1
|
Omole Z, Dorrell N, Elmi A, Nasher F, Gundogdu O, Wren BW. Pathogenicity and virulence of Campylobacter jejuni: What do we really know? Virulence 2024; 15:2436060. [PMID: 39648291 PMCID: PMC11633169 DOI: 10.1080/21505594.2024.2436060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis and is a major public health concern worldwide. Despite its importance, our understanding of how C. jejuni causes diarrhoea and interacts with its hosts is limited due to the absence of appropriate infection models and established virulence factors found in other enteric pathogens. Additionally, despite its genetic diversity, non-pathogenic C. jejuni strains are unknown. Regardless of these limitations, significant progress has been made in understanding how C. jejuni uses a complex array of factors which aid the bacterium to survive and respond to host defences. This review provides an update on fitness and virulence determinants of this important pathogen and questions our knowledge on these determinants that are often based on inferred genomics knowledge and surrogate infection models.
Collapse
Affiliation(s)
- Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Willer T, Kaiser A, Smith A, Rautenschlein S. Morphological and immunological characterization of primary cultured chicken caecal epithelial cells. Eur J Microbiol Immunol (Bp) 2024; 14:261-271. [PMID: 38905002 PMCID: PMC11393646 DOI: 10.1556/1886.2024.00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024] Open
Abstract
Cell cultures are models in biological and medical research to understand physiological and pathological processes. Cell lines are not always available depending on cell type and required species. In addition, the immortalization process often affects cell biology. Primary cells generally maintain a greater degree of similarity in short-term culture to the cells in tissue. Goal of this study was to verify the suitability of chicken primary epithelial caecal cells (PECCs) for in vitro investigations of host‒pathogen interactions. Epithelial nature of PECCs was confirmed by detection of tight and adherens junctions and cobblestone-like cell morphology. Sialic acids distribution was similar to that in caecal cyrosections. To understand the capacity of PECCs to respond to microbial challenges, the Toll-like receptors (TLRs) repertoire was determined. Exposure of PECCs to polyinosinic-polycytidylic acid (poly(I:C)) or lipopolysaccharide (LPS) led to upregulation of type I and III interferon (IFN) as well as interleukin (IL-) 1β, IL-6 and IL-8 mRNA expression. Overall, the PECCs showed properties of polarized epithelial cells. The presence of TLRs, their differential expression, as well as pattern recognition receptor dependent immune responses enable PECCs to act as suitable in vitro model for host‒pathogen interaction studies, which are difficult to conduct under in vivo conditions.
Collapse
Affiliation(s)
- Thomas Willer
- 1Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| | - Annette Kaiser
- 1Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| | - Adrian Smith
- 2Department of Biology, Peter Medawar Building, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Silke Rautenschlein
- 1Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| |
Collapse
|
3
|
McGrath CJ, Laveckis E, Bell A, Crost E, Juge N, Schüller S. Development of a novel human intestinal model to elucidate the effect of anaerobic commensals on Escherichia coli infection. Dis Model Mech 2022; 15:275170. [PMID: 35302159 PMCID: PMC9066490 DOI: 10.1242/dmm.049365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/10/2022] [Indexed: 01/01/2023] Open
Abstract
The gut microbiota plays a crucial role in protecting against enteric infection. However, the underlying mechanisms are largely unknown owing to a lack of suitable experimental models. Although most gut commensals are anaerobic, intestinal epithelial cells require oxygen for survival. In addition, most intestinal cell lines do not produce mucus, which provides a habitat for the microbiota. Here, we have developed a microaerobic, mucus-producing vertical diffusion chamber (VDC) model and determined the influence of Limosilactobacillus reuteri and Ruminococcus gnavus on enteropathogenic Escherichia coli (EPEC) infection. Optimization of the culture medium enabled bacterial growth in the presence of mucus-producing T84/LS174T cells. Whereas L. reuteri diminished EPEC growth and adhesion to T84/LS174T and mucus-deficient T84 epithelia, R. gnavus only demonstrated a protective effect in the presence of LS174T cells. Reduced EPEC adherence was not associated with altered type III secretion pore formation. In addition, co-culture with L. reuteri and R. gnavus dampened EPEC-induced interleukin 8 secretion. The microaerobic mucin-producing VDC system will facilitate investigations into the mechanisms underpinning colonization resistance and aid the development of microbiota-based anti-infection strategies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Conor J. McGrath
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Edgaras Laveckis
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Andrew Bell
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Emmanuelle Crost
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Nathalie Juge
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Stephanie Schüller
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK,Author for correspondence ()
| |
Collapse
|
4
|
Palma V, Gutiérrez MS, Vargas O, Parthasarathy R, Navarrete P. Methods to Evaluate Bacterial Motility and Its Role in Bacterial–Host Interactions. Microorganisms 2022; 10:microorganisms10030563. [PMID: 35336138 PMCID: PMC8953368 DOI: 10.3390/microorganisms10030563] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial motility is a widespread characteristic that can provide several advantages for the cell, allowing it to move towards more favorable conditions and enabling host-associated processes such as colonization. There are different bacterial motility types, and their expression is highly regulated by the environmental conditions. Because of this, methods for studying motility under realistic experimental conditions are required. A wide variety of approaches have been developed to study bacterial motility. Here, we present the most common techniques and recent advances and discuss their strengths as well as their limitations. We classify them as macroscopic or microscopic and highlight the advantages of three-dimensional imaging in microscopic approaches. Lastly, we discuss methods suited for studying motility in bacterial–host interactions, including the use of the zebrafish model.
Collapse
Affiliation(s)
- Victoria Palma
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - María Soledad Gutiérrez
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
| | - Orlando Vargas
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA;
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
- Correspondence:
| |
Collapse
|
5
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|
6
|
Ruiz MJ, Zbrun MV, Signorini ML, Zimmermann JA, Soto LP, Rosmini MR, Frizzo LS. In vitro screening and in vivo colonization pilot model of Lactobacillus plantarum LP5 and Campylobacter coli DSPV 458 in mice. Arch Microbiol 2021; 203:4161-4171. [PMID: 34061232 DOI: 10.1007/s00203-021-02385-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
The objective of this work was to determine the antibacterial effect of Lactobacillus plantarum strains of pork origin against Campylobacter coli strains, and to conduct experimental colonization pilot models in mice for both microorganisms. Inhibition assays allowed evaluation and selection of L. plantarum LP5 as the strain with the highest antagonistic activity against C. coli and with the best potential to be used in in vivo study. Adult 6-week-old female Balb/cCmedc mice were lodged in two groups. The treated group was administered with 9.4 log10CFU/2 times/wk of L. plantarum LP5. L. plantarum LP5 was recovered from the feces and cecum of the inoculated mice. However, when bacteria stopped being administered, probiotic counts decreased. Experimental colonization with C. coli was carried out in five groups of mice. All animals were treated with antibiotics in their drinking water to weaken the indigenous microbiota and to allow colonization of C. coli. Four groups were administered once with different C. coli strains (DSPV458: 8.49 log10CFU; DSPV567: 8.09 log10CFU; DSPV570: 8.46 log10CFU; DSPV541: 8.86 log10CFU, respectively). After 8 h, mice inoculated with different C. coli strains were colonized because the pathogen was detected in their feces. L. plantarum LP5 tolerated the gastrointestinal conditions of murine model without generating adverse effects on the animals. C. coli DSPV458 colonized the mice without causing infection by lodging in their digestive tract, thus generating a reproducible colonization model. Both models combined could be used as protection murine models against pathogens to test alternative control tools to antibiotics.
Collapse
Affiliation(s)
- M J Ruiz
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires (UNCPBA), Tandil, Province of Buenos Aires, Argentina
| | - M V Zbrun
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina
| | - M L Signorini
- Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina.,National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela (CONICET/INTA), Rafaela, Province of Santa Fe, Argentina
| | - J A Zimmermann
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina
| | - L P Soto
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina
| | - M R Rosmini
- Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina
| | - L S Frizzo
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina. .,Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina.
| |
Collapse
|
7
|
Luijkx YMCA, Bleumink NMC, Jiang J, Overkleeft HS, Wösten MMSM, Strijbis K, Wennekes T. Bacteroides fragilis fucosidases facilitate growth and invasion of Campylobacter jejuni in the presence of mucins. Cell Microbiol 2020; 22:e13252. [PMID: 32827216 PMCID: PMC7685106 DOI: 10.1111/cmi.13252] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
The enteropathogenic bacterium, Campylobacter jejuni, was considered to be non‐saccharolytic, but recently it emerged that l‐fucose plays a central role in C. jejuni virulence. Half of C. jejuni clinical isolates possess an operon for l‐fucose utilisation. In the intestinal tract, l‐fucose is abundantly available in mucin O‐linked glycan structures, but C. jejuni lacks a fucosidase enzyme essential to release the l‐fucose. We set out to determine how C. jejuni can gain access to these intestinal l‐fucosides. Growth of the fuc + C. jejuni strains, 129,108 and NCTC 11168, increased in the presence of l‐fucose while fucose permease knockout strains did not benefit from additional l‐fucose. With fucosidase assays and an activity‐based probe, we confirmed that Bacteriodes fragilis, an abundant member of the intestinal microbiota, secretes active fucosidases. In the presence of mucins, C. jejuni was dependent on B. fragilis fucosidase activity for increased growth. Campylobacter jejuni invaded Caco‐2 intestinal cells that express complex O‐linked glycan structures that contain l‐fucose. In infection experiments, C. jejuni was more invasive in the presence of B. fragilis and this increase is due to fucosidase activity. We conclude that C. jejuni fuc + strains are dependent on exogenous fucosidases for increased growth and invasion.
Collapse
Affiliation(s)
- Yvette M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nancy M C Bleumink
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jianbing Jiang
- Leiden institute of Chemistry, Leiden University, Leiden, The Netherlands.,Health Science Center, School of Pharmacy, Shenzhen University, Shenzhen, China
| | | | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tom Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Adhesion and invasion of Campylobacter jejuni in chickens with a modified gut microbiota due to antibiotic treatment. Vet Microbiol 2019; 240:108504. [PMID: 31902497 DOI: 10.1016/j.vetmic.2019.108504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/20/2022]
Abstract
Campylobacter jejuni (C. jejuni) is a predominant cause of foodborne illness in humans, while its colonization in chickens is usually asymptomatic. Antibiotics are not routinely used to treat chickens against C. jejuni, but in the face of other bacterial diseases, C. jejuni may be exposed to antibiotics. In this study, chickens were treated with antibiotics (AT) to modify the gut microbiota composition and compared with untreated chickens (Conv) with respect to changes in C. jejuni-colonization and bacterial-intestine interaction. Groups of AT and Conv chickens were inoculated after an antibiotic-withdrawal time of eight days with one of three different C. jejuni isolates to identify possible strain variations. Significantly higher numbers of colony forming units of C. jejuni were detected in the cecal content of AT birds, with higher colonization rates in the spleen and liver compared to Conv birds independent of the inoculated strain (p < 0.05). Clinical signs and histopathological lesions were only observed in C. jejuni-inoculated AT birds. For the first time we demonstrated C. jejuni invasion of the cecal mucosa in AT chickens and its inter- and intracellular localization by using antigen-straining, and electronic microscopy. This study provides the first circumstantial evidence that antibiotic treatment with lasting modification of the microbiota may provide a suitable environment for C. jejuni invasion also in chickens which may subsequently increase the risk of C. jejuni-introduction into the food chain.
Collapse
|
9
|
Anonye BO, Hassall J, Patient J, Detamornrat U, Aladdad AM, Schüller S, Rose FRAJ, Unnikrishnan M. Probing Clostridium difficile Infection in Complex Human Gut Cellular Models. Front Microbiol 2019; 10:879. [PMID: 31114553 PMCID: PMC6503005 DOI: 10.3389/fmicb.2019.00879] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Interactions of anaerobic gut bacteria, such as Clostridium difficile, with the intestinal mucosa have been poorly studied due to challenges in culturing anaerobes with the oxygen-requiring gut epithelium. Although gut colonization by C. difficile is a key determinant of disease outcome, precise mechanisms of mucosal attachment and spread remain unclear. Here, using human gut epithelial monolayers co-cultured within dual environment chambers, we demonstrate that C. difficile adhesion to gut epithelial cells is accompanied by a gradual increase in bacterial numbers. Prolonged infection causes redistribution of actin and loss of epithelial integrity, accompanied by production of C. difficile spores, toxins, and bacterial filaments. This system was used to examine C. difficile interactions with the commensal Bacteroides dorei, and interestingly, C. difficile growth is significantly reduced in the presence of B. dorei. Subsequently, we have developed novel models containing a myofibroblast layer, in addition to the epithelium, grown on polycarbonate or three-dimensional (3D) electrospun scaffolds. In these more complex models, C. difficile adheres more efficiently to epithelial cells, as compared to the single epithelial monolayers, leading to a quicker destruction of the epithelium. Our study describes new controlled environment human gut models that enable host-anaerobe and pathogen-commensal interaction studies in vitro.
Collapse
Affiliation(s)
- Blessing O. Anonye
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jack Hassall
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jamie Patient
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Usanee Detamornrat
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Afnan M. Aladdad
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie Schüller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Felicity R. A. J. Rose
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Meera Unnikrishnan
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
10
|
Horn N, Bhunia AK. Food-Associated Stress Primes Foodborne Pathogens for the Gastrointestinal Phase of Infection. Front Microbiol 2018; 9:1962. [PMID: 30190712 PMCID: PMC6115488 DOI: 10.3389/fmicb.2018.01962] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
The incidence of foodborne outbreaks and product recalls is on the rise. The ability of the pathogen to adapt and survive under stressful environments of food processing and the host gastrointestinal tract may contribute to increasing foodborne illnesses. In the host, multiple factors such as bacteriolytic enzymes, acidic pH, bile, resident microflora, antimicrobial peptides, and innate and adaptive immune responses are essential in eliminating pathogens. Likewise, food processing and preservation techniques are employed to eliminate or reduce human pathogens load in food. However, sub-lethal processing or preservation treatments may evoke bacterial coping mechanisms that alter gene expression, specifically and broadly, resulting in resistance to the bactericidal insults. Furthermore, environmentally cued changes in gene expression can lead to changes in bacterial adhesion, colonization, invasion, and toxin production that contribute to pathogen virulence. The shared microenvironment between the food preservation techniques and the host gastrointestinal tract drives microbes to adapt to the stressful environment, resulting in enhanced virulence and infectivity during a foodborne illness episode.
Collapse
Affiliation(s)
- Nathan Horn
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
11
|
Islam Z, Sarker SK, Jahan I, Farzana KS, Ahmed D, Faruque ASG, Guerry P, Poly F, Heikema AP, Endtz HP. Capsular genotype and lipooligosaccharide locus class distribution in Campylobacter jejuni from young children with diarrhea and asymptomatic carriers in Bangladesh. Eur J Clin Microbiol Infect Dis 2017; 37:723-728. [PMID: 29270862 DOI: 10.1007/s10096-017-3165-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 11/27/2017] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni-related diarrheal diseases is one of the major health issues among young children (0-59 months old) in low-income countries. Monitoring of the capsular (capsule polysaccharide, CPS) types of virulent C. jejuni strains in regions where the disease is endemic is of great importance for the development of a customized capsule-based multivalent vaccine. Therefore, we aimed to determine the prevalence of CPS genotypes among C. jejuni strains isolated from young children with enteritis (n = 152) and asymptomatic carriers matched by age, sex, and residence defined as the control group (n = 215) in Bangladesh. CPS genotyping was performed using a newly established multiplex polymerase chain reaction (PCR) method and lipooligosaccharide (LOS) locus classes (A-E) were characterized using PCR as well. We identified 24 different CPS genotypes among the 367 isolates. Four prevalent capsular types, HS5/31 complex (n = 27, 18%), HS3 (n = 26, 17%), HS4A (n = 10, 7%), and HS8/17 (n = 10, 7%) covered almost 50% of the strains from enteritis patients and 43% of the isolates from controls. In combination, the CPS genotype and LOS class was not discriminative between cases and controls. Dominant capsular types previously identified in C. jejuni strains isolated from patients with Guillain-Barré syndrome in Bangladesh were rarely detected in strains isolated from the young children. A similar distribution was evident among enteritis- and control-related strains when comparison was done between CPS types and LOS classes. This is the first systematic study presenting the distribution of CPS genotypes of C. jejuni strains isolated in Bangladesh from children with diarrhea and controls, with capsular genotypes HS5/31 complex, HS3, HS4A, and HS8/17 being prevalent in both. In conclusion, systematic studies are required to develop a multivalent capsule-based vaccine for children in low-income countries.
Collapse
Affiliation(s)
- Z Islam
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research (icddr,b), GPO Box-128, Dhaka, 1000, Bangladesh.
| | - S K Sarker
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research (icddr,b), GPO Box-128, Dhaka, 1000, Bangladesh
| | - I Jahan
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research (icddr,b), GPO Box-128, Dhaka, 1000, Bangladesh
| | - K S Farzana
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research (icddr,b), GPO Box-128, Dhaka, 1000, Bangladesh
| | - D Ahmed
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research (icddr,b), GPO Box-128, Dhaka, 1000, Bangladesh
| | - A S G Faruque
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Dhaka, Bangladesh
| | - P Guerry
- Naval Medical Research Center, Silver Spring, MD, USA
| | - F Poly
- Naval Medical Research Center, Silver Spring, MD, USA
| | - A P Heikema
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - H P Endtz
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research (icddr,b), GPO Box-128, Dhaka, 1000, Bangladesh.,Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Fondation Mérieux, Lyon, France
| |
Collapse
|
12
|
Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes. J Ind Microbiol Biotechnol 2016; 44:647-658. [PMID: 27800562 DOI: 10.1007/s10295-016-1851-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Microaerobic growth is of importance in ecological niches, pathogenic infections and industrial production of chemicals. The use of low levels of oxygen enables the cell to gain energy and grow more robustly in the presence of a carbon source that can be oxidized and provide electrons to the respiratory chain in the membrane. A considerable amount of information is available on the genes and proteins involved in respiratory growth and the regulation of genes involved in aerobic and anaerobic metabolism. The dependence of regulation on sensing systems that respond to reduced quinones (e.g. ArcB) or oxygen levels that affect labile redox components of transcription regulators (Fnr) are key in understanding the regulation. Manipulation of the amount of respiration can be difficult to control in dense cultures or inadequately mixed reactors leading to inhomogeneous cultures that may have lower than optimal performance. Efforts to control respiration through genetic means have been reported and address mutations affecting components of the electron transport chain. In a recent report completion for intermediates of the ubiquinone biosynthetic pathway was used to dial the level of respiration vs lactate formation in an aerobically grown E. coli culture.
Collapse
|
13
|
Mortensen NP, Mercier KA, McRitchie S, Cavallo TB, Pathmasiri W, Stewart D, Sumner SJ. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways. Biomed Microdevices 2016; 18:51. [PMID: 27231016 PMCID: PMC4939818 DOI: 10.1007/s10544-016-0076-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Systems and Translational Sciences Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA.
| | - Kelly A Mercier
- Systems and Translational Sciences Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, Systems and Translational Sciences, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709-2194, USA
| | - Susan McRitchie
- Systems and Translational Sciences Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, Systems and Translational Sciences, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709-2194, USA
| | - Tammy B Cavallo
- Systems and Translational Sciences Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, Systems and Translational Sciences, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709-2194, USA
| | - Wimal Pathmasiri
- Systems and Translational Sciences Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, Systems and Translational Sciences, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709-2194, USA
| | - Delisha Stewart
- Systems and Translational Sciences Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, Systems and Translational Sciences, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709-2194, USA
| | - Susan J Sumner
- Systems and Translational Sciences Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA.
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, Systems and Translational Sciences, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709-2194, USA.
| |
Collapse
|
14
|
Pancreatic amylase is an environmental signal for regulation of biofilm formation and host interaction in Campylobacter jejuni. Infect Immun 2015; 83:4884-95. [PMID: 26438798 DOI: 10.1128/iai.01064-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/30/2015] [Indexed: 01/19/2023] Open
Abstract
Campylobacter jejuni is a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran by C. jejuni and that a secreted protease, Cj0511, is required. Exposure of C. jejuni to pancreatic amylase promotes biofilm formation in vitro, increases interaction with human epithelial cell lines, increases virulence in the Galleria mellonella infection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protects C. jejuni from stress conditions in vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism.
Collapse
|
15
|
Mitra A, Fay PA, Vendura KW, Alla Z, Carroll RK, Shaw LN, Riordan JT. σ(N) -dependent control of acid resistance and the locus of enterocyte effacement in enterohemorrhagic Escherichia coli is activated by acetyl phosphate in a manner requiring flagellar regulator FlhDC and the σ(S) antagonist FliZ. Microbiologyopen 2014; 3:497-512. [PMID: 24931910 PMCID: PMC4287178 DOI: 10.1002/mbo3.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 12/02/2022] Open
Abstract
In enterohemorrhagic Escherichia coli (EHEC), sigma factor N (σN) regulates glutamate-dependent acid resistance (GDAR) and the locus of enterocyte effacement (LEE); discrete genetic systems that are required for transmission and virulence of this intestinal pathogen. Regulation of these systems requires nitrogen regulatory protein C, NtrC, and is a consequence of NtrC-σN-dependent reduction in the activity of sigma factor S (σS). This study elucidates pathway components and stimuli for σN-directed regulation of GDAR and the LEE in EHEC. Deletion of fliZ, the product of which reduces σS activity, phenocopied rpoN (σN) and ntrC null strains for GDAR and LEE control, acid resistance, and adherence. Upregulation of fliZ by NtrC-σN was shown to be indirect and required an intact flagellar regulator flhDC. Activation of flhDC by NtrC-σN and FlhDC-dependent regulation of GDAR and the LEE was dependent on σN-promoter flhDP2, and a newly described NtrC upstream activator sequence. Addition of ammonium chloride significantly altered expression of GDAR and LEE, acid resistance, and adherence, independently of rpoN, ntrC, and the NtrC sensor kinase, ntrB. Altering the availability of NtrC phosphodonor acetyl phosphate by growth without glucose, with acetate addition, or by deletion of acetate kinase ackA, abrogated NtrC-σN-dependent control of flhDC, fliZ, GDAR, and the LEE.
Collapse
Affiliation(s)
- Avishek Mitra
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, 33620
| | | | | | | | | | | | | |
Collapse
|
16
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
17
|
Tran SL, Billoud L, Lewis SB, Phillips AD, Schüller S. Shiga toxin production and translocation during microaerobic human colonic infection with Shiga toxin-producing E. coli O157:H7 and O104:H4. Cell Microbiol 2014; 16:1255-66. [PMID: 24612002 PMCID: PMC4231982 DOI: 10.1111/cmi.12281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 12/30/2022]
Abstract
Haemolytic uraemic syndrome caused by Shiga toxin-producing E. coli (STEC) is dependent on release of Shiga toxins (Stxs) during intestinal infection and subsequent absorption into the bloodstream. An understanding of Stx-related events in the human gut is limited due to lack of suitable experimental models. In this study, we have used a vertical diffusion chamber system with polarized human colon carcinoma cells to simulate the microaerobic (MA) environment in the human intestine and investigate its influence on Stx release and translocation during STEC O157:H7 and O104:H4 infection. Stx2 was the major toxin type released during infection. Whereas microaerobiosis significantly reduced bacterial growth as well as Stx production and release into the medium, Stx translocation across the epithelial monolayer was enhanced under MA versus aerobic conditions. Increased Stx transport was dependent on STEC infection and occurred via a transcellular pathway other than macropinocytosis. While MA conditions had a similar general effect on Stx release and absorption during infection with STEC O157:H7 and O104:H4, both serotypes showed considerable differences in colonization, Stx production, and Stx translocation which suggest alternative virulence strategies. Taken together, our study suggests that the MA environment in the human colon may modulate Stx-related events and enhance Stx absorption during STEC infection.
Collapse
Affiliation(s)
- Seav-Ly Tran
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK; Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| | | | | | | | | |
Collapse
|
18
|
Naz N, Mills DC, Wren BW, Dorrell N. Enteric bacterial invasion of intestinal epithelial cells in vitro is dramatically enhanced using a vertical diffusion chamber model. J Vis Exp 2013:e50741. [PMID: 24192850 DOI: 10.3791/50741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The interactions of bacterial pathogens with host cells have been investigated extensively using in vitro cell culture methods. However as such cell culture assays are performed under aerobic conditions, these in vitro models may not accurately represent the in vivo environment in which the host-pathogen interactions take place. We have developed an in vitro model of infection that permits the coculture of bacteria and host cells under different medium and gas conditions. The Vertical Diffusion Chamber (VDC) model mimics the conditions in the human intestine where bacteria will be under conditions of very low oxygen whilst tissue will be supplied with oxygen from the blood stream. Placing polarized intestinal epithelial cell (IEC) monolayers grown in Snapwell inserts into a VDC creates separate apical and basolateral compartments. The basolateral compartment is filled with cell culture medium, sealed and perfused with oxygen whilst the apical compartment is filled with broth, kept open and incubated under microaerobic conditions. Both Caco-2 and T84 IECs can be maintained in the VDC under these conditions without any apparent detrimental effects on cell survival or monolayer integrity. Coculturing experiments performed with different C. jejuni wild-type strains and different IEC lines in the VDC model with microaerobic conditions in the apical compartment reproducibly result in an increase in the number of interacting (almost 10-fold) and intracellular (almost 100-fold) bacteria compared to aerobic culture conditions. The environment created in the VDC model more closely mimics the environment encountered by C. jejuni in the human intestine and highlights the importance of performing in vitro infection assays under conditions that more closely mimic the in vivo reality. We propose that use of the VDC model will allow new interpretations of the interactions between bacterial pathogens and host cells.
Collapse
Affiliation(s)
- Neveda Naz
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine
| | | | | | | |
Collapse
|
19
|
Backert S, Boehm M, Wessler S, Tegtmeyer N. Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both? Cell Commun Signal 2013; 11:72. [PMID: 24079544 PMCID: PMC3850506 DOI: 10.1186/1478-811x-11-72] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/18/2013] [Indexed: 02/08/2023] Open
Abstract
Intact intercellular junctions and cellular matrix contacts are crucial structural components for the formation and maintenance of epithelial barrier functions in humans to control the commensal flora and protect against intruding microbes. Campylobacter jejuni is one of the most important zoonotic pathogens causing food-borne gastroenteritis and potentially more severe diseases such as reactive arthritis or Guillain–Barré syndrome. Crossing the intestinal epithelial barrier and host cell invasion by C. jejuni are considered to represent the primary reasons of gut tissue damage in humans and various animal model systems including monkeys, piglets, rabbits, hamsters and ferrets. C. jejuni is also able to invade underlying tissues such as the lamina propria, can enter the bloodstream, and possibly reach distinct organs such as spleen, liver or mesenteric lymph nodes. However, the molecular mechanisms as well as major bacterial and host cell factors involved in these activities are poorly understood. Various models exist by which the pathogen can trigger its own transmigration across polarized intestinal epithelial cells in vitro, the paracellular and/or transcellular mechanism. Recent studies suggest that bacterial factors such as flagellum, serine protease HtrA and lipooligosaccharide LOS may play an active role in bacterial transmigration. Here we review our knowledge on transmigration of C. jejuni as well as some other Campylobacter species, and discuss the pros and cons for the route(s) taken to travel across polarized epithelial cell monolayers. These studies provide fresh insights into the infection strategies employed by this important pathogen.
Collapse
Affiliation(s)
- Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen/Nuremberg, Staudtstr, 5, D-91058, Erlangen, Germany.
| | | | | | | |
Collapse
|
20
|
The design of a capsule polysaccharide conjugate vaccine against Campylobacter jejuni serotype HS15. Carbohydr Res 2012; 366:45-9. [PMID: 23261782 DOI: 10.1016/j.carres.2012.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/13/2012] [Accepted: 11/26/2012] [Indexed: 01/22/2023]
Abstract
Campylobacter jejuni infection is now the main cause of diarrhea-related illnesses in humans. An efficacious vaccine for the traveler and developing world market would be welcomed. We are engaged in the discovery and characterization of serotype-specific C. jejuni capsule polysaccharides (CPSs) to study their role in virulence and as protective vaccine antigens. Our prototype conjugate vaccine with serotype HS23 CPS (strain 81-176) has been shown to fully protect non-human primates against diarrhea inflicted by C. jejuni HS23, but ultimately, a useful CPS-based vaccine will have to be multivalent. To this end, we describe here the creation of a CPS-conjugate vaccine against C. jejuni serotype HS15. Structural analysis revealed that a repeating block consisting of L-α-arabinofuranose (Ara) and 6-deoxy-L-α-gulo-heptopyranose (6d-gulo-Hep) comprised the CPS of serotype HS15 type strain ATCC 43442 [→3)-α-L-Araf-(1→3)-6d-L-α-gulo-Hepp(1→](n). Strategically, the non-reducing end of the CPS was activated and used in the attachment of CPS to CRM₁₉₇ to yield a conjugate vaccine. A serological assessment of the CPS(HS15)-CRM₁₉₇ conjugate with an anti-HS15 polyclonal antibody confirmed the conservation of antigenic epitopes, and subsequent inoculation of mice with CPS(HS15)-CRM₁₉₇ revealed that this conjugate was indeed capable of raising anti-CPS(HS15) antibodies.
Collapse
|
21
|
Brul S, Bassett J, Cook P, Kathariou S, McClure P, Jasti P, Betts R. ‘Omics’ technologies in quantitative microbial risk assessment. Trends Food Sci Technol 2012. [DOI: 10.1016/j.tifs.2012.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Klitgaard K, Friis C, Jensen TK, Angen Ø, Boye M. Transcriptional portrait of Actinobacillus pleuropneumoniae during acute disease--potential strategies for survival and persistence in the host. PLoS One 2012; 7:e35549. [PMID: 22530048 PMCID: PMC3328466 DOI: 10.1371/journal.pone.0035549] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/21/2012] [Indexed: 11/24/2022] Open
Abstract
Background Gene expression profiles of bacteria in their natural hosts can provide novel insight into the host-pathogen interactions and molecular determinants of bacterial infections. In the present study, the transcriptional profile of the porcine lung pathogen Actinobacillus pleuropneumoniae was monitored during the acute phase of infection in its natural host. Methodology/Principal Findings Bacterial expression profiles of A. pleuropneumoniae isolated from lung lesions of 25 infected pigs were compared in samples taken 6, 12, 24 and 48 hours post experimental challenge. Within 6 hours, focal, fibrino hemorrhagic lesions could be observed in the pig lungs, indicating that A. pleuropneumoniae had managed to establish itself successfully in the host. We identified 237 differentially regulated genes likely to encode functions required by the bacteria for colonization and survival in the host. This group was dominated by genes involved in various aspects of energy metabolism, especially anaerobic respiration and carbohydrate metabolism. Remodeling of the bacterial envelope and modifications of posttranslational processing of proteins also appeared to be of importance during early infection. The results suggested that A. pleuropneumoniae is using various strategies to increase its fitness, such as applying Na+ pumps as an alternative way of gaining energy. Furthermore, the transcriptional data provided potential clues as to how A. pleuropneumoniae is able to circumvent host immune factors and survive within the hostile environment of host macrophages. This persistence within macrophages may be related to urease activity, mobilization of various stress responses and active evasion of the host defenses by cell surface sialylation. Conclusions/Significance The data presented here highlight the importance of metabolic adjustments to host conditions as virulence factors of infecting microorganisms and help to provide insight into the mechanisms behind the efficient colonization and persistence of A. pleuropneumoniae during acute disease.
Collapse
Affiliation(s)
- Kirstine Klitgaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|