1
|
Okafor EC, Nielsen K. State of the Field: Cytotoxic Immune Cell Responses in C. neoformans and C. deneoformans Infection. J Fungi (Basel) 2024; 10:712. [PMID: 39452664 PMCID: PMC11508571 DOI: 10.3390/jof10100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cryptococcus neoformans is an environmental pathogen that causes life-threatening disease in immunocompromised persons. The majority of immunological studies have centered on CD4+ T-cell dysfunction and associated cytokine signaling pathways, optimization of phagocytic cell function against fungal cells, and identification of robust antigens for vaccine development. However, a growing body of literature exists regarding cytotoxic cells, specifically CD8+ T-cells, Natural Killer cells, gamma/delta T-cells, NK T-cells, and Cytotoxic CD4+ T-cells, and their role in the innate and adaptive immune response during C. neoformans and C. deneoformans infection. In this review, we (1) provide a comprehensive report of data gathered from mouse and human studies on cytotoxic cell function and phenotype, (2) discuss harmonious and conflicting results on cellular responses in mice models and human infection, (3) identify gaps of knowledge in the field ripe for exploration, and (4) highlight how innovative immunological tools could enhance the study of cytotoxic cells and their potential immunomodulation during cryptococcosis.
Collapse
Affiliation(s)
- Elizabeth C. Okafor
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech University, Blacksburg, VA 24060, USA
| |
Collapse
|
2
|
Jiang X, Ren L, Tebon P, Wang C, Zhou X, Qu M, Zhu J, Ling H, Zhang S, Xue Y, Wu Q, Bandaru P, Lee J, Kim HJ, Ahadian S, Ashammakhi N, Dokmeci MR, Wu J, Gu Z, Sun W, Khademhosseini A. Cancer-on-a-Chip for Modeling Immune Checkpoint Inhibitor and Tumor Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004282. [PMID: 33502118 PMCID: PMC7939119 DOI: 10.1002/smll.202004282] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/25/2020] [Indexed: 05/12/2023]
Abstract
Cancer immunotherapies, including immune checkpoint inhibitor (ICI)-based therapies, have revolutionized cancer treatment. However, patient response to ICIs is highly variable, necessitating the development of methods to quickly assess efficacy. In this study, an array of miniaturized bioreactors has been developed to model tumor-immune interactions. This immunotherapeutic high-throughput observation chamber (iHOC) is designed to test the effect of anti-PD-1 antibodies on cancer spheroid (MDA-MB-231, PD-L1+) and T cell (Jurkat) interactions. This system facilitates facile monitoring of T cell inhibition and reactivation using metrics such as tumor infiltration and interleukin-2 (IL-2) secretion. Status of the tumor-immune interactions can be easily captured within the iHOC by measuring IL-2 concentration using a micropillar array where sensitive, quantitative detection is allowed after antibody coating on the surface of array. The iHOC is a platform that can be used to model and monitor cancer-immune interactions in response to immunotherapy in a high-throughput manner.
Collapse
Affiliation(s)
- Xing Jiang
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Ren
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Peyton Tebon
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Canran Wang
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xingwu Zhou
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Moyuan Qu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Jixiang Zhu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haonan Ling
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiming Zhang
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| | - Yumeng Xue
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Qingzhi Wu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Praveen Bandaru
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Junmin Lee
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Samad Ahadian
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet R Dokmeci
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Zhen Gu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wujin Sun
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
3
|
Esher SK, Zaragoza O, Alspaugh JA. Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Mem Inst Oswaldo Cruz 2018; 113:e180057. [PMID: 29668825 PMCID: PMC5909089 DOI: 10.1590/0074-02760180057] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a "journey" for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its "virulence suitcase" to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must "open" the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease.
Collapse
Affiliation(s)
- Shannon K Esher
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| | - Oscar Zaragoza
- Instituto de Salud Carlos III, National Centre for Microbiology, Mycology Reference Laboratory, Madrid, Spain
| | - James Andrew Alspaugh
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| |
Collapse
|
4
|
Meya DB, Manabe YC, Boulware DR, Janoff EN. The immunopathogenesis of cryptococcal immune reconstitution inflammatory syndrome: understanding a conundrum. Curr Opin Infect Dis 2016; 29:10-22. [PMID: 26658650 PMCID: PMC4689618 DOI: 10.1097/qco.0000000000000224] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Cryptococcal meningitis causes significant mortality among HIV-infected patients, despite antifungal therapy and use of antiretroviral therapy (ART). In patients with cryptococcal meningitis, ART is often complicated by immune reconstitution inflammatory syndrome (IRIS), manifesting as unmasking of previously unrecognized subclinical infection (unmasking CM-IRIS) or paradoxical worsening of symptoms in the central nervous system after prior improvement with antifungal therapy (paradoxical CM-IRIS). We review our current understanding of the pathogenesis of this phenomenon, focusing on unifying innate and adaptive immune mechanisms leading to the development of this often fatal syndrome. RECENT FINDINGS We propose that HIV-associated CD4 T-cell depletion, chemokine-driven trafficking of monocytes into cerebrospinal fluid in response to cryptococcal meningitis, and poor localized innate cytokine responses lead to inadequate cryptococcal killing and clearance of the fungus. Subsequent ART-associated recovery of T-cell signaling and restored cytokine responses, characterized by IFN-γ production, triggers an inflammatory response. The inflammatory response triggered by ART is dysregulated because of impaired homeostatic and regulatory mechanisms, culminating in the development of CM-IRIS. SUMMARY Despite our incomplete understanding of the immunopathogenesis of CM-IRIS, emerging data exploring innate and adaptive immune responses could be exploited to predict, prevent and manage CM-IRIS and associated morbid consequences.
Collapse
Affiliation(s)
- David B Meya
- Infectious Disease Institute, Makerere University, Uganda
- Dept of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, USA
- School of Medicine, College of Health Sciences, Makerere University
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - David R Boulware
- Dept of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, USA
| | - Edward N Janoff
- Mucosal and Vaccine Research Program Colorado (MAVRC), University of Colorado Denver, Aurora, Colorado, USA; Denver Veterans Affairs Medical Center, Denver, CO
| |
Collapse
|
5
|
Meya DB, Okurut S, Zziwa G, Rolfes MA, Kelsey M, Cose S, Joloba M, Naluyima P, Palmer BE, Kambugu A, Mayanja-Kizza H, Bohjanen PR, Eller MA, Wahl SM, Boulware DR, Manabe YC, Janoff EN. Cellular immune activation in cerebrospinal fluid from ugandans with cryptococcal meningitis and immune reconstitution inflammatory syndrome. J Infect Dis 2014; 211:1597-606. [PMID: 25492918 PMCID: PMC4407762 DOI: 10.1093/infdis/jiu664] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/11/2014] [Indexed: 12/22/2022] Open
Abstract
Background. Human immunodeficiency virus (HIV)-associated cryptococcal meningitis (CM) is characterized by high fungal burden and limited leukocyte trafficking to cerebrospinal fluid (CSF). The immunopathogenesis of CM immune reconstitution inflammatory syndrome (IRIS) after initiation of antiretroviral therapy at the site of infection is poorly understood. Methods. We characterized the lineage and activation status of mononuclear cells in blood and CSF of HIV-infected patients with noncryptococcal meningitis (NCM) (n = 10), those with CM at day 0 (n = 40) or day 14 (n = 21) of antifungal therapy, and those with CM-IRIS (n = 10). Results. At diagnosis, highly activated CD8+ T cells predominated in CSF in both CM and NCM. CM-IRIS was associated with an increasing frequency of CSF CD4+ T cells (increased from 2.2% to 23%; P = .06), a shift in monocyte phenotype from classic to an intermediate/proinflammatory, and increased programmed death ligand 1 expression on natural killer cells (increased from 11.9% to 61.6%, P = .03). CSF cellular responses were distinct from responses in peripheral blood. Conclusions. After CM, T cells in CSF tend to evolve with the development of IRIS, with increasing proportions of activated CD4+ T cells, migration of intermediate monocytes to the CSF, and declining fungal burden. These changes provide insight into IRIS pathogenesis and could be exploited to more effectively treat CM and prevent CM-IRIS.
Collapse
Affiliation(s)
- David B Meya
- Infectious Disease Institute School of Medicine, College of Health Sciences Department of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis
| | - Samuel Okurut
- Makerere University Walter Reed Project, Kampala Uganda
| | - Godfrey Zziwa
- Makerere University Walter Reed Project, Kampala Uganda
| | - Melissa A Rolfes
- Department of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis
| | - Melander Kelsey
- Mucosal and Vaccine Research Program Colorado, University of Colorado Denver, Aurora Denver Veterans Affairs Medical Center
| | - Steve Cose
- School of Medicine, College of Health Sciences Medical Research Council/Uganda Virus Research Institute Uganda Research Unit on AIDS, Entebbe London School of Hygiene and Tropical Medicine, United Kingdom
| | - Moses Joloba
- School of Biomedical Sciences, Microbiology Department, Makerere University
| | | | - Brent E Palmer
- Mucosal and Vaccine Research Program Colorado, University of Colorado Denver, Aurora
| | - Andrew Kambugu
- Infectious Disease Institute Department of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis
| | | | - Paul R Bohjanen
- Department of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring Henry M. Jackson Foundation for the Advancement of Military Medicine
| | - Sharon M Wahl
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - David R Boulware
- Department of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis
| | - Yuka C Manabe
- Infectious Disease Institute Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore
| | - Edward N Janoff
- Mucosal and Vaccine Research Program Colorado, University of Colorado Denver, Aurora Denver Veterans Affairs Medical Center
| |
Collapse
|
6
|
Vargas G, Rocha JDB, Oliveira DL, Albuquerque PC, Frases S, Santos SS, Nosanchuk JD, Gomes AMO, Medeiros LCAS, Miranda K, Sobreira TJP, Nakayasu ES, Arigi EA, Casadevall A, Guimaraes AJ, Rodrigues ML, Freire-de-Lima CG, Almeida IC, Nimrichter L. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol 2014; 17:389-407. [PMID: 25287304 DOI: 10.1111/cmi.12374] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022]
Abstract
The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans-cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow-derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin-layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)-12, transforming growth factor-beta (TGF-β) and IL-10. Similarly, EV-treated DC produced IL-12p40, IL-10 and tumour necrosis factor-alpha. In addition, EV treatment induced the up-regulation of CD86 and major histocompatibility complex class-II (MHC-II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.
Collapse
Affiliation(s)
- Gabriele Vargas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Millen SH, Schneider OD, Miller WE, Monaco JJ, Weiss AA. Pertussis toxin B-pentamer mediates intercellular transfer of membrane proteins and lipids. PLoS One 2013; 8:e72885. [PMID: 24019885 PMCID: PMC3760862 DOI: 10.1371/journal.pone.0072885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
Pertussis toxin (PTx) is the major virulence factor of Bordetella pertussis. The enzymatic or active (A) subunit inactivates host G protein coupled receptor (GPCR) signaling pathways. The non-enzymatic binding (B) subunit also mediates biological effects due to lectin-like binding characteristics, including the induction of T cell receptor (TCR) signaling and subsequent down-regulation of chemokine receptor expression. Here we report another activity attributable to PTxB, facilitating transfer of membrane material between mammalian cells. This activity does not require the TCR, and does not require cell-to-cell contact or cellular aggregation. Rather, membrane vesicles are transferred from donor to recipient cells in a toxin-dependent fashion. Membrane transfer occurs in different cell types, including cultured human T cells, CHO cells, and human primary peripheral blood mononuclear cells. Transfer involves both lipid and integral membrane proteins, as evidenced by the transfer of T and B cell-specific receptor molecules to other PBMCs. Interestingly, membrane transfer activity is a property that PTx shares with some, but not all, cell-aggregating lectins that are mitogenic for human T cells, and appears to be related to the ability to bind certain host cell glycolipids. This phenomenon may represent another mechanism by which pertussis toxin disrupts mammalian intra- and inter-cellular signaling.
Collapse
Affiliation(s)
- Scott H. Millen
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Olivia D. Schneider
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - William E. Miller
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - John J. Monaco
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Alison A. Weiss
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
8
|
Vecchiarelli A, Monari C. Capsular Material of Cryptococcus neoformans: Virulence and Much More. Mycopathologia 2012; 173:375-386. [PMID: 22314939 DOI: 10.1007/s11046-011-9513-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023]
Abstract
The capsule is generally considered one of the more powerful virulence factors of microorganisms, driving research in the field of microbial pathogenesis and in the development of vaccines. Cryptococcus neoformans is unique among the most common human fungal pathogens in that it possesses a complex polysaccharide capsule. This review focuses on the Cryptococcus neoformans capsule from the viewpoint of fungal pathogenesis, and the effective immune response target of the capsule's main component, glucuronoxylomannan.
Collapse
Affiliation(s)
- A Vecchiarelli
- Department of Experimental Medicine and Biochemical Sciences, Microbiology Section, University of Perugia, Via del Giochetto, 06126, Perugia, Italy,
| | | |
Collapse
|
9
|
The capsule of the fungal pathogen Cryptococcus neoformans. ADVANCES IN APPLIED MICROBIOLOGY 2009; 68:133-216. [PMID: 19426855 DOI: 10.1016/s0065-2164(09)01204-0] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The capsule of the fungal pathogen Cryptococcus neoformans has been studied extensively in recent decades and a large body of information is now available to the scientific community. Well-known aspects of the capsule include its structure, antigenic properties and its function as a virulence factor. The capsule is composed primarily of two polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), in addition to a smaller proportion of mannoproteins (MPs). Most of the studies on the composition of the capsule have focused on GXM, which comprises more than 90% of the capsule's polysaccharide mass. It is GalXM, however, that is of particular scientific interest because of its immunological properties. The molecular structure of these polysaccharides is very complex and has not yet been fully elucidated. Both GXM and GalXM are high molecular mass polymers with the mass of GXM equaling roughly 10 times that of GalXM. Recent findings suggest, however, that the actual molecular weight might be different to what it has traditionally been thought to be. In addition to their structural roles in the polysaccharide capsule, these molecules have been associated with many deleterious effects on the immune response. Capsular components are therefore considered key virulence determinants in C. neoformans, which has motivated their use in vaccines and made them targets for monoclonal antibody treatments. In this review, we will provide an update on the current knowledge of the C. neoformans capsule, covering aspects related to its structure, synthesis and particularly, its role as a virulence factor.
Collapse
|
10
|
Cryptococcus gattii: An Emerging Cause of Fungal Disease in North America. Interdiscip Perspect Infect Dis 2009; 2009:840452. [PMID: 19503836 PMCID: PMC2686104 DOI: 10.1155/2009/840452] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/18/2009] [Indexed: 01/03/2023] Open
Abstract
During the latter half of the twentieth century, fungal pathogens such as
Cryptococcus neoformans were increasingly recognized as a significant threat to the
health of immune compromised populations throughout the world. Until recently, the closely related
species C. gattii was considered to be a low-level endemic pathogen that was confined to
tropical regions such as Australia. Since 1999, C. gattii has emerged in the Pacific Northwest
region of North America and has been responsible for a large disease epidemic among generally
healthy individuals. The changing epidemiology of C. gattii infection is likely to be a consequence of alterations in fungal ecology and biology and illustrates its potential to cause serious human disease.
This review summarizes selected biological and clinical aspects of C. gattii that are
particularly relevant to the recent North American outbreak and compares these to the Australian and South
American experience.
Collapse
|
11
|
Surfactant protein D increases phagocytosis of hypocapsular Cryptococcus neoformans by murine macrophages and enhances fungal survival. Infect Immun 2009; 77:2783-94. [PMID: 19451250 DOI: 10.1128/iai.00088-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cryptococcus neoformans is a facultative intracellular opportunistic pathogen and the leading cause of fungal meningitis in humans. In the absence of a protective cellular immune response, the inhalation of C. neoformans cells or spores results in pulmonary infection. C. neoformans cells produce a polysaccharide capsule composed predominantly of glucuronoxylomannan, which constitutes approximately 90% of the capsular material. In the lungs, surfactant protein A (SP-A) and SP-D contribute to immune defense by facilitating the aggregation, uptake, and killing of many microorganisms by phagocytic cells. We hypothesized that SP-D plays a role in C. neoformans pathogenesis by binding to and enhancing the phagocytosis of the yeast. Here, the abilities of SP-D to bind to and facilitate the phagocytosis and survival of the wild-type encapsulated strain H99 and the cap59Delta mutant hypocapsular strain are assessed. SP-D binding to cap59Delta mutant cells was approximately sixfold greater than binding to wild-type cells. SP-D enhanced the phagocytosis of cap59Delta cells by approximately fourfold in vitro. To investigate SP-D binding in vivo, SP-D(-/-) mice were intranasally inoculated with Alexa Fluor 488-labeled cap59Delta or H99 cells. By confocal microscopy, a greater number of phagocytosed C. neoformans cells in wild-type mice than in SP-D(-/-) mice was observed, consistent with in vitro data. Interestingly, SP-D protected C. neoformans cells against macrophage-mediated defense mechanisms in vitro, as demonstrated by an analysis of fungal viability using a CFU assay. These findings provide evidence that C. neoformans subverts host defense mechanisms involving surfactant, establishing a novel virulence paradigm that may be targeted for therapy.
Collapse
|
12
|
Monteseirín J, Chacón P, Vega A, Sánchez-Monteseirín H, Asturias JA, Martínez A, Guardia P, Pérez-Cano R, Conde J. L-selectin expression on neutrophils from allergic patients. Clin Exp Allergy 2006; 35:1204-13. [PMID: 16164449 DOI: 10.1111/j.1365-2222.2005.02320.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND L-selectin (CD62L) is an adhesion molecule involved in leucocyte attachment to endothelium at sites of inflammation, and it has been demonstrated that L-selectin is rapidly shed after neutrophil activation. Recently, it has been reported that there is increasing evidence of neutrophil participation in asthma and the allergic process. OBJECTIVE The present study was designed to determine whether an IgE-dependent mechanism can modulate L-selectin expression on the surface of neutrophils. Moreover, we analyse the potential implication of intracellular signal-transduction pathways and whether specific immunotherapy (IT), glucocorticoids and antihistamines might regulate this process. METHODS Peripheral blood neutrophils from three groups of donors (asthmatic group without IT treatment, IT-treated asthmatic group and healthy group) were used. Cells were challenged in vitro with the specific allergen that produced clinical symptoms in asthmatic patients and also with the allergen to which the patients were not sensitive. Neutrophils from healthy donors were also challenged with allergens. Expression of CD62L on the neutrophil surface was analysed by flow cytometry, and soluble CD62L (sCD62L) in culture supernatant by ELISA. In an attempt to discover which IgE receptor is involved, we also challenged the neutrophils with monoclonal antibody to FcepsilonRI, FcepsilonRII (CD23) and galectin-3 receptors. RESULTS When neutrophils from allergic patients were challenged with specific allergens that produce clinical allergy symptoms, L-selectin was down-regulated from the surface of those cells, accompanied by a concomitant up-regulation of soluble L-selectin in the supernatant. The challenge with antibodies against FCepsilonRI, FCepsilonRII (CD23) and galectin-3, induces down-modulation of L-selectin on the surface of the neutrophils in all three cases. Calphostin C, wortmannin and manoalide attenuated CD62L down-regulation, suggesting the potential implication of protein kinase C, phosphatidylinositol 3-kinase and phospholipase A(2) in the process. IT and glucocorticoids modulated allergen-dependent CD62L down-regulation, whereas antihistamines (terfenadine, loratadine and cetirizine) or nedocromil sodium did not affect the shedding of L-selectin. CONCLUSIONS We present evidence that the neutrophil surface expression of CD62L can be modulated by an allergen-dependent mechanism. The modulation of CD62L expression can be induced through the three receptors of IgE. This process can be affected by IT.
Collapse
Affiliation(s)
- J Monteseirín
- Servicio de Inmunología y Alergia, Hospital Universitario Virgen Macarena, Asunción 27, 41011 Seville, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ellerbroek PM, Schoemaker RG, van Veghel R, Hoepelman AIM, Coenjaerts FEJ. Cryptococcal capsular glucuronoxylomannan reduces ischaemia-related neutrophil influx. Eur J Clin Invest 2004; 34:631-40. [PMID: 15379763 DOI: 10.1111/j.1365-2362.2004.01393.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The capsular polysaccharide glucuronoxylomannan (GXM) of Cryptococcus neoformans interferes with the chemotaxis and transendothelial migration of neutrophils. Intravenous administration of purified GXM has been shown to reduce the influx of inflammatory cells in an animal model of bacterial infection. Here we show that isolated GXM can also interfere with neutrophil migration in a model of inflammation not related to infection. We assessed the effects of intravenous GXM on neutrophil infiltration in a rat model of myocardial ischaemia, where neutrophil infiltration has been shown to contribute to postischaemic reperfusion injury. MATERIALS AND METHODS Rats were subjected to coronary artery ligation followed by a 3-h reperfusion period. Myeloperoxidase-activity was measured in the ischaemic tissues as a marker of neutrophil infiltration. RESULTS Intravenous administration of GXM markedly reduced the influx of neutrophils in the ischaemic myocardium as measured by a 65% reduction of tissue MPO activity. This reduction of MPO activity was clearly correlated to the serum concentration of GXM. As complement activation by GXM was minimal at the doses applied in vivo, it is unlikely that generation of chemotactic C5a in the circulation by GXM caused the observed reduction in leucocyte migration. CONCLUSION Purified cryptococcal GXM has the ability to reduce neutrophil influx even outside the scope of infection.
Collapse
Affiliation(s)
- P M Ellerbroek
- University Medical Centre Utrecht, Utrecht, the Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Ellerbroek PM, Ulfman LH, Hoepelman AI, Coenjaerts FEJ. Cryptococcal glucuronoxylomannan interferes with neutrophil rolling on the endothelium. Cell Microbiol 2004; 6:581-92. [PMID: 15104598 DOI: 10.1111/j.1462-5822.2004.00384.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The major capsular polysaccharide glucuronoxylomannan (GXM) of the pathogenic fungus Cryptococcus neoformans has been associated with depression of a variety of immunological host responses. For one, GXM has been shown to interfere with the migration of phagocytes to sites of inflammation by interference with both chemokinesis and leucocyte adhesion to the endothelium. We reported previously that GXM blocks the firm adhesion of neutrophils (PMNs) to endothelium in a static adhesion model, most probably by interfering with E-selectin binding pathways. Using a flow model, we now demonstrate that GXM also interferes with the initial rolling phase of PMN adhesion to endothelium (40% decrease) as well as to E-selectin-transfected CHO cells (43% inhibition). Furthermore, we show that CD14 and TLR4, which are known receptors for GXM, mediate this interference with PMN rolling. However, thus far, we are not able to identify the ligand of E-selectin on the surface of PMNs that is specifically affected by GXM. In conclusion, cryptococcal GXM interferes with both rolling and fixed binding of neutrophils on the endothelium, providing a novel means of contributing to the absence of neutrophil infiltration observed in cryptococcal infections.
Collapse
Affiliation(s)
- Pauline M Ellerbroek
- Division of Acute Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Ellerbroek PM, Hoepelman AIM, Wolbers F, Zwaginga JJ, Coenjaerts FEJ. Cryptococcal glucuronoxylomannan inhibits adhesion of neutrophils to stimulated endothelium in vitro by affecting both neutrophils and endothelial cells. Infect Immun 2002; 70:4762-71. [PMID: 12183517 PMCID: PMC128235 DOI: 10.1128/iai.70.9.4762-4771.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptococcal infections are often characterized by a paucity of leukocytes in the infected tissues. Previous research has shown that the capsular polysaccharide glucuronoxylomannan (GXM) inhibits leukocyte migration. In this study we investigated whether the capsular polysaccharide GXM affects the migration of neutrophils (polymorphonuclear leukocytes [PMN]) through the endothelium by interfering with adhesion in a static adhesion model. Pretreatment of PMN with GXM inhibited PMN adhesion to tumor necrosis factor alpha (TNF-alpha)-stimulated endothelium up to 44%. Treatment of TNF-alpha-stimulated endothelium with GXM led to a 27% decrease in PMN adhesion. GXM treatment of both PMN and endothelium did not have an additive inhibitory effect. We demonstrated that GXM-induced L-selectin shedding does not play an important role in the detected inhibition of adhesion. L-selectin was still present on PMN in sufficient amounts after GXM treatment, since it could be further inhibited by blocking antibodies. Furthermore, blocking of GXM-related L-selectin shedding did not abolish the GXM-related inhibition of adhesion. GXM most likely exerts its effect on PMN by interfering with E-selectin-mediated binding. The use of blocking monoclonal antibodies against E-selectin, which was shown to decrease adhesion in the absence of GXM, did not cause additive inhibition of PMN adhesion after GXM pretreatment. The use of blocking antibodies also demonstrated that the inhibiting effect found after GXM treatment of endothelium probably involves interference with both intercellular adhesion molecule-1 and E-selectin binding.
