1
|
Chung YI, Kim JC, Kim YH, Tae G, Lee SY, Kim K, Kwon IC. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting. J Control Release 2010; 143:374-82. [PMID: 20109508 DOI: 10.1016/j.jconrel.2010.01.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/29/2009] [Accepted: 01/08/2010] [Indexed: 11/28/2022]
Abstract
The poly (lactide-co-glycolide) (PLGA)-based nanoparticles, coated by the heparin- or chitosan-Pluronic conjugate, were used to improve a relatively low tumor-targeting efficiency of the bare PLGA nanoparticles. The prepared nanoparticles were in the size range of 100-150nm, and the surface exposure of the functional moiety (heparin or chitosan) was confirmed by negatively or positively increased zeta potential values, respectively. The viability tests for both normal and tumor cells displayed minimal cytotoxicity of the nanoparticles. The stable surface coating, which was evident from no change in the size distribution profiles in spite of the surface charge changes in serum environment, effectively provided the desired functionalized surface that clearly enhanced the in vitro cellular uptake of the nanoparticles for both heparin and chitosan functionalization. The in vivo tumor model study, which was carried out in SCC7 tumor-bearing athymic mice, demonstrated that there was a limited, but positive effect of surface functionalization, more effective for chitosan functionalization. The accumulation of chitosan-functionalized PLGA nanoparticles in tumor was 2.4 folds higher than that of the control, PLGA nanoparticles coated with bare Pluronic, and the accumulation in liver was lower than the control. In the case of heparin functionalization, the mean value was 2.2 folds higher than that of the control, but the accumulation in liver was similar to that of the control. Therefore, the surface-functionalization by the chitosan- or heparin-conjugated Pluronic may be an effective approach for the hydrophobic nanoparticle systems aiming for the enhanced tumor imaging and therapy.
Collapse
Affiliation(s)
- Yong-Il Chung
- Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, South Korea
| | | | | | | | | | | | | |
Collapse
|
2
|
Fadel S, Eley A. Differential glycosaminoglycan binding of Chlamydia trachomatis OmcB protein from serovars E and LGV. J Med Microbiol 2008; 57:1058-1061. [PMID: 18719173 DOI: 10.1099/jmm.0.2008/001305-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We recently showed that OmcB protein from Chlamydia trachomatis serovar LGV1 functions as an adhesin. In this study, we produced Escherichia coli expressing OmcB from serovar E and compared this OmcB to OmcB from serovar LGV1. Infectivity inhibition assays carried out with serovars LGV1 and E of C. trachomatis in the presence of recombinant OmcB showed considerable (approximately 60%) inhibition of infectivity. In the presence of heparan sulphate, there was significant inhibition (68%) of adherence of E. coli expressing OmcB from serovar LGV1 only. In a further experiment, recombinant OmcB from serovar LGV1 showed minimal binding to glycosaminoglycan (GAG)-deficient cells, whilst to the same cells, recombinant OmcB from serovar E showed binding equal to that to the wild-type cells. Our experiments strongly suggest that OmcB from serovar E, in contrast to that from serovar LGV1, is not binding to host cells through a GAG-dependent mechanism.
Collapse
Affiliation(s)
- Sanaa Fadel
- Department of Microbiology, Faculty of Pharmacy, Cairo University, Egypt.,Henry Wellcome Laboratories for Medical Research, School of Medicine and Biomedical Sciences, University of Sheffield Medical School, Sheffield S10 2RX, UK
| | - Adrian Eley
- Henry Wellcome Laboratories for Medical Research, School of Medicine and Biomedical Sciences, University of Sheffield Medical School, Sheffield S10 2RX, UK
| |
Collapse
|
3
|
Tahiri K, Korwin-Zmijowska C, Richette P, Héraud F, Chevalier X, Savouret JF, Corvol MT. Natural chondroitin sulphates increase aggregation of proteoglycan complexes and decrease ADAMTS-5 expression in interleukin 1 beta-treated chondrocytes. Ann Rheum Dis 2008; 67:696-702. [PMID: 17901089 DOI: 10.1136/ard.2007.078600] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To assess the effect of natural chondroitin sulphate (CS) on the ability of neosynthesized sulphated proteoglycans (PGs) to aggregate in cultured chondrocytes treated with interleukin (IL)1 beta. METHODS Primary cultured rabbit articular chondrocytes were treated or not with IL1 beta alone or with concentrations of CS for 20 h. Neosynthesized PGs were labelled by incorporation of [35SO(4)]-sulphate and analysed by chromatography on Sepharose 2B columns. Gelatinolytic activity was measured by zymography, and matrix metalloproteinase (MMP)1 mRNA level in chondrocytes underwent real-time PCR. Expression of ADAMTS (for "a disintegrin and metalloproteinase with thrombospondin motifs") -4 and -5 was analysed by real-time PCR and western blotting. RESULTS The production of [35SO(4)]-labelled PGs was significantly increased with 10 microg/ml CS in the cellular pool rather than in the incubation medium. The addition of CS to IL1 beta-treated cells inhibited in part the disaggregation of sulphated PGs induced by IL1 beta. This inhibitory effect of CS is associated with a significant decrease in ADAMTS-5 expression at the mRNA and protein levels. No effect of CS was observed on IL1 beta-induced gelatinolytic activity, MMP1 mRNA expression or ADAMTS-4 expression. CONCLUSION CS increases the production of functional sulphated PGs in the direct environment of chondrocytes in vitro. This beneficial effect of CS in IL1 beta-treated cells is associated with decreased expression of ADAMTS-5.
Collapse
Affiliation(s)
- K Tahiri
- INSERM, UMR-747, Université Paris Descartes, Paris, F-75006, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Fadel S, Eley A. Chlamydia trachomatis OmcB protein is a surface-exposed glycosaminoglycan-dependent adhesin. J Med Microbiol 2007; 56:15-22. [PMID: 17172511 DOI: 10.1099/jmm.0.46801-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The OmcB protein of Chlamydia trachomatis is a cysteine-rich outer membrane polypeptide with important functional, structural and antigenic properties. The entire gene encoding the OmcB protein from C. trachomatis serovar LGV1 was cloned and expressed in Escherichia coli and the full-length protein used to raise polyclonal antibodies. Recombinant OmcB was used to show that OmcB is a surface-exposed protein that functions as a chlamydial adhesin. Infectivity inhibition assays carried out using HeLa cells with serovar LGV1 in the presence of purified anti-OmcB serum showed inhibition of infectivity, suggesting that some of the OmcB was surface exposed. Moreover, using recombinant OmcB in infectivity inhibition assays resulted in 70% inhibition of infectivity, confirming that OmcB plays a role as an adhesin in C. trachomatis. Furthermore, recombinant OmcB protein bound to the surface of HeLa and Hec1B cells, but binding to glycosaminoglycan (GAG)-deficient cells (pgsA-745 and pgsD-677) was markedly reduced, indicating that OmcB binds to GAG-like receptors on host cells.
Collapse
Affiliation(s)
- Sanaa Fadel
- Henry Wellcome Laboratories for Medical Research, Division of Genomic Medicine, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Adrian Eley
- Henry Wellcome Laboratories for Medical Research, Division of Genomic Medicine, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
5
|
Yan Y, Silvennoinen-Kassinen S, Leinonen M, Saikku P. Inhibitory effect of heparan sulfate-like glycosaminoglycans on the infectivity of Chlamydia pneumoniae in HL cells varies between strains. Microbes Infect 2006; 8:866-72. [PMID: 16500132 DOI: 10.1016/j.micinf.2005.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 09/14/2005] [Accepted: 10/11/2005] [Indexed: 11/18/2022]
Abstract
Glycosaminoglycans are known to participate in the attachment of several chlamydial strains. We studied the effect of heparin, enoxaparin, low-molecular-weight heparin, chondroitin sulfate A, and heparinase I on the infectivity of Chlamydia pneumoniae strain CWL029 and two Finnish isolates, Kajaani 7 and Parola, in an HL cell line which is epithelial in origin. Two Chlamydia trachomatis strains, L2 and E, were used for comparison. The infectivity of all C. pneumoniae strains and C. trachomatis serovar E was inhibited not only by heparin derivatives but also by chondroitin sulfate A and heparinase treatment. Treatment of host cells with heparin derivatives and heparinase was also inhibitory. Different chlamydial strains and species seem, however, to vary in their ability to use heparin in their attachment to host cells.
Collapse
Affiliation(s)
- Ying Yan
- Department of Medical Microbiology, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland.
| | | | | | | |
Collapse
|
6
|
Shanks RMQ, Donegan NP, Graber ML, Buckingham SE, Zegans ME, Cheung AL, O'Toole GA. Heparin stimulates Staphylococcus aureus biofilm formation. Infect Immun 2005; 73:4596-606. [PMID: 16040971 PMCID: PMC1201187 DOI: 10.1128/iai.73.8.4596-4606.2005] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Heparin, known for its anticoagulant activity, is commonly used in catheter locks. Staphylococcus aureus, a versatile human and animal pathogen, is commonly associated with catheter-related bloodstream infections and has evolved a number of mechanisms through which it adheres to biotic and abiotic surfaces. We demonstrate that heparin increased biofilm formation by several S. aureus strains. Surface coverage and the kinetics of biofilm formation were stimulated, but primary attachment to the surface was not affected. Heparin increased S. aureus cell-cell interactions in a protein synthesis-dependent manner. The addition of heparin rescued biofilm formation of hla, ica, and sarA mutants. Our data further suggest that heparin stimulation of biofilm formation occurs neither through an increase in sigB activity nor through an increase in polysaccharide intracellular adhesin levels. These finding suggests that heparin stimulates S. aureus biofilm formation via a novel pathway.
Collapse
Affiliation(s)
- Robert M Q Shanks
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Xiao Y, Zhong Y, Su H, Zhou Z, Chiao P, Zhong G. NF-κB Activation Is Not Required forChlamydia trachomatisInhibition of Host Epithelial Cell Apoptosis. THE JOURNAL OF IMMUNOLOGY 2005; 174:1701-8. [PMID: 15661934 DOI: 10.4049/jimmunol.174.3.1701] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chlamydia trachomatis, an obligate intracellular bacterial species, is known to inhibit host cell apoptosis. However, the chlamydial antiapoptotic mechanism is still not clear. Because NF-kappaB activation is antiapoptotic, we tested the potential role of NF-kappaB activation in chlamydial antiapoptotic activity in the current study. First, no obvious NF-kappaB activation was detected in the chlamydia-infected cells when these cells were resistant to apoptosis induced via either the intrinsic or extrinsic apoptosis pathways. Second, inhibition of NF-kappaB activation with pharmacologic reagents failed to block the chlamydial antiapoptotic activity. Finally, NF-kappaB p65 gene deletion did not prevent chlamydia from inhibiting host cell apoptosis. These observations together have demonstrated that NF-kappaB activation is not required for the chlamydial antiapoptotic activity.
Collapse
Affiliation(s)
- Yangming Xiao
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
8
|
Coombes BK, Mahony JB. Identification of MEK- and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells. Cell Microbiol 2002; 4:447-60. [PMID: 12102690 DOI: 10.1046/j.1462-5822.2002.00203.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of Chlamydia pneumoniae to survive and cause disease is predicated on efficient invasion of cellular hosts. While it is recognized that chlamydial determinants are important for mediating attachment and uptake into non-phagocytic cells, little is known about the bacterial ligands and cellular receptors that facilitate invasion or host cell signal transduction pathways implicated in this process. We used transmission and scanning electron microscopy to demonstrate that attachment of bacteria to host cells induced the appearance of microvilli on host cell membranes. Invasion occurred 30-120 min after cell contact with the subsequent loss of membrane microvilli. Using an epithelial cell infection model, C. pneumoniae invasion caused a rapid and sustained increase in MEK-dependent phosphorylation and activation of ERK1/2, followed by PI 3-kinase-dependent phosphorylation and activation of Akt. Tyrosine phosphorylation of focal adhesion kinase (FAK) preceded its appearance in a complex with the p85 subunit of PI 3-kinase during chlamydial invasion and isoform-specific tyrosine phosphorylation of the docking protein Shc also occurred at the time of attachment and entry of bacteria. Chlamydia entry but not attachment could be abrogated with specific inhibitors of MEK, PI 3-kinase and actin polymerization, demonstrating the importance of these signalling pathways and an intact actin cytoskeleton for C. pneumoniae invasion. These results suggest that activation of specific cell signalling pathways is an essential strategy used by C. pneumoniae to invade epithelial cells.
Collapse
Affiliation(s)
- Brian K Coombes
- Father Sean O'Sullivan Research Centre, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | | |
Collapse
|
9
|
Abstract
Many pathogens must surmount an epithelial cell barrier in order to establish an infection. While much has been learned about the interaction of bacterial pathogens with cultured epithelial cells, the influence of cell polarity on these events has only recently been appreciated. This review outlines bacterial-host epithelial cell interactions in the context of the distinct apical and basolateral surfaces of the polarized epithelium that lines the lumens of our organs.
Collapse
Affiliation(s)
- B I Kazmierczak
- Department of Medicine, University of California, San Francisco, California 94143-0654, USA.
| | | | | |
Collapse
|
10
|
Abstract
As an intracellular pathogen, the mechanism by which Chlamydia invade eukaryotic cells represents a cornerstone to understanding chlamydial biology. The ability of chlamydiae specifically to bind heparan sulphate or heparin and the association of this ability to bind and enter mammalian host cells was approached by searching experimentally for chlamydial outer membrane proteins that bind heparin. The 60 000 molecular weight cysteine-rich outer membrane complex protein, OmcB, bound heparin. The ability of OmcB to bind heparin was supported by mapping the region of the protein with heparin-binding capacity and demonstrating that an OmcB synthetic 20-mer peptide from this region specifically bound heparin. Surface localization of OmcB was shown using monospecific antisera specific to the 20-mer OmcB peptide that bound the surfaces of elementary bodies (EB) and by heparin-binding peptide cross-linking of EB surface proteins.
Collapse
Affiliation(s)
- R S Stephens
- Division of Infectious Diseases, School of Public Health, 235 Earl Warren Hall, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
11
|
Hughes ES, Shaw KM, Ashley RH. Mutagenesis and functional reconstitution of chlamydial major outer membrane proteins: VS4 domains are not required for pore formation but modify channel function. Infect Immun 2001; 69:1671-8. [PMID: 11179342 PMCID: PMC98071 DOI: 10.1128/iai.69.3.1671-1678.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamidial organisms are obligate intracellular pathogens containing highly antigenic porin-like major outer membrane proteins (MOMPs). MOMP epitopes are of substantial medical interest, and they cluster within four relatively short variable (VS) domains. If MOMPs adopt a beta-barrel fold, like bacterial porins, the VS domains may form extramembranous loops and the conserved regions of the protein may correspond to predicted membrane-located beta-strands. However, molecular studies on native MOMPs have been hampered by the need to culture chlamydiae in eukaryotic host cells and purification and reconstitution remain problematic. In addition, the organisms are difficult to manipulate genetically, and it has also been difficult to functionally reconstitute recombinant MOMPs. To help overcome these problems and improve our understanding of MOMP structure and function, we cloned and expressed C. trachomatis and C. psittaci MOMPs and functionally reconstituted them at the single-channel level. We measured significant functional differences between the two proteins, and by removing and exchanging VS4, we tested the hypothesis that the largest variable domain forms an extramembranous loop that contributes to these differences. Proteins in which VS4 was deleted continued to form functional ion channels, consistent with the idea that the domain forms an extramembranous protein loop and incompatible with models in which it contributes to predicted membrane-located beta-strands. Additionally, the properties of the chimeric proteins strongly suggested that the VS4 domain interacts closely with other regions of the protein to form the channel entrance or vestibule. Our approach can be used to probe structure-function relationships in chlamydial MOMPs and may have implications for the generation of effective antichlamydial vaccines.
Collapse
Affiliation(s)
- E S Hughes
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | | | | |
Collapse
|
12
|
Taraktchoglou M, Pacey AA, Turnbull JE, Eley A. Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate. Infect Immun 2001; 69:968-76. [PMID: 11159992 PMCID: PMC97976 DOI: 10.1128/iai.69.2.968-976.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of heparan sulfate, heparin, and other glycosaminoglycans to inhibit the infectivity of Chlamydia trachomatis serovars E and LGV was examined using a simple competitive inhibition assay with three cell types from the human female reproductive tract, including primary human endosalpingeal cells. With the majority of the glycosaminoglycans tested, LGV was more significantly inhibited than serovar E. We have compared chlamydial infectivity between a wild-type Chinese hamster ovary cell line and two glycosaminoglycan-deficient cell lines. LGV was shown to be unable to infect heparan sulfate-deficient and GAG-deficient Chinese hamster ovary cell lines, whereas the E serovar infected these cells as efficiently as the control (nondeficient) cells. These two sets of experiments confirmed that serovar LGV is more dependent on a heparan sulfate-related mechanism of infectivity than is serovar E. This is further supported by the fact that attempts to purify a heparan sulfate-like molecule from either serovar cultured in glycosaminoglycan-deficient cell lines were nonproductive. Previous reports have suggested that chlamydia are able to produce a heparan sulfate-like molecule that is important for attachment and infectivity. We have attempted to detect possible binding of a specific heparan sulfate antibody to C. trachomatis by flow cytometry. Results showed no binding of the heparan sulfate antibody to C. trachomatis serovar LGV or E. Our results strongly indicate that chlamydiae do not produce a heparan sulfate-like molecule but rather use host cell heparan sulfate in order to infect cells.
Collapse
Affiliation(s)
- M Taraktchoglou
- Division of Genomic Medicine, The Medical School, The University of Sheffield, Sheffield, S10 2RX, United Kingdom
| | | | | | | |
Collapse
|
13
|
Bavoil PM, Hsia RC, Ojcius DM. Closing in on Chlamydia and its intracellular bag of tricks. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2723-2731. [PMID: 11065351 DOI: 10.1099/00221287-146-11-2723] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Patrik M Bavoil
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK1
| | - Ru-Ching Hsia
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK1
| | - David M Ojcius
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, 75724 Paris Cedex 15, France2
| |
Collapse
|
14
|
Literature alerts. J Microencapsