Collapse
Affiliation(s)
- Brandon Ruddell
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Alan Hassall
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Orhan Sahin
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Paul J. Plummer
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| |
Collapse
|
2
|
Corcionivoschi N, Balta I, Butucel E, McCleery D, Pet I, Iamandei M, Stef L, Morariu S. Natural Antimicrobial Mixtures Disrupt Attachment and Survival of E. coli and C. jejuni to Non-Organic and Organic Surfaces. Foods 2023; 12:3863. [PMID: 37893756 PMCID: PMC10606629 DOI: 10.3390/foods12203863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The contact and adherence of bacteria to various surfaces has significant consequences on biofilm formation through changes in bacterial surface structures or gene expression with potential ramifications on plant and animal health. Therefore, this study aimed to investigate the effect of organic acid-based mixtures (Ac) on the ability Campylobacter jejuni and Escherichia coli to attach and form biofilm on various surfaces, including plastic, chicken carcass skins, straw bedding, and eggshells. Moreover, we aimed to explore the effect of Ac on the expression of E. coli (luxS, fimC, csgD) and C. jejuni (luxS, flaA, flaB) bacterial genes involved in the attachment and biofilm formation via changes in bacterial surface polysaccharidic structures. Our results show that Ac had a significant effect on the expression of these genes in bacteria either attached to these surfaces or in planktonic cells. Moreover, the significant decrease in bacterial adhesion was coupled with structural changes in bacterial surface polysaccharide profiles, impacting their adhesion and biofilm-forming ability. Essentially, our findings accentuate the potential of natural antimicrobials, such as Ac, in reducing bacterial attachment and biofilm formation across various environments, suggesting promising potential applications in sectors like poultry production and healthcare.
Collapse
Affiliation(s)
- Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (N.C.); (E.B.); (D.M.)
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (N.C.); (E.B.); (D.M.)
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (N.C.); (E.B.); (D.M.)
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Maria Iamandei
- Research Development Institute for Plant Protection, 013813 Bucharest, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Sorin Morariu
- Faculty of Veterinary Medicine, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| |
Collapse
|
3
|
Pang J, Beyi AF, Looft T, Zhang Q, Sahin O. Fecal Microbiota Transplantation Reduces Campylobacter jejuni Colonization in Young Broiler Chickens Challenged by Oral Gavage but Not by Seeder Birds. Antibiotics (Basel) 2023; 12:1503. [PMID: 37887204 PMCID: PMC10604036 DOI: 10.3390/antibiotics12101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Campylobacter spp., particularly C. jejuni and C. coli, are major food safety concerns, transmitted to humans mainly via contaminated poultry meat. In a previous study, we found that some commercial broiler farms consistently produced Campylobacter-free flocks while others consistently reared Campylobacter-colonized flocks, and significant differences in the gut microbiota compositions between the two types of farm categories were revealed. Therefore, we hypothesized that gut microbiota influences Campylobacter colonization in poultry and that the microbiota from Campylobacter-free flocks may confer colonization resistance to Campylobacter in the chicken intestine. In this study, two fecal microbiota transplantation (FMT) trials were performed to test the hypothesis. Newly hatched chicks were given FMT via oral gavage of the cecal content of Campylobacter-free adult chickens (treatment groups) or PBS (control groups) before the feed consumption. Approximately two weeks after the FMT, the birds were challenged with C. jejuni either by oral gavage (trial 1) or by co-mingling with Campylobacter-colonized seeder birds (trial 2) to evaluate the potential protective effect of the FMT. Cecal contents were collected (3 times, 5 days apart) to determine the Campylobacter colonization levels via culture and microbiota compositions via 16S rRNA gene sequencing. FMT reduced cecal Campylobacter colonization significantly (log10 1.2-2.54 CFU/g) in trial 1 but not in trial 2, although FMT significantly impacted the diversity and compositions of the gut microbiota in both trials. Several genera, such as Butyricimonas, Parabacteroides, Parasutterella, Bilophila, Fournierella, Phascolarctobacterium, and Helicobacter, had increased abundance in the FMT-treated groups in both trials. Furthermore, Campylobacter abundance was found to be negatively correlated with the Escherichia and Ruminococcus_torques_group genera. These findings indicate that even though FMT with adult cecal microbiota can positively affect the subsequent development of the gut microbiota in young broilers, its inhibitory effect on Campylobacter colonization varies and appears to be influenced by the challenge models.
Collapse
Affiliation(s)
- Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (J.P.); (A.F.B.); (Q.Z.)
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Ashenafi Feyisa Beyi
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (J.P.); (A.F.B.); (Q.Z.)
| | - Torey Looft
- National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA;
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (J.P.); (A.F.B.); (Q.Z.)
