1
|
Saffarian M, Romano JD, Grigg ME, Coppens I. A major Toxoplasma serine protease inhibitor protects the parasite against gut-derived serine proteases and NETosis damage. J Biol Chem 2025; 301:108457. [PMID: 40154616 DOI: 10.1016/j.jbc.2025.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
Toxoplasmosis is a life-threatening opportunistic infection in immunocompromised patients, caused by the parasite Toxoplasma gondii. Infection is initiated through oral ingestion of Toxoplasma cysts that must survive the harsh environment of the gut to undergo excystation. Released parasites invade intestinal epithelial cells and then disseminate throughout tissues for encystation, mainly in the brain. How Toxoplasma escapes destruction mediated by gastrointestinal proteases is poorly understood. T. gondii has nine genes encoding serine protease inhibitor proteins (TgPIs). TgPI-1 is highly expressed across all Toxoplasma strains and developmental stages and contains three domains for binding to various serine proteases. Here, we explore the role of TgPI-1 in protecting Toxoplasma against serine proteases in the gut and neutrophil-derived proteases in the lamina propria. TgPI-1 localizes to the parasite plasma membrane and cyst wall. We generated ΔTgPI-1 parasites, and the mutant is more sensitive to neutrophil elastase (NE), trypsin and chymotrypsin than WT. Neutrophils exposed to Toxoplasma release neutrophil extracellular traps (NET) with strain-dependent morphologies, ranging from spiky to extended cloudy. TgPI-1 was detected on NET containing NE, and ΔTgPI-1 parasites are more susceptible to destruction by NETosis. In mice, ΔTgPI-1 parasites exhibit reduced infectivity, poor dissemination to abdominal organs, and lower cyst burden in the brain. These findings shed light on a strategy employed by Toxoplasma to counteract enzymatic antimicrobial defenses in gut tissues, highlighting potential avenues for controlling tissue dissemination of this medically significant parasite.
Collapse
Affiliation(s)
- Maryam Saffarian
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Julia D Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Lian L, Sun H, Wang J, Li W, Sheng Y, Gong X, Sun Q, Wang P, Zheng Y, Song H. Identification of the interaction between MAPK1 and Eimeria acervulina serine protease inhibitor: a preliminary functional study. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1716-1720. [PMID: 38946425 PMCID: PMC11659786 DOI: 10.3724/abbs.2024095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/30/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Liyin Lian
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - He Sun
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Jing Wang
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Wanjing Li
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Yifan Sheng
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Xinyue Gong
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Qian Sun
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Pu Wang
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Yadong Zheng
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Houhui Song
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| |
Collapse
|
3
|
Thornton LB, Key M, Micchelli C, Stasic AJ, Kwain S, Floyd K, Moreno SN, Dominy BN, Whitehead DC, Dou Z. A cathepsin C-like protease mediates the post-translation modification of Toxoplasma gondii secretory proteins for optimal invasion and egress. mBio 2023; 14:e0017423. [PMID: 37326431 PMCID: PMC10470614 DOI: 10.1128/mbio.00174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/01/2023] [Indexed: 06/17/2023] Open
Abstract
Microbial pathogens use proteases for their infections, such as digestion of proteins for nutrients and activation of their virulence factors. As an obligate intracellular parasite, Toxoplasma gondii must invade host cells to establish its intracellular propagation. To facilitate invasion, the parasites secrete invasion effectors from microneme and rhoptry, two unique organelles in apicomplexans. Previous work has shown that some micronemal invasion effectors experience a series of proteolytic cleavages within the parasite's secretion pathway for maturation, such as the aspartyl protease (TgASP3) and the cathepsin L-like protease (TgCPL), localized within the post-Golgi compartment and the endolysosomal system, respectively. Furthermore, it has been shown that the precise maturation of micronemal effectors is critical for Toxoplasma invasion and egress. Here, we show that an endosome-like compartment (ELC)-residing cathepsin C-like protease (TgCPC1) mediates the final trimming of some micronemal effectors, and its loss further results in defects in the steps of invasion, egress, and migration throughout the parasite's lytic cycle. Notably, the deletion of TgCPC1 completely blocks the activation of subtilisin-like protease 1 (TgSUB1) in the parasites, which globally impairs the surface-trimming of many key micronemal invasion and egress effectors. Additionally, we found that Toxoplasma is not efficiently inhibited by the chemical inhibitor targeting the malarial CPC ortholog, suggesting that these cathepsin C-like orthologs are structurally different within the apicomplexan phylum. Collectively, our findings identify a novel function of TgCPC1 in processing micronemal proteins within the Toxoplasma parasite's secretory pathway and expand the understanding of the roles of cathepsin C protease. IMPORTANCE Toxoplasma gondii is a microbial pathogen that is well adapted for disseminating infections. It can infect virtually all warm-blooded animals. Approximately one-third of the human population carries toxoplasmosis. During infection, the parasites sequentially secrete protein effectors from the microneme, rhoptry, and dense granule, three organelles exclusively found in apicomplexan parasites, to help establish their lytic cycle. Proteolytic cleavage of these secretory proteins is required for the parasite's optimal function. Previous work has revealed that two proteases residing within the parasite's secretory pathway cleave micronemal and rhoptry proteins, which mediate parasite invasion and egress. Here, we demonstrate that a cathepsin C-like protease (TgCPC1) is involved in processing several invasion and egress effectors. The genetic deletion of TgCPC1 prevented the complete maturation of some effectors in the parasites. Strikingly, the deletion led to a full inactivation of one surface-anchored protease, which globally impaired the trimming of some key micronemal proteins before secretion. Therefore, this finding represents a novel post-translational mechanism for the processing of virulence factors within microbial pathogens.
Collapse
Affiliation(s)
- L. Brock Thornton
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Melanie Key
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Chiara Micchelli
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Andrew J. Stasic
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Samuel Kwain
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Katherine Floyd
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Silvia N.J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Brian N. Dominy
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Daniel C. Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
4
|
Thornton LB, Key M, Micchelli C, Stasic AJ, Kwain S, Floyd K, Moreno SNJ, Dominy BN, Whitehead DC, Dou Z. A cathepsin C-like protease post-translationally modifies Toxoplasma gondii secretory proteins for optimal invasion and egress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.21.525043. [PMID: 36712013 PMCID: PMC9882377 DOI: 10.1101/2023.01.21.525043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microbial pathogens use proteases for their infections, such as digestion of proteins for nutrients and activation of their virulence factors. As an obligate intracellular parasite, Toxoplasma gondii must invade host cells to establish its intracellular propagation. To facilitate invasion, the parasites secrete invasion effectors from microneme and rhoptry, two unique organelles in apicomplexans. Previous work has shown that some micronemal invasion effectors experience a series of proteolytic cleavages within the parasite's secretion pathway for maturation, such as the aspartyl protease (TgASP3) and the cathepsin L-like protease (TgCPL), localized within the post-Golgi compartment (1) and the endolysosomal system (2), respectively. Furthermore, it has been shown that the precise maturation of micronemal effectors is critical for Toxoplasma invasion and egress (1). Here, we show that an endosome-like compartment (ELC)-residing cathepsin C-like protease (TgCPC1) mediates the final trimming of some micronemal effectors, and its loss further results in defects in the steps of invasion, egress, and migration throughout the parasite's lytic cycle. Notably, the deletion of TgCPC1 completely blocks the activation of subtilisin-like protease 1 (TgSUB1) in the parasites, which globally impairs the surface-trimming of many key micronemal invasion and egress effectors. Additionally, we found that TgCPC1 was not efficiently inhibited by the chemical inhibitor targeting its malarial ortholog, suggesting that these cathepsin C-like orthologs are structurally different within the apicomplexan phylum. Taken together, our findings identify a novel function of TgCPC1 in the processing of micronemal proteins within the secretory pathway of Toxoplasma parasites and expand the understanding of the roles of cathepsin C protease. IMPORTANCE Toxoplasma gondii is a microbial pathogen that is well adapted for disseminating infections. It can infect virtually all warm-blooded animals. Approximately one-third of the human population carries toxoplasmosis. During infection, the parasites sequentially secrete protein effectors from the microneme, rhoptry, and dense granule, three organelles exclusively found in apicomplexan parasites, to help establish their lytic cycle. Proteolytic cleavage of these secretory proteins is required for the parasite's optimal function. Previous work has revealed that two proteases residing within the parasite's secretory pathway cleave micronemal and rhoptry proteins, which mediate parasite invasion and egress. Here, we demonstrate that a cathepsin C-like protease (TgCPC1) is involved in processing several invasion and egress effectors. The genetic deletion of TgCPC1 prevented the complete maturation of some effectors in the parasites. Strikingly, the deletion led to a full inactivation of one surface-anchored protease, which globally impaired the trimming of some key micronemal proteins before secretion. Therefore, this finding represents a novel post-translational mechanism for the processing of virulence factors within microbial pathogens.
Collapse
Affiliation(s)
- L. Brock Thornton
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Melanie Key
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Chiara Micchelli
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Andrew J. Stasic
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Samuel Kwain
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Katherine Floyd
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Brian N. Dominy
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Daniel C. Whitehead
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
5
|
Pan M, Ge CC, Fan YM, Jin QW, Shen B, Huang SY. The determinants regulating Toxoplasma gondii bradyzoite development. Front Microbiol 2022; 13:1027073. [PMID: 36439853 PMCID: PMC9691885 DOI: 10.3389/fmicb.2022.1027073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular zoonotic pathogen capable of infecting almost all cells of warm-blooded vertebrates. In intermediate hosts, this parasite reproduces asexually in two forms, the tachyzoite form during acute infection that proliferates rapidly and the bradyzoite form during chronic infection that grows slowly. Depending on the growth condition, the two forms can interconvert. The conversion of tachyzoites to bradyzoites is critical for T. gondii transmission, and the reactivation of persistent bradyzoites in intermediate hosts may lead to symptomatic toxoplasmosis. However, the mechanisms that control bradyzoite differentiation have not been well studied. Here, we review recent advances in the study of bradyzoite biology and stage conversion, aiming to highlight the determinants associated with bradyzoite development and provide insights to design better strategies for controlling toxoplasmosis.
Collapse
Affiliation(s)
- Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ceng-Ceng Ge
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Zhai B, Xie S, Peng J, Qiu Y, Liu Y, Zhu X, He J, Zhang J. Glycosylation Analysis of Feline Small Intestine Following Toxoplasma gondii Infection. Animals (Basel) 2022; 12:ani12202858. [PMID: 36290246 PMCID: PMC9597833 DOI: 10.3390/ani12202858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Toxoplasma gondii has a serious impact on public health and the economic development of animal husbandry. Glycosylation, especially N-glycosylation, the pattern modification of proteins, is closely related to the biological functions of proteins, and our study used it to analyze glycosylation alterations in the small intestine of cats infected with T. gondii. The results of the present study showed that 56 glycosylated peptides were upregulated and 37 glycosylated peptides were downregulated. Additionally, we also identified eight N-glycosylated proteins of T. gondii including eight N-glycopeptides and eight N-glycosylation sites. Moreover, the protein eEF2 and its corresponding peptide sequence were identified, with GO terms (i.e., cellular process and metabolic process, cell and cell part, and catalytic activity) that were significantly enriched in the T. gondii MAPK pathway. In addition, the Clusters of Orthologous Groups of proteins (COG) function prediction results showed that posttranslational modification, protein turnover, and chaperones (11%) had the highest enrichment for T. gondii. The host proteins ICAM-1 and PPT1 and the endoplasmic reticulum stress pathway may play an important role in the glycosylation of T. gondii-infected hosts. Our study may provide a new target for T. gondii detection to prevent the spread of T. gondii oocysts in the future. Abstract Toxoplasma gondii (T. gondii) is responsible for severe human and livestock diseases, huge economic losses, and adversely affects the health of the public and the development of animal husbandry. Glycosylation is a common posttranslational modification of proteins in eukaryotes, and N-glycosylation is closely related to the biological functions of proteins. However, glycosylation alterations in the feline small intestine following T. gondii infection have not been reported. In this study, the experimental group was intragastrically challenged with 600 brain cysts of the Prugniuad (Pru) strain that were collected from infected mice. The cats’ intestinal epithelial tissues were harvested at 10 days post-infection and then sent for protein glycosylation analysis. High-performance liquid chromatography coupled to tandem mass spectrometry was used to analyze the glycosylation alterations in the small intestine of cats infected with T. gondii. The results of the present study showed that 56 glycosylated peptides were upregulated and 37 glycosylated peptides were downregulated in the feline small intestine infected by T. gondii. Additionally, we also identified eight N-glycosylated proteins of T. gondii including eight N-glycopeptides and eight N-glycosylation sites. The protein A0A086JND6_TOXGO (eEF2) and its corresponding peptide sequence were identified in T. gondii infection. Some special GO terms (i.e., cellular process and metabolic process, cell and cell part, and catalytic activity) were significantly enriched, and the Clusters of Orthologous Groups of proteins (COG) function prediction results showed that posttranslational modification, protein turnover, and chaperones (11%) had the highest enrichment for T. gondii. Interestingly, eEF2, a protein of T. gondii, is also involved in the significantly enriched T. gondii MAPK pathway. The host proteins ICAM-1 and PPT1 and the endoplasmic reticulum stress pathway may play an important role in the glycosylation of Toxoplasma-infected hosts. This is the first report showing that T. gondii oocysts can undergo N-glycosylation in the definitive host and that eEF2 is involved, which may provide a new target for T. gondii detection to prevent the spread of T. gondii oocysts in the future.
Collapse
Affiliation(s)
- Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Shichen Xie
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Junjie Peng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yanhua Qiu
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Xingquan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Junjun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (J.H.); (J.Z.)
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China
- Correspondence: (J.H.); (J.Z.)
| |
Collapse
|
7
|
Gonadal transcriptomic analysis of the mud crab Scylla olivacea infected with rhizocephalan parasite Sacculina beauforti. Genomics 2020; 112:2959-2969. [DOI: 10.1016/j.ygeno.2020.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
|
8
|
Cysteine protease 30 (CP30) contributes to adhesion and cytopathogenicity in feline Tritrichomonas foetus. Vet Parasitol 2017; 244:114-122. [DOI: 10.1016/j.vetpar.2017.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
|
9
|
Zhao G, Song X, Kong X, Zhang N, Qu S, Zhu W, Yang Y, Wang Q. Immunization with Toxoplasma gondii aspartic protease 3 increases survival time of infected mice. Acta Trop 2017; 171:17-23. [PMID: 28238685 DOI: 10.1016/j.actatropica.2017.02.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/19/2017] [Accepted: 02/06/2017] [Indexed: 01/10/2023]
Abstract
Aspartic proteases in the Toxoplasma gondii, called TgASP1, 2, 3, and 5, play essential roles in the life cycle. In a previous study, we have demonstrated that TgASP1 is an antigen that prolongs survival time of infected mice. As an in-depth study, we have investigated the protective immunity of TgSAP3. A bioinformatic analysis was used to predict the linear B-cell epitopes and potential Th-cell epitopes on TgASP3, the results suggested that it has a large number of excellent epitopes. Mice were inoculated with a recombinant eukaryotic expression vector to evaluate the immune protection against an infection with the virulent RH strain of T. gondii. The enhanced immune response and increased survival time (up to 18days) were observed for vaccinated mice, showing that the TgASP3 antigen can provides partial protection.
Collapse
Affiliation(s)
- Guanghui Zhao
- Clinical Laboratory Medicine Center, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, China.
| | - Xiaojie Song
- Department of Respiratory, Qilu Hospital of Shandong University, Qingdao, Shandong Province 255036, China.
| | - Xiangnan Kong
- Clinical Laboratory Medicine Center, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, China.
| | - Ning Zhang
- Clinical Laboratory Medicine Center, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, China.
| | - Shaoling Qu
- Clinical Laboratory Medicine Center, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, China.
| | - Wei Zhu
- Clinical Laboratory Medicine Center, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, China.
| | - Yanyan Yang
- Clinical Laboratory Medicine Center, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, China.
| | - Qian Wang
- Clinical Laboratory Medicine Center, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, China.
| |
Collapse
|
10
|
Targeted disruption of CK1α in Toxoplasma gondii increases acute virulence in mice. Eur J Protistol 2016; 56:90-101. [PMID: 27567091 DOI: 10.1016/j.ejop.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/02/2023]
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, encodes two casein kinase 1 (CK1) isoforms, CK1α and CK1β, with only CK1α having enzyme activity. Here we investigated the biological role of CK1α by construction of a CK1α deletion mutant (Δck1α) based on the type I parasite, and complement the mutant with restored expression of CK1α. Deletion of CK1α resulted in markedly defective parasite replication in vitro. Infected mice with Δck1α parasite caused suppression of IL-12 production, severe liver damage, higher tissue burdens, and short survival time relative to the CK1α-positive parental strain. Western blot analysis revealed that deletion of CK1α led to increased activation of the signal transducer and activator of transcription (STAT)-3 in infected mice and bone marrow-derived microphages. The transcriptome analysis showed that deletion of CK1α may increase expression of rhoptry proteins (ROPs). Western blot showed enhanced expression of ROP16 in the Δck1α parasite as compared with the wild-type and complemented parasites. These findings demonstrated that deletion of CK1α may increase acute virulence of T. gondii in mice by increased expression of ROPs, activation of STAT3, and suppression of IL-12 production, which have important implications for elucidating regulation mechanism of virulence factors for T. gondii.
Collapse
|
11
|
Toxoplasma gondii Cyclic AMP-Dependent Protein Kinase Subunit 3 Is Involved in the Switch from Tachyzoite to Bradyzoite Development. mBio 2016; 7:mBio.00755-16. [PMID: 27247232 PMCID: PMC4895117 DOI: 10.1128/mbio.00755-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects warm-blooded vertebrates, including humans. Asexual reproduction in T. gondii allows it to switch between the rapidly replicating tachyzoite and quiescent bradyzoite life cycle stages. A transient cyclic AMP (cAMP) pulse promotes bradyzoite differentiation, whereas a prolonged elevation of cAMP inhibits this process. We investigated the mechanism(s) by which differential modulation of cAMP exerts a bidirectional effect on parasite differentiation. There are three protein kinase A (PKA) catalytic subunits (TgPKAc1 to -3) expressed in T. gondii. Unlike TgPKAc1 and TgPKAc2, which are conserved in the phylum Apicomplexa, TgPKAc3 appears evolutionarily divergent and specific to coccidian parasites. TgPKAc1 and TgPKAc2 are distributed in the cytomembranes, whereas TgPKAc3 resides in the cytosol. TgPKAc3 was genetically ablated in a type II cyst-forming strain of T. gondii (PruΔku80Δhxgprt) and in a type I strain (RHΔku80Δhxgprt), which typically does not form cysts. The Δpkac3 mutant exhibited slower growth than the parental and complemented strains, which correlated with a higher basal rate of tachyzoite-to-bradyzoite differentiation. 3-Isobutyl-1-methylxanthine (IBMX) treatment, which elevates cAMP levels, maintained wild-type parasites as tachyzoites under bradyzoite induction culture conditions (pH 8.2/low CO2), whereas the Δpkac3 mutant failed to respond to the treatment. This suggests that TgPKAc3 is the factor responsible for the cAMP-dependent tachyzoite maintenance. In addition, the Δpkac3 mutant had a defect in the production of brain cysts in vivo, suggesting that a substrate of TgPKAc3 is probably involved in the persistence of this parasite in the intermediate host animals. Toxoplasma gondii is one of the most prevalent eukaryotic parasites in mammals, including humans. Parasites can switch from rapidly replicating tachyzoites responsible for acute infection to slowly replicating bradyzoites that persist as a latent infection. Previous studies have demonstrated that T. gondii cAMP signaling can induce or suppress bradyzoite differentiation, depending on the strength and duration of cAMP signal. Here, we report that TgPKAc3 is responsible for cAMP-dependent tachyzoite maintenance while suppressing differentiation into bradyzoites, revealing one mechanism underlying how this parasite transduces cAMP signals during differentiation.
Collapse
|
12
|
Deletion of mitogen-activated protein kinase 1 inhibits development and growth of Toxoplasma gondii. Parasitol Res 2015; 115:797-805. [DOI: 10.1007/s00436-015-4807-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/23/2015] [Indexed: 01/04/2023]
|
13
|
Ectopic expression of a Neospora caninum Kazal type inhibitor triggers developmental defects in Toxoplasma and Plasmodium. PLoS One 2015; 10:e0121379. [PMID: 25803874 PMCID: PMC4372514 DOI: 10.1371/journal.pone.0121379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/31/2015] [Indexed: 11/19/2022] Open
Abstract
Regulated proteolysis is known to control a variety of vital processes in apicomplexan parasites including invasion and egress of host cells. Serine proteases have been proposed as targets for drug development based upon inhibitor studies that show parasite attenuation and transmission blockage. Genetic studies suggest that serine proteases, such as subtilisin and rhomboid proteases, are essential but functional studies have proved challenging as active proteases are difficult to express. Proteinaceous Protease Inhibitors (PPIs) provide an alternative way to address the role of serine proteases in apicomplexan biology. To validate such an approach, a Neospora caninum Kazal inhibitor (NcPI-S) was expressed ectopically in two apicomplexan species, Toxoplasma gondii tachyzoites and Plasmodium berghei ookinetes, with the aim to disrupt proteolytic processes taking place within the secretory pathway. NcPI-S negatively affected proliferation of Toxoplasma tachyzoites, while it had no effect on invasion and egress. Expression of the inhibitor in P. berghei zygotes blocked their development into mature and invasive ookinetes. Moreover, ultra-structural studies indicated that expression of NcPI-S interfered with normal formation of micronemes, which was also confirmed by the lack of expression of the micronemal protein SOAP in these parasites. Our results suggest that NcPI-S could be a useful tool to investigate the function of proteases in processes fundamental for parasite survival, contributing to the effort to identify targets for parasite attenuation and transmission blockage.