Collapse
Affiliation(s)
- Pauline M Ellerbroek
- Division of Acute Medicine and Infectious Diseases, Eijkman Winkler Institute for Microbiology, University Medical Centre Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Mirshafiey A, Razavi A, Mehrabian F, Moghaddam MRN, Hadjavi M. Treatment of experimental nephrosis by culture filtrate of Cryptococcus neoformans var. gattii (CneF). Immunopharmacol Immunotoxicol 2002; 24:349-64. [PMID: 12375733 DOI: 10.1081/iph-120014722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The therapeutic effect of the culture filtrate of cryptococcus neoformans var. gattii (CneF) was tested in Adriamycin-induced nephropathy. The CneF was administered at different doses (36, 54 and 90 mg/kg based on carbohydrate concentration), one i.p. injection every 72 hours for a total of 10 injections. The treated patient rats showed a significant reduction in proteinuria, plasma cholesterol concentration, BUN and significant increase in urine creatinine levels. Moreover, treatment with CneF significantly reduced number of glomerular leukocytes and decreased the tubular casts. These data suggest that CneF therapy can ameliorate proteinuria, hypercholesterolemia and suppress the progression of glomerular lesions in experimental model of nephrosis.
Collapse
Affiliation(s)
- Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Iran.
| | | | | | | | | |
Collapse
|
17
|
Chiapello L, Iribarren P, Cervi L, Rubinstein H, Masih DT. Mechanisms for induction of immunosuppression during experimental cryptococcosis: role of glucuronoxylomannan. Clin Immunol 2001; 100:96-106. [PMID: 11414750 DOI: 10.1006/clim.2001.5046] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous work we have demonstrated that spleen mononuclear (Spm) cells from rats obtained 14 days after infection with Cryptococcus neoformans showed a diminution in proliferative response to Concanavalin A (Con A). In this study we further investigate some characteristics of the Spm cell population involved in the immunosuppressor phenomenon induced by C. neoformans. We observed that unstimulated Spm cells expressing T-cell receptor (TCR+) from infected rats were reduced in number after 96 h of culture. When the Spm cells from infected rats were stimulated with Con A, increased production of IL-10, reduced levels of IL-2, and decreased CD11a surface expression were shown. These immunosuppressor phenomena were also observed when the capsular polysaccharide, glucuronoxylomannan (GXM), was added to cultures of Spm cells from normal rats. However, GXM had a more pronounced effect in reducing the number of cells surviving in culture than that observed during infection and produced an increase in IL-4 production by Con-A-stimulated Spm cells. Addition of anti-IL-10 monoclonal antibody to cultures restored the lymphoproliferation of Spm cells from infected animals, indicating that IL-10 production is a suppressor mechanism of cell-mediated immunity during experimental infection. The results presented here indicate that at least two mechanisms mediate the nonspecific suppression in this model of cryptococcosis: IL-10 production and diminution of the number of T cells. GXM could be involved, since it has a pronounced effect in the reduction of Spm cells in vitro.
Collapse
Affiliation(s)
- L Chiapello
- Micología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | | | | | | | | |
Collapse
|
18
|
Down-regulation of L-selectin expression in neutrophils by nonsteroidal anti-inflammatory drugs: role of intracellular ATP concentration. Blood 2000. [DOI: 10.1182/blood.v96.10.3592] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractL-selectin is an adhesion molecule that plays an essential role in the early events of the inflammatory response. Our group has recently described that several nonsteroidal anti-inflammatory drugs (NSAIDs) are able to induce both in vivo and in vitro the shedding of L-selectin in neutrophils through an unknown mechanism. In this work, we have studied potential mechanisms involved in the shedding of L-selectin induced by NSAIDs. This effect of NSAIDs did not involve any detectable intracellular calcium flux. Pretreatment of neutrophils either with Ro 31-8220 and H7, 2 specific inhibitors of protein kinase C (PKC), or with inhibitors of protein tyrosine kinases such as tyrphostin A25 or herbimycin A did not prevent the NSAID-mediated L-selectin shedding. However, the KD-IX-73-4, an inhibitor of L-selectin proteolysis was able to block the effect of NSAIDs on L-selectin expression. Remarkably, NSAIDs caused a variable reduction in the neutrophil intracellular ATP concentration that highly correlated with the differential ability of NSAIDs to trigger L-selectin shedding (r = 0.8, P < .01). In agreement with this finding, azide plus 2-deoxy-D-glucose, 2 metabolic blockers, also induced a rapid L-selectin shedding (65% ± 8%) without affecting the neutrophil viability, activation, or expression level of other surface molecules with soluble isoforms such as CD16 and CD59. These data indicate that the maintenance of L-selectin on the neutrophil surface requires energy consumption, which suggests that L-selectin is shed in neutrophils by default. Interestingly, NSAIDs seem to cause the shedding of L-selectin, at least in part, through the reduction of the intracellular ATP concentration.