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Al Hakeem WG, Fathima S, Shanmugasundaram R, Selvaraj RK. Campylobacter jejuni in Poultry: Pathogenesis and Control Strategies. Microorganisms 2022; 10:2134. [PMID: 36363726 PMCID: PMC9697106 DOI: 10.3390/microorganisms10112134] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
C. jejuni is the leading cause of human foodborne illness associated with poultry, beef, and pork consumption. C. jejuni is highly prevalent in commercial poultry farms, where horizontal transmission from the environment is considered to be the primary source of C. jejuni. As an enteric pathogen, C. jejuni expresses virulence factors regulated by a two-component system that mediates C. jejuni's ability to survive in the host. C. jejuni survives and reproduces in the avian intestinal mucus. The avian intestinal mucus is highly sulfated and sialylated compared with the human mucus modulating C. jejuni pathogenicity into a near commensal bacteria in poultry. Birds are usually infected from two to four weeks of age and remain colonized until they reach market age. A small dose of C. jejuni (around 35 CFU/mL) is sufficient for successful bird colonization. In the U.S., where chickens are raised under antibiotic-free environments, additional strategies are required to reduce C. jejuni prevalence on broilers farms. Strict biosecurity measures can decrease C. jejuni prevalence by more than 50% in broilers at market age. Vaccination and probiotics, prebiotics, synbiotics, organic acids, bacteriophages, bacteriocins, and quorum sensing inhibitors supplementation can improve gut health and competitively exclude C. jejuni load in broilers. Most of the mentioned strategies showed promising results; however, they are not fully implemented in poultry production. Current knowledge on C. jejuni's morphology, source of transmission, pathogenesis in poultry, and available preharvest strategies to decrease C. jejuni colonization in broilers are addressed in this review.
Collapse
Affiliation(s)
| | - Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Wang Y, Zhang Y, Song X, Fang C, Xing R, Liu L, Zhao X, Zou Y, Li L, Jia R, Ye G, Shi F, Zhou X, Zhang Y, Wan H, Wei Q, Yin Z. 1,8-Cineole inhibits biofilm formation and bacterial pathogenicity by suppressing luxS gene expression in Escherichia coli. Front Pharmacol 2022; 13:988245. [PMID: 36330093 PMCID: PMC9624193 DOI: 10.3389/fphar.2022.988245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
In recent years, with frequent reports of multi-drug resistant strains, bacteria antibiotic resistance has become an increasingly serious health problem worldwide. One of the most promising ways for combating bacterial infections and antibiotic resistance is development of quorum-sensing (QS) interfering drugs. In this study, the results show that 1,8-cineole inhibited the expression of QS as well as the virulence genes in Escherichia coli O101 (E. coli O101) with a 65% inhibition rate against luxS gene. Therefore, we hypothesized that 1,8-cineole may inhibit the biofilm formation and reduce the pathogenicity of E. coli O101 by inhibiting the expression of luxS gene. To confirm our hypotheses, a luxS gene deleted E. coli O101 was constructed. The results show that the biofilm formation, motility, structure and pathogenicity of E. coli O101 were significantly inhibited following deletion of the luxS gene. In addition, the transcript levels of QS and virulence genes of E. coli O101 were also significantly down-regulated. Interestingly, 1,8-cineole no longer had a significant inhibitory effect on the related phenotype and gene expression of E. coli O101 without luxS gene. In conclusion, the results show that 1,8-cineole can affect bacterial biofilm formation and pathogenicity by suppressing the expression of luxS gene in E. coli O101, which could provide a new perspective for dealing with the biofilm problem of pathogenic bacteria.
Collapse
Affiliation(s)
- Yiming Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Fang
- Chengdu Agricultural College, Chengdu, China
- Chengdu QianKun Veterinary Pharmaceutical Co., Ltd., Chengdu, China
| | - Rui Xing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lu Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fei Shi
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yingying Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongping Wan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qin Wei
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Elucidation of the AI-2 communication system in the food-borne pathogen Campylobacter jejuni by whole-cell-based biosensor quantification. Biosens Bioelectron 2022; 212:114439. [DOI: 10.1016/j.bios.2022.114439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 05/28/2022] [Indexed: 12/15/2022]
|
7
|
Teren M, Shagieva E, Vondrakova L, Viktorova J, Svarcova V, Demnerova K, Michova HT. Mutagenic strategies against luxS gene affect the early stage of biofilm formation of Campylobacter jejuni. J Appl Genet 2021; 63:145-157. [PMID: 34448102 DOI: 10.1007/s13353-021-00655-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022]
Abstract
Currently, it is clear that the luxS gene has an impact on the process of biofilm formation in Campylobacter jejuni. However, even within the species, naturally occurring strains of Campylobacter lacking the luxS gene exist, which can form biofilms. In order to better understand the genetic determinants and the role of quorum sensing through the LuxS/AI-2 pathway in biofilm formation, a set of mutant/complemented strains of C. jejuni 81-176 were prepared. Additionally, the impact of the mutagenic strategy used against the luxS gene was investigated. Biofilm formation was affected by both the presence and absence of the luxS gene, and by the mutagenic strategy used. Analysis by CLSM showed that all mutant strains formed significantly less biofilm mass when compared to the wild-type. Interestingly, the deletion mutant (∆luxS) showed a larger decrease in biofilm mass than the substitution (∙luxS) and insertional inactivated ([Formula: see text]luxS) mutants, even though all the mutant strains lost the ability to produce autoinducer-2 molecules. Moreover, the biofilm of the ∆luxS mutant lacked the characteristic microcolonies observed in all other strains. The complementation of all mutant strains resulted in restored ability to produce AI-2, to form a complex biofilm, and to develop microcolonies at the level of the wild-type.
Collapse
Affiliation(s)
- Martin Teren
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic.
| | - Ekaterina Shagieva
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Lucie Vondrakova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Viviana Svarcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Hana T Michova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| |
Collapse
|
8
|
Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing. Curr Top Microbiol Immunol 2021. [PMID: 33620656 DOI: 10.1007/978-3-030-65481-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Even though Campylobacter spp. are known to be fastidious organisms, they can survive within the natural environment. One mechanism to withstand unfavourable conditions is the formation of biofilms, a multicellular structure composed of different bacterial and other microbial species which are embedded in an extracellular matrix. High oxygen levels, low substrate concentrations and the presence of external DNA stimulate the biofilm formation by C. jejuni. These external factors trigger internal adaptation processes, e.g. via regulating the expression of genes encoding proteins required for surface structure formation, as well as motility, stress response and antimicrobial resistance. Known genes impacting biofilm formation will be summarized in this review. The formation of biofilms as well as the expression of virulence genes is often regulated in a cell density depending manner by quorum sensing, which is mediated via small signalling molecules termed autoinducers. Even though quorum sensing mechanisms of other bacteria are well understood, knowledge on the role of these mechanisms in C. jejuni biofilm formation is still scarce. The LuxS enzyme involved in generation of autoinducer-2 is present in C. jejuni, but autoinducer receptors have not been identified so far. Phenotypes of C. jejuni strains lacking a functional luxS like reduced growth, motility, oxygen stress tolerance, biofilm formation, adhesion, invasion and colonization are also summarized within this chapter. However, these phenotypes are highly variable in distinct C. jejuni strains and depend on the culture conditions applied.
Collapse
|
9
|
Ruddell B, Hassall A, Sahin O, Zhang Q, Plummer PJ, Kreuder AJ. Role of metAB in Methionine Metabolism and Optimal Chicken Colonization in Campylobacter jejuni. Infect Immun 2020; 89:e00542-20. [PMID: 33046508 PMCID: PMC7927925 DOI: 10.1128/iai.00542-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022] Open
Abstract
Campylobacter jejuni is a zoonotic pathogen and is one of the leading causes of human gastroenteritis worldwide. C. jejuni IA3902 (representative of the sheep abortion clone) is genetically similar to C. jejuni W7 (representative of strain type NCTC 11168); however, there are significant differences in the ability of luxS mutants of these strains to colonize chickens. LuxS is essential for the activated methyl cycle and generates homocysteine for conversion to l-methionine. Comparative genomics identified differential distribution of the genes metA and metB, which function to convert homoserine for downstream production of l-methionine, between IA3902 and W7, which could enable a secondary pathway for l-methionine biosynthesis in a W7 ΔluxS but not in an IA3902 ΔluxS strain. To test the hypothesis that the genes metA and metB contribute to l-methionine production and chicken colonization by Campylobacter, we constructed two mutants for phenotypic comparison, the W7 ΔmetAB ΔluxS and IA3902 ΔluxS::metAB mutants. Quantitative reverse transcription-PCR and tandem mass spectrometry protein analysis were used to validate MetAB transcription and translation as present in the IA3902 ΔluxS::metAB mutant and absent in the W7 ΔmetAB ΔluxS mutant. Time-resolved fluorescence resonance energy transfer fluorescence assays demonstrated that l-methionine and S-adenosyl methionine concentrations decreased in the W7 ΔmetAB ΔluxS mutant and increased in the IA3902 ΔluxS::metAB mutant. Assessment of chicken colonization revealed that the IA3902 ΔluxS::metAB strain partially rescued the colonization defect of the IA3902 ΔluxS strain, while the W7 ΔmetAB ΔluxS strain showed significantly decreased colonization compared to that of the wild-type and the W7 ΔluxS strain. These results indicate that the ability to maintain l-methionine production in vivo, conferred by metA and metB in the absence of luxS, is critical for normal chicken colonization by C. jejuni.
Collapse
Affiliation(s)
- Brandon Ruddell
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Alan Hassall
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Paul J Plummer
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Amanda J Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
10
|
Small Noncoding RNA CjNC110 Influences Motility, Autoagglutination, AI-2 Localization, Hydrogen Peroxide Sensitivity, and Chicken Colonization in Campylobacter jejuni. Infect Immun 2020; 88:IAI.00245-20. [PMID: 32366573 DOI: 10.1128/iai.00245-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Small noncoding RNAs (ncRNAs) are involved in many important physiological functions in pathogenic microorganisms. Previous studies have identified the presence of noncoding RNAs in the major zoonotic pathogen Campylobacter jejuni; however, few have been functionally characterized to date. CjNC110 is a conserved ncRNA in C. jejuni, located downstream of the luxS gene, which is responsible for the production of the quorum sensing molecule autoinducer-2 (AI-2). In this study, we utilized strand specific high-throughput RNAseq to identify potential targets or interactive partners of CjNC110 in a sheep abortion clone of C. jejuni These data were then utilized to focus further phenotypic evaluation of the role of CjNC110 in motility, autoagglutination, quorum sensing, hydrogen peroxide sensitivity, and chicken colonization in C. jejuni Inactivation of the CjNC110 ncRNA led to a statistically significant decrease in autoagglutination ability as well as increased motility and hydrogen peroxide sensitivity compared to the wild-type. Extracellular AI-2 detection was decreased in ΔCjNC110; however, intracellular AI-2 accumulation was significantly increased, suggesting a key role of CjNC110 in modulating the transport of AI-2. Notably, ΔCjNC110 also showed a decreased ability to colonize chickens. Complementation of CjNC110 restored all phenotypic changes back to wild-type levels. The collective results of the phenotypic and transcriptomic changes observed in our data provide valuable insights into the pathobiology of C. jejuni sheep abortion clone and strongly suggest that CjNC110 plays an important role in the regulation of energy taxis, flagellar glycosylation, cellular communication via quorum sensing, oxidative stress tolerance, and chicken colonization in this important zoonotic pathogen.
Collapse
|
11
|
Šimunović K, Sahin O, Kovač J, Shen Z, Klančnik A, Zhang Q, Smole Možina S. (-)-α-Pinene reduces quorum sensing and Campylobacter jejuni colonization in broiler chickens. PLoS One 2020; 15:e0230423. [PMID: 32236115 PMCID: PMC7112227 DOI: 10.1371/journal.pone.0230423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/28/2020] [Indexed: 11/25/2022] Open
Abstract
Campylobacter jejuni is one of the most prevalent causes of bacterial gastroenteritis worldwide, and it is largely associated with consumption of contaminated poultry. Current Campylobacter control measures at the poultry production level remain insufficient, and hence there is the need for alternative control strategies. We evaluated the potential of the monoterpene (-)-α-pinene for control of C. jejuni in poultry. The antibacterial and resistance-modulatory activities of (-)-α-pinene were also determined against 57 C. jejuni strains. In addition, the anti-quorum-sensing activity of (-)-α-pinene against C. jejuni NCTC 11168 was determined for three subinhibitory concentrations (125, 62.5, 31.25 mg/L) over three incubation times using an autoinducer-2 bioassay based on Vibrio harveyi BB170 bioluminescence measurements. The effects of a subinhibitory concentration of (-)-α-pinene (250 mg/L) on survival of C. jejuni, and in combination with enrofloxacin on fluoroquinolone resistance development in C. jejuni, were determined in a broiler chicken model, by addition of (-)-α-pinene to the broiler water supply. The reduction of C. jejuni numbers by (-)-α-pinene was further determined in broiler chickens that were colonized with either fluoroquinolone-susceptible or -resistant strains, by direct gavage treatment. We observed weak in vitro antimicrobial activity for (-)-α-pinene alone (MIC >500 mg/L), but strong potentiating effects on antibiotics erythromycin and ciprofloxacin against different Campylobacter strains (>512 fold change). After 24 h of treatment of C. jejuni with (-)-α-pinene, its quorum-sensing signaling was reduced by >80% compared to the untreated control. When given in the drinking water, (-)-α-pinene did not show any significant inhibitory effects on the level of C. jejuni in the colonized chickens, and did not reduce fluoroquinolone resistance development in combination with enrofloxacin. Conversely, when (-)-α-pinene was administered by direct gavage, it significantly reduced the number of fluoroquinolone susceptible C. jejuni in the colonized broiler chickens. These results demonstrate that (-)-α-pinene modulates quorum-sensing in Campylobacter, potentiates antibiotics against different Campylobacter strains, and reduces Campylobacter colonization in broiler chickens.
Collapse
Affiliation(s)
- Katarina Šimunović
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Orhan Sahin
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Jasna Kovač
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Zhangqi Shen
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Qijing Zhang
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Šimunović K, Ramić D, Xu C, Smole Možina S. Modulation of Campylobacter jejuni Motility, Adhesion to Polystyrene Surfaces, and Invasion of INT407 Cells by Quorum-Sensing Inhibition. Microorganisms 2020; 8:E104. [PMID: 31940805 PMCID: PMC7022965 DOI: 10.3390/microorganisms8010104] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen, and the LuxS-mediated quorum-sensing (QS) system influences its motility, biofilm formation, invasion, host colonization, and virulence. QS therefore represents a target for the control of C. jejuni. The aim of this study was to investigate the correlation of QS inhibition with changes in C. jejuni motility, adhesion to polystyrene surfaces, and adhesion to and invasion of INT407 cells. This was achieved by studying (i) the luxS-deficient mutant and (ii) treatment of C. jejuni with 20 natural extracts as six essential oils, 11 ethanolic extracts, and three pure compounds. Compared to the wild-type, the ΔluxS mutant showed decreased motility, adhesion to polystyrene surfaces, and invasion of INT407 cells. The anti-QS effects of the treatments (n = 15/20) were assayed using Vibrio harveyi BB170 bioluminescence. Moderate positive correlation was shown between C. jejuni QS reduction and reduced motility (τ = 0.492, p = 0.024), adhesion to polystyrene surfaces (τ = 0.419, p = 0.008), and invasion (r = 0.394, p = 0.068). The best overall effect was achieved with a Sedum rosea (roseroot) extract, with 96% QS reduction, a 1.41 log (96%) decrease in adhesion to polystyrene surfaces, and an 82% decrease in invasion. We show that natural extracts can reduce motility, adhesion to polystyrene surfaces, and invasion of INT407 cells by C. jejuni through modulation of the LuxS (QS) system.
Collapse
Affiliation(s)
- Katarina Šimunović
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia (D.R.)
| | - Dina Ramić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia (D.R.)
| | - Changyun Xu
- College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA 50011, USA;
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia (D.R.)
| |
Collapse
|
13
|
Kaur A, Capalash N, Sharma P. Communication mechanisms in extremophiles: Exploring their existence and industrial applications. Microbiol Res 2019; 221:15-27. [DOI: 10.1016/j.micres.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
14
|
Teren M, Turonova Michova H, Vondrakova L, Demnerova K. Molecules Autoinducer 2 and cjA and Their Impact on Gene Expression in Campylobacter jejuni. J Mol Microbiol Biotechnol 2019; 28:207-215. [DOI: 10.1159/000495411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/14/2018] [Indexed: 11/19/2022] Open
Abstract
Quorum sensing is a widespread form of cell-to-cell communication, which is based on the production of signaling molecules known as autoinducers (AIs). The first group contains highly species-specific N-acyl homoserine lactones (N-AHLs), generally known as AI-1, which are produced by AHL synthase. The second group, possessing the characteristic structure of a furanone ring, are known as AI-2. The enzyme responsible for their production is S-ribosylhomocysteine lyase (LuxS). In <i>Campylobacter jejuni</i>, AI-2 and LuxS play a role in many important processes, including biofilm formation, stress response, motility, expression of virulence factors, and colonization. However, neither the receptor protein nor the exact structure of the AI-2 molecule have been identified to date. Similarly, little is known about the possible existence of AHL-synthase producing AI-1 and its impact on gene expression. Recently, an analogue of homoserine lactone, called cjA, was isolated from a cell-free supernatant of <i>C. jejuni</i> strain<i></i> 81–176 and from the food isolate c11. The molecule cjA particularly impacted the expression of virulence factors and biofilm formation. This review summarizes the role of AI-2 and cjA in the context of biofilm formation, motility, stress responses, and expression of virulence factors.
Collapse
|
15
|
Kondert L, Mayer J. Reproductive Medicine in Guinea Pigs, Chinchillas and Degus. Vet Clin North Am Exot Anim Pract 2017; 20:609-628. [PMID: 28340891 DOI: 10.1016/j.cvex.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Guinea pigs, chinchillas, and degus are hystricomorph rodents originating from South America. They are commonly presented as exotic pets in veterinary practice. Reviewing the anatomy and physiology of their reproductive tract helps to offer better client education about preventive medicine and helps to act faster in emergency situations. Choosing the right anesthetic protocol helps to prevent complications. This article should aid as a guideline on the most common reproductive problems of these 3 species and help in making decisions regarding the best treatment options.
Collapse
Affiliation(s)
- Leonie Kondert
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA 30602, USA
| | - Jörg Mayer
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA 30602, USA.
| |
Collapse
|
16
|
Le Bloa S, Durand L, Cueff- Gauchard V, Le Bars J, Taupin L, Marteau C, Bazire A, Cambon-Bonavita MA. Highlighting of quorum sensing lux genes and their expression in the hydrothermal vent shrimp Rimicaris exoculata ectosymbiontic community. Possible use as biogeographic markers. PLoS One 2017; 12:e0174338. [PMID: 28328982 PMCID: PMC5362221 DOI: 10.1371/journal.pone.0174338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/07/2017] [Indexed: 01/26/2023] Open
Abstract
Rimicaris exoculata is a caridean shrimp that dominates the fauna at several hydrothermal vent sites of the Mid-Atlantic Ridge. It has two distinct and stable microbial communities. One of these epibiontic bacterial communities is located in the shrimp gut and has a distribution and role that are poorly understood. The second colonizes its enlarged gill chamber and is involved in host nutrition. It is eliminated after each molt, and has colonization processes reminiscent of those of a biofilm. The presence and expression of genes usually involved in quorum sensing (QS) were then studied. At four sites, Rainbow, TAG, Snake Pit and Logatchev, two lux genes were identified in the R. exoculata epibiontic community at different shrimp molt stages and life stages. RT-PCR experiments highlighted lux gene expression activity at TAG, Snake Pit and Rainbow vent sites. Their potential QS activity and their possible roles in epibiont colonization processes are discussed. Moreover, phylogenetic analysis has shown the presence of three clades for luxS (Epsilonproteobacteria) and four clades for luxR (Gammaproteobacteria) genes, each clade being restricted to a single site. These genes are more divergent than the 16S rRNA one. They could therefore be used as biogeographical genetic markers.
Collapse
Affiliation(s)
- Simon Le Bloa
- Ifremer, Centre Bretagne, Laboratoire de Microbiologie des Environnements Extrêmes, REM/EEP/LM2E, UMR 6197 Ifremer-CNRS-UBO, ZI Pointe du Diable, CS, Plouzané, France
- Université de Brest, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197 Ifremer-CNRS-UBO, Technopôle Iroise, 4 place Nicolas Copernic, Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197 Ifremer-CNRS-UBO, Technopôle Iroise, 4 place Nicolas Copernic, Plouzané, France
| | - Lucile Durand
- Ifremer, Centre Bretagne, Laboratoire de Microbiologie des Environnements Extrêmes, REM/EEP/LM2E, UMR 6197 Ifremer-CNRS-UBO, ZI Pointe du Diable, CS, Plouzané, France
| | - Valérie Cueff- Gauchard
- Ifremer, Centre Bretagne, Laboratoire de Microbiologie des Environnements Extrêmes, REM/EEP/LM2E, UMR 6197 Ifremer-CNRS-UBO, ZI Pointe du Diable, CS, Plouzané, France
- Université de Brest, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197 Ifremer-CNRS-UBO, Technopôle Iroise, 4 place Nicolas Copernic, Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197 Ifremer-CNRS-UBO, Technopôle Iroise, 4 place Nicolas Copernic, Plouzané, France
| | - Josiane Le Bars
- Ifremer, Centre Bretagne, Laboratoire de Microbiologie des Environnements Extrêmes, REM/EEP/LM2E, UMR 6197 Ifremer-CNRS-UBO, ZI Pointe du Diable, CS, Plouzané, France
- Université de Brest, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197 Ifremer-CNRS-UBO, Technopôle Iroise, 4 place Nicolas Copernic, Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197 Ifremer-CNRS-UBO, Technopôle Iroise, 4 place Nicolas Copernic, Plouzané, France
| | - Laure Taupin
- Université de Bretagne-Sud, EA 3884, LBCM, Rue de Saint Maudé, Lorient, France
| | - Charlotte Marteau
- Université de Bretagne-Sud, EA 3884, LBCM, Rue de Saint Maudé, Lorient, France
| | - Alexis Bazire
- Université de Bretagne-Sud, EA 3884, LBCM, Rue de Saint Maudé, Lorient, France
| | - Marie-Anne Cambon-Bonavita
- Ifremer, Centre Bretagne, Laboratoire de Microbiologie des Environnements Extrêmes, REM/EEP/LM2E, UMR 6197 Ifremer-CNRS-UBO, ZI Pointe du Diable, CS, Plouzané, France
- Université de Brest, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197 Ifremer-CNRS-UBO, Technopôle Iroise, 4 place Nicolas Copernic, Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197 Ifremer-CNRS-UBO, Technopôle Iroise, 4 place Nicolas Copernic, Plouzané, France
- * E-mail:
| |
Collapse
|
17
|
Mou KT, Plummer PJ. The impact of the LuxS mutation on phenotypic expression of factors critical for Campylobacter jejuni colonization. Vet Microbiol 2016; 192:43-51. [DOI: 10.1016/j.vetmic.2016.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/28/2022]
|
18
|
Lee S, Lee J, Ha J, Choi Y, Kim S, Lee H, Yoon Y, Choi KH. Clinical relevance of infections with zoonotic and human oral species of Campylobacter. J Microbiol 2016; 54:459-67. [PMID: 27350611 DOI: 10.1007/s12275-016-6254-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022]
Abstract
Genus Campylobacter has been recognized as a causative bacterial agent of animal and human diseases. Human Campylobacter infections have caused more concern. Campylobacters can be classified into two groups in terms of their original host: zoonotic and human oral species. The major zoonotic species are Campylobacter jejuni and Campylobacter coli, which mostly reside in the intestines of avian species and are transmitted to humans via consumption of contaminated poultry products, thus causing human gastroenteritis and other diseases as sequelae. The other campylobacters, human oral species, include C. concisus, C. showae, C. gracilis, C. ureolyticus, C. curvus, and C. rectus. These species are isolated from the oral cavity, natural colonization site, but have potential clinical relevance in the periodontal region to varying extent. Two species, C. jejuni and C. coli, are believed to be mainly associated with intestinal diseases, but recent studies suggested that oral Campylobacter species also play a significant role in intestinal diseases. This review offers an outline of the two Campylobacter groups (zoonotic and human oral), their virulence traits, and the associated illnesses including gastroenteritis.
Collapse
Affiliation(s)
- Soomin Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jeeyeon Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jimyeong Ha
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yukyung Choi
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Sejeong Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Heeyoung Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Kyoung-Hee Choi
- Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea.
| |
Collapse
|
19
|
Bezek K, Kurinčič M, Knauder E, Klančnik A, Raspor P, Bucar F, Smole Možina S. Attenuation of Adhesion, Biofilm Formation and Quorum Sensing of Campylobacter jejuni by Euodia ruticarpa. Phytother Res 2016; 30:1527-32. [PMID: 27230628 DOI: 10.1002/ptr.5658] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/01/2016] [Accepted: 05/05/2016] [Indexed: 01/21/2023]
Abstract
Thermophilic campylobacters are a major cause of bacterial food-borne diarrhoeal disease. Adherence and biofilm formation are key elements of Campylobacter jejuni persistence in unfavourable environmental conditions. The phytochemical analysis of Euodia ruticarpa fruit ethanol solution extract (EREE) indicated that the major compounds were evodiamine (1), rutaecarpine (2) and evocarpine (9). E. ruticarpa fruit ethanol solution extract, compounds 1 and 2 as well as a mixture of quinolinone alkaloids with 41.7% of 9 were tested for antibacterial, antibiofilm and antiquorum sensing activities against C. jejuni. Minimal inhibitory concentrations varied from 64 to 1024 µg/mL. A mutant strain that lacks the functional gene coding for the CmeB efflux pump protein was the most susceptible. Interestingly, in addition to the wild-type (NCTC 11168) and cmeB mutant, also a mutant that lacks autoinducer-2 production (luxS) was able to adhere (1 h) and to produce a biofilm (24, 48 and 72 h). The subinhibitory concentrations of all preparations at least partly inhibited C. jejuni adhesion and biofilm formation with the most visible effect of the quinolinone alkaloid fraction. Using a Vibrio harveyi luminescence assay, the inhibition of autoinducer-2 production was observed in the wild-type and cmeB mutant after 48 h with the most visible effect of EREE and its fraction Q. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Katja Bezek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, 1000, Slovenia.,Faculty of Health Sciences, University of Primorska, Polje 42 SI, Izola, 6310, Slovenia