Collapse
|
14
|
Odell AV, Tran F, Foderaro JE, Poupart S, Pathak R, Westwood NJ, Ward GE. Yeast three-hybrid screen identifies TgBRADIN/GRA24 as a negative regulator of Toxoplasma gondii bradyzoite differentiation. PLoS One 2015; 10:e0120331. [PMID: 25789621 PMCID: PMC4366382 DOI: 10.1371/journal.pone.0120331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/06/2015] [Indexed: 12/17/2022] Open
Abstract
Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite's life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.
Collapse
Affiliation(s)
- Anahi V Odell
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Fanny Tran
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Jenna E Foderaro
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Séverine Poupart
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Ravi Pathak
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Nicholas J Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
15
|
Hehl AB, Basso WU, Lippuner C, Ramakrishnan C, Okoniewski M, Walker RA, Grigg ME, Smith NC, Deplazes P. Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes. BMC Genomics 2015; 16:66. [PMID: 25757795 PMCID: PMC4340605 DOI: 10.1186/s12864-015-1225-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/07/2015] [Indexed: 12/21/2022] Open
Abstract
Background The apicomplexan parasite Toxoplasma gondii is cosmopolitan in nature, largely as a result of its highly flexible life cycle. Felids are its only definitive hosts and a wide range of mammals and birds serve as intermediate hosts. The latent bradyzoite stage is orally infectious in all warm-blooded vertebrates and establishes chronic, transmissible infections. When bradyzoites are ingested by felids, they transform into merozoites in enterocytes and expand asexually as part of their coccidian life cycle. In all other intermediate hosts, however, bradyzoites differentiate exclusively to tachyzoites, and disseminate extraintestinally to many cell types. Both merozoites and tachyzoites undergo rapid asexual population expansion, yet possess different effector fates with respect to the cells and tissues they develop in and the subsequent stages they differentiate into. Results To determine whether merozoites utilize distinct suites of genes to attach, invade, and replicate within feline enterocytes, we performed comparative transcriptional profiling on purified tachyzoites and merozoites. We used high-throughput RNA-Seq to compare the merozoite and tachyzoite transcriptomes. 8323 genes were annotated with sequence reads across the two asexually replicating stages of the parasite life cycle. Metabolism was similar between the two replicating stages. However, significant stage-specific expression differences were measured, with 312 transcripts exclusive to merozoites versus 453 exclusive to tachyzoites. Genes coding for 177 predicted secreted proteins and 64 membrane- associated proteins were annotated as merozoite-specific. The vast majority of known dense-granule (GRA), microneme (MIC), and rhoptry (ROP) genes were not expressed in merozoites. In contrast, a large set of surface proteins (SRS) was expressed exclusively in merozoites. Conclusions The distinct expression profiles of merozoites and tachyzoites reveal significant additional complexity within the T. gondii life cycle, demonstrating that merozoites are distinct asexual dividing stages which are uniquely adapted to their niche and biological purpose. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1225-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrian B Hehl
- Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, Zürich, 8057, Switzerland.
| | - Walter U Basso
- Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, Zürich, 8057, Switzerland.
| | - Christoph Lippuner
- Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, Zürich, 8057, Switzerland. .,Current address: Department of Anaesthesiology and Pain Medicine, Inselspital, University of Bern, Freiburgstrasse, Bern, 3010, Switzerland.
| | - Chandra Ramakrishnan
- Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, Zürich, 8057, Switzerland.
| | - Michal Okoniewski
- Functional Genomics Center Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.
| | - Robert A Walker
- Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, Zürich, 8057, Switzerland. .,Queensland Tropical Health Alliance Research Laboratory, Faculty of Medicine, Health and Molecular Sciences, James Cook University, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia.
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA.
| | - Nicholas C Smith
- Queensland Tropical Health Alliance Research Laboratory, Faculty of Medicine, Health and Molecular Sciences, James Cook University, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia.
| | - Peter Deplazes
- Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, Zürich, 8057, Switzerland.
| |
Collapse
|
16
|
Lee HM, Fleige A, Forman R, Cho S, Khan AA, Lin LL, Nguyen DT, O'Hara-Hall A, Yin Z, Hunter CA, Muller W, Lu LF. IFNγ signaling endows DCs with the capacity to control type I inflammation during parasitic infection through promoting T-bet+ regulatory T cells. PLoS Pathog 2015; 11:e1004635. [PMID: 25658840 PMCID: PMC4450074 DOI: 10.1371/journal.ppat.1004635] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/17/2014] [Indexed: 12/22/2022] Open
Abstract
IFNγ signaling drives dendritic cells (DCs) to promote type I T cell (Th1) immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg) cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Anne Fleige
- Technical University Braunschweig, Braunschweig, Germany
| | - Ruth Forman
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sunglim Cho
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Aly Azeem Khan
- Department of Human Genetics, Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Ling-Li Lin
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Duc T. Nguyen
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Aisling O'Hara-Hall
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhinan Yin
- The First Affiliated Hospital, International Imunology Center, The Biomedical Translational Research Institute, Key Laboratory of Molecular Immunology and Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, Guangdong, People's Republic of China,
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Werner Muller
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- Moores Cancer Center, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Transcript maturation in apicomplexan parasites. Curr Opin Microbiol 2014; 20:82-7. [PMID: 24934558 DOI: 10.1016/j.mib.2014.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/21/2023]
Abstract
The complex life cycles of apicomplexan parasites are associated with dynamic changes of protein repertoire. In Toxoplasma gondii, global analysis of gene expression demonstrates that dynamic changes in mRNA levels unfold in a serial cascade during asexual replication and up to 50% of encoded genes are unequally expressed in development. Recent studies indicate transcription and mRNA processing have important roles in fulfilling the 'just-in-time' delivery of proteins to parasite growth and development. The prominence of post-transcriptional mechanisms in the Apicomplexa was demonstrated by mechanistic studies of the critical RNA-binding proteins and regulatory kinases. However, it is still early in our understanding of how transcription and post-transcriptional mechanisms are balanced to produce adequate numbers of specialized forms that is required to complete the parasite life cycle.
Collapse
|
18
|
Expansion of the mutually exclusive spliced exome in Drosophila. Nat Commun 2013; 4:2460. [DOI: 10.1038/ncomms3460] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/19/2013] [Indexed: 12/16/2022] Open
|
19
|
Zhao G, Zhou A, Lu G, Meng M, Sun M, Bai Y, Han Y, Wang L, Zhou H, Cong H, Zhao Q, Zhu XQ, He S. Identification and characterization of Toxoplasma gondii aspartic protease 1 as a novel vaccine candidate against toxoplasmosis. Parasit Vectors 2013; 6:175. [PMID: 23768047 PMCID: PMC3691725 DOI: 10.1186/1756-3305-6-175] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/09/2013] [Indexed: 11/26/2022] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite that can pose a serious threat to human health by causing toxoplasmosis. There are no drugs that target the chronic cyst stage of this infection; therefore, development of an effective vaccine would be an important advance. Aspartic proteases play essential roles in the T. gondii lifecycle. The parasite has four aspartic protease encoding genes, which are called toxomepsin 1, 2, 3 and 5 (TgASP1, 2, 3 and 5, respectively). Methods Bioinformatics approaches have enabled us to identify several promising linear-B cell epitopes and potential Th-cell epitopes on TgASP1, thus supporting its potential as a DNA vaccine against toxoplasmosis. We expressed TgASP1 in Escherichia coli and used the purified protein to immunize BALB/c mice. The antibodies obtained were used to determine where TgASP1 was localized in the parasite. We also made a TgASP1 DNA vaccine construct and evaluated it for the level of protection conferred to mice against infection with the virulent RH strain of T. gondii. Results TgASP1 appears to be a membrane protein located primarily at the tip of the T. gondii tachyzoite. Investigation of its potential as a DNA vaccine showed that it elicited strong humoral and cellular immune responses in mice, and that these responses were mediated by Th-1 cells. Mice immunized with the vaccine had greater levels of protection against mortality following challenge with T. gondii RH tachyzoites than did those immunized with PBS or the empty vector control. Conclusions TgASP1 is a novel candidate DNA vaccine that merits further investigation.
Collapse
Affiliation(s)
- Guanghui Zhao
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15. Infect Immun 2013; 81:2156-67. [PMID: 23545295 DOI: 10.1128/iai.01185-12] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii transmission between intermediate hosts is dependent on the ingestion of walled cysts formed during the chronic phase of infection. Immediately following consumption, the parasite must ensure survival of the host by preventing adverse inflammatory responses and/or by limiting its own replication. Since the Toxoplasma secreted effectors rhoptry 16 kinase (ROP16) and dense granule 15 (GRA15) activate the JAK-STAT3/6 and NF-κB signaling pathways, respectively, we explored whether a particular combination of these effectors impacted intestinal inflammation and parasite survival in vivo. Here we report that expression of the STAT-activating version of ROP16 in the type II strain (strain II+ROP16I) promotes host resistance to oral infection only in the context of endogenous GRA15 expression. Protection was characterized by a lower intestinal parasite burden and dampened inflammation. Host resistance to the II+ROP16I strain occurred independently of STAT6 and the T cell coinhibitory receptors B7-DC and B7-H1, two receptors that are upregulated by ROP16. In addition, coexpression of ROP16 and GRA15 enhanced parasite susceptibility within tumor necrosis factor alpha/gamma interferon-stimulated macrophages in a STAT3/6-independent manner. Transcriptional profiling of infected STAT3- and STAT6-deficient macrophages and parasitized Peyer's patches from mice orally challenged with strain II+ROP16I suggested that ROP16 activated STAT5 to modulate host gene expression. Consistent with this supposition, the ROP16 kinase induced the sustained phosphorylation and nuclear localization of STAT5 in Toxoplasma-infected cells. In summary, only the combined expression of both GRA15 and ROP16 promoted host resistance to acute oral infection, and Toxoplasma may possibly target the STAT5 signaling pathway to generate protective immunity in the gut.
Collapse
|
21
|
Hassan MA, Melo MB, Haas B, Jensen KDC, Saeij JPJ. De novo reconstruction of the Toxoplasma gondii transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs. BMC Genomics 2012; 13:696. [PMID: 23231500 PMCID: PMC3543268 DOI: 10.1186/1471-2164-13-696] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/04/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, Toxoplasma gondii, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in Toxoplasma gondii is unknown. In this study, we used de novo transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in Toxoplasma and to improve the current Toxoplasma gene annotations. RESULTS We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel Toxoplasma genes, and putative non-coding RNAs. CONCLUSION RNA-seq data and de novo transcript assembly provide a robust way to update incompletely annotated genomes, like the Toxoplasma genome. We have used RNA-seq to improve the annotation of several Toxoplasma genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.
Collapse
Affiliation(s)
- Musa A Hassan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
INTRODUCTION Toxoplasma gondii, the agent that causes toxoplasmosis, is an opportunistic parasite that infects many mammalian species. It is an obligate intracellular parasite that causes severe congenital neurological and ocular disease mostly in immunocompromised humans. The current regimen of therapy includes only a few medications that often lead to hypersensitivity and toxicity. In addition, there are no vaccines available to prevent the transmission of this agent. Therefore, safer and more effective medicines to treat toxoplasmosis are urgently needed. AREAS COVERED The author presents in silico and in vitro strategies that are currently used to screen for novel targets and unique chemotypes against T. gondii. Furthermore, this review highlights the screening technologies and characterization of some novel targets and new chemical entities that could be developed into highly efficacious treatments for toxoplasmosis. EXPERT OPINION A number of diverse methods are being used to design inhibitors against T. gondii. These include ligand-based methods, in which drugs that have been shown to be efficacious against other Apicomplexa parasites can be repurposed to identify lead molecules against T. gondii. In addition, structure-based methods use currently available repertoire of structural information in various databases to rationally design small-molecule inhibitors of T. gondii. Whereas the screening methods have their advantages and limitations, a combination of methods is ideally suited to design small-molecule inhibitors of complex parasites such as T. gondii.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Drexel University College of Medicine, Institute for Molecular Medicine, Department of Microbiology and Immunology, 2900, Queen Lane, PA 19129, USA.
| |
Collapse
|
23
|
Toxoplasma on the brain: understanding host-pathogen interactions in chronic CNS infection. J Parasitol Res 2012; 2012:589295. [PMID: 22545203 PMCID: PMC3321570 DOI: 10.1155/2012/589295] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is a prevalent obligate intracellular parasite which chronically infects more than a third of the world's population. Key to parasite prevalence is its ability to form chronic and nonimmunogenic bradyzoite cysts, which typically form in the brain and muscle cells of infected mammals, including humans. While acute clinical infection typically involves neurological and/or ocular damage, chronic infection has been more recently linked to behavioral changes. Establishment and maintenance of chronic infection involves a balance between the host immunity and parasite evasion of the immune response. Here, we outline the known cellular interplay between Toxoplasma gondii and cells of the central nervous system and review the reported effects of Toxoplasma gondii on behavior and neurological disease. Finally, we review new technologies which will allow us to more fully understand host-pathogen interactions.
Collapse
|