Collapse
|
19
|
Down-regulation of L-selectin expression in neutrophils by nonsteroidal anti-inflammatory drugs: role of intracellular ATP concentration. Blood 2000. [DOI: 10.1182/blood.v96.10.3592.h8003592_3592_3600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
L-selectin is an adhesion molecule that plays an essential role in the early events of the inflammatory response. Our group has recently described that several nonsteroidal anti-inflammatory drugs (NSAIDs) are able to induce both in vivo and in vitro the shedding of L-selectin in neutrophils through an unknown mechanism. In this work, we have studied potential mechanisms involved in the shedding of L-selectin induced by NSAIDs. This effect of NSAIDs did not involve any detectable intracellular calcium flux. Pretreatment of neutrophils either with Ro 31-8220 and H7, 2 specific inhibitors of protein kinase C (PKC), or with inhibitors of protein tyrosine kinases such as tyrphostin A25 or herbimycin A did not prevent the NSAID-mediated L-selectin shedding. However, the KD-IX-73-4, an inhibitor of L-selectin proteolysis was able to block the effect of NSAIDs on L-selectin expression. Remarkably, NSAIDs caused a variable reduction in the neutrophil intracellular ATP concentration that highly correlated with the differential ability of NSAIDs to trigger L-selectin shedding (r = 0.8, P < .01). In agreement with this finding, azide plus 2-deoxy-D-glucose, 2 metabolic blockers, also induced a rapid L-selectin shedding (65% ± 8%) without affecting the neutrophil viability, activation, or expression level of other surface molecules with soluble isoforms such as CD16 and CD59. These data indicate that the maintenance of L-selectin on the neutrophil surface requires energy consumption, which suggests that L-selectin is shed in neutrophils by default. Interestingly, NSAIDs seem to cause the shedding of L-selectin, at least in part, through the reduction of the intracellular ATP concentration.
Collapse
|
20
|
Blackstock R, Buchanan KL, Cherniak R, Mitchell TG, Wong B, Bartiss A, Jackson L, Murphy JW. Pathogenesis of Cryptococcus neoformans is associated with quantitative differences in multiple virulence factors. Mycopathologia 2000; 147:1-11. [PMID: 10872510 DOI: 10.1023/a:1007041401743] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two isolates of Cryptococcus neoformans were previously described as being highly divergent in their level of capsule synthesis in vivo and in their virulence for mice. The highly virulent isolate (NU-2) produced more capsule than a weakly virulent isolate (184A) in vitro under tissue culture conditions and in vivo. This investigation was done to determine if there were differences between the two isolates in other factors that might also contribute to virulence. Growth rate was not a factor as NU-2 grew more slowly than 184A. Based on PCR fingerprinting the two isolates were genetically different providing an opportunity to examine differences in multiple virulence traits. Quantitative analysis revealed that NU-2 expressed significantly more melanin and mannitol than did 184A. Although the isolates expressed the same capsular chemotype, NU-2 produced an additional structure reporter group (SRG) under tissue culture conditions that was not present when grown in glucose salts/urea/basal medium (GSU). Capsular polysaccharide SRGs of 184A were unaffected by shifting the growth conditions from GSU to tissue culture conditions. Our results suggest that pathogenesis of a C. neoformans strain is dictated by the quantitative expression of the strain's combined virulence traits. Regulators of the expression of these genes may be playing key roles in virulence.
Collapse
Affiliation(s)
- R Blackstock
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, USA.
| | | | | | | | | | | | | | | |
Collapse
|