| | - Marija Kurinčič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Elvira Knauder
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, 8010, Austria
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Peter Raspor
- Faculty of Health Sciences, University of Primorska, Polje 42 SI, Izola, 6310, Slovenia
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, 8010, Austria
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, 1000, Slovenia
| |
Collapse
|
20
|
Dai L, Muraoka WT, Wu Z, Sahin O, Zhang Q. A single nucleotide change in mutY increases the emergence of antibiotic-resistant Campylobacter jejuni mutants. J Antimicrob Chemother 2015; 70:2739-48. [PMID: 26169557 DOI: 10.1093/jac/dkv190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Mutator strains play an important role in the emergence of antibiotic-resistant bacteria. Campylobacter jejuni is a leading cause of foodborne illnesses worldwide and is increasingly resistant to clinically important antibiotics. The objective of this study was to identify the genetic basis that contributes to a mutator phenotype in Campylobacter and determine the role of this phenotype in the development of antibiotic resistance. METHODS A C. jejuni isolate (named CMT) showing a mutator phenotype was subjected to WGS analysis. Comparative genomics, site-specific reversion and mutation, and gene knockout were conducted to prove the mutator effect was caused by a single nucleotide change in the mutY gene of C. jejuni. RESULTS The C. jejuni CMT isolate showed ∼ 100-fold higher mutation frequency to ciprofloxacin than the WT strain. Under selection by ciprofloxacin, fluoroquinolone-resistant mutants emerged readily from the CMT isolate. WGS identified a single nucleotide change (G595 → T) in the mutY gene of the CMT isolate. Further experiments using defined mutant constructs proved its specific role in elevating mutation frequencies. The mutY point mutation also led to an ∼ 700-fold increase in the emergence of ampicillin-resistant mutants, indicating its broader impact on antibiotic resistance. Structural modelling suggested the G595 → T mutation probably affects the catalytic domain of MutY and consequently abolishes the anti-mutator function of this DNA repair protein. CONCLUSIONS The G595 → T mutation in mutY abolishes its anti-mutator function and confers a mutator phenotype in Campylobacter, promoting the emergence of antibiotic-resistant Campylobacter.
Collapse
Affiliation(s)
- Lei Dai
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Wayne T Muraoka
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Orhan Sahin
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
21
|
Mou KT, Muppirala UK, Severin AJ, Clark TA, Boitano M, Plummer PJ. A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data. Front Microbiol 2015; 5:782. [PMID: 25642218 PMCID: PMC4294202 DOI: 10.3389/fmicb.2014.00782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/20/2014] [Indexed: 12/13/2022] Open
Abstract
Campylobacter jejuni is a leading cause of human gastrointestinal disease and small ruminant abortions in the United States. The recent emergence of a highly virulent, tetracycline-resistant C. jejuni subsp. jejuni sheep abortion clone (clone SA) in the United States, and that strain's association with human disease, has resulted in a heightened awareness of the zoonotic potential of this organism. Pacific Biosciences' Single Molecule, Real-Time sequencing technology was used to explore the variation in the genome-wide methylation patterns of the abortifacient clone SA (IA3902) and phenotypically distinct gastrointestinal-specific C. jejuni strains (NCTC 11168 and 81-176). Several notable differences were discovered that distinguished the methylome of IA3902 from that of 11168 and 81-176: identification of motifs novel to IA3902, genome-specific hypo- and hypermethylated regions, strain level variability in genes methylated, and differences in the types of methylation motifs present in each strain. These observations suggest a possible role of methylation in the contrasting disease presentations of these three C. jejuni strains. In addition, the methylation profiles between IA3902 and a luxS mutant were explored to determine if variations in methylation patterns could be identified that might explain the role of LuxS-dependent methyl recycling in IA3902 abortifacient potential.
Collapse
Affiliation(s)
- Kathy T Mou
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University Ames, IA, USA
| | - Usha K Muppirala
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA, USA
| | - Andrew J Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA, USA
| | | | | | - Paul J Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University Ames, IA, USA
| |
Collapse
|
22
|
Evaluation and histological examination of a Campylobacter fetus subsp. venerealis small animal infection model. Res Vet Sci 2014; 99:1-9. [PMID: 25599935 DOI: 10.1016/j.rvsc.2014.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 11/09/2014] [Accepted: 12/03/2014] [Indexed: 11/23/2022]
Abstract
Bovine genital campylobacteriosis (BGC), caused by Campylobacter fetus subsp. venerealis, is associated with production losses in cattle worldwide. This study aimed to develop a reliable BGC guinea pig model to facilitate future studies of pathogenicity, abortion mechanisms and vaccine efficacy. Seven groups of five pregnant guinea pigs (1 control per group) were inoculated with one of three strains via intra-peritoneal (IP) or intra-vaginal routes. Samples were examined using culture, PCR and histology. Abortions ranged from 0% to 100% and re-isolation of causative bacteria from sampled sites varied with strain, dose of bacteria and time to abortion. Histology indicated metritis and placentitis, suggesting that the bacteria induce inflammation, placental detachment and subsequent abortion. Variation of virulence between strains was observed and determined by culture and abortion rates. IP administration of C. fetus subsp. venerealis to pregnant guinea pigs is a promising small animal model for the investigation of BGC abortion.
Collapse
|
23
|
Pérez-Rodríguez I, Bolognini M, Ricci J, Bini E, Vetriani C. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria. ISME JOURNAL 2014; 9:1222-34. [PMID: 25397946 DOI: 10.1038/ismej.2014.214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 12/27/2022]
Abstract
Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens.
Collapse
Affiliation(s)
- Ileana Pérez-Rodríguez
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Marie Bolognini
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Jessica Ricci
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Elisabetta Bini
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Costantino Vetriani
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
24
|
Adler L, Alter T, Sharbati S, Gölz G. Phenotypes of Campylobacter jejuni luxS mutants are depending on strain background, kind of mutation and experimental conditions. PLoS One 2014; 9:e104399. [PMID: 25093839 PMCID: PMC4122453 DOI: 10.1371/journal.pone.0104399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/14/2014] [Indexed: 11/20/2022] Open
Abstract
Since the discovery that Campylobacter (C.) jejuni produces Autoinducer 2 (AI-2), various studies have been conducted to explore the function and role of AI-2 in C. jejuni. However, the interpretation of these analyses has been complicated by differences in strain backgrounds, kind of mutation and culture conditions used. Furthermore, all research on AI-2 dependent phenotypes has been conducted with AI-2 synthase (luxS) mutants. This mutation also leads to a disruption of the activated-methyl-cycle. Most studies lack sufficient complementation resulting in not knowing whether phenotypes of luxS mutants depend on disrupted metabolism or lack of AI-2. Additionally, no AI-2 receptor has been found yet. All this contributes to an intensive discussion about the exact role of AI-2 in C. jejuni. Therefore, we examined the impact of different experiment settings on three different C. jejuni luxS mutants on growth and motility (37°C and 42°C). Our study showed that differing phenotypes of C. jejuni luxS mutants depend on strain background, mutation strategy and culture conditions. Furthermore, we complemented experiments with synthetic AI-2 or homocysteine as well as the combination of both. Complementation with AI-2 and AI-2+homocysteine significantly increased the cell number of C. jejuni NCTC 11168ΔluxS in stationary phase compared to the non-complemented C. jejuni NCTC 11168ΔluxS mutant. Genetic complementation of both C. jejuni 81-176 luxS mutants resulted in wild type comparable growth curves. Also swarming ability could be partially complemented. While genetic complementation restored swarming abilities of C. jejuni 81-176ΔluxS, it did not fully restore the phenotype of C. jejuni 81-176::luxS, which indicates that compensatory mutations in other parts of the chromosome and/or potential polar effects may appear in this mutant strain. Also with neither synthetic complementation, the phenotype of the wild type-strains was achieved, suggesting yet another reason for differing phenotypes other than communication and methionine metabolism for C. jejuni luxS mutants.
Collapse
Affiliation(s)
- Linda Adler
- Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Thomas Alter
- Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Greta Gölz
- Institute of Food Hygiene, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Díaz A, Martínez E, Puerta L, Méndez D, Rodríguez E, Fang L, Wnuk S, Vivas-Reyes R. A CoMSIA study to design antagonist ligands for the LuxS protein. NEW J CHEM 2014. [DOI: 10.1039/c3nj01162c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Gölz G, Sharbati S, Backert S, Alter T. Quorum sensing dependent phenotypes and their molecular mechanisms in Campylobacterales. Eur J Microbiol Immunol (Bp) 2012; 2:50-60. [PMID: 24611121 DOI: 10.1556/eujmi.2.2012.1.8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 12/26/2022] Open
Abstract
Quorum sensing comprises the mechanism of communication between numerous bacteria via small signalling molecules, termed autoinducers (AI). Using quorum sensing, bacteria can regulate the expression of multiple genes involved in virulence, toxin production, motility, chemotaxis and biofilm formation, thus contributing to adaptation as well as colonisation. The current understanding of the role of quorum sensing in the lifecycle of Campylobacterales is still incomplete. Campylobacterales belong to the class of Epsilonproteobacteria representing a physiologically and ecologically diverse group of bacteria that are rather distinct from the more commonly studied Proteobacteria, such as Escherichia and Salmonella. This review summarises the recent knowledge on distribution and production of AI molecules, as well as possible quorum sensing dependent regulation in the mostly investigated species within the Campylobacterales group: Campylobacter jejuni and Helicobacter pylori.
Collapse
|
27
|
Plummer PJ. LuxS and quorum-sensing in Campylobacter. Front Cell Infect Microbiol 2012; 2:22. [PMID: 22919614 PMCID: PMC3417632 DOI: 10.3389/fcimb.2012.00022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 02/14/2012] [Indexed: 11/13/2022] Open
Abstract
Several intercellular bacterial communication mechanisms have been identified in a broad range of bacterial species. These systems, collectively termed quorum-sensing systems, have been demonstrated to play significant roles in a variety of bacterial processes including motility, biofilm formation, expression of virulence genes, and animal colonization. Campylobacter jejuni is known to possess a LuxS/ autoinducer-2 (AI-2) mediated system that have been partially characterized over the last decade. AI-2 is formed as a byproduct of the activated methyl recycling pathway, specifically by the LuxS enzyme. Previous work in our laboratory and that of others has demonstrated that this gene is involved in a variety of physiologic pathways of C. jejuni including motility, autoagglutination, cytolethal distending toxin (CDT) expression, flagellar expression, oxidative stress, and animal colonization. This review article will summarize the current research associated with LuxS in C. jejuni and will provide insights into the role of this system in the metabolism and intercellular communication of this organism. Additionally, the evidence for other quorum-sensing pathways in Campylobacter will be discussed.
Collapse
Affiliation(s)
- Paul J Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA.
| |
Collapse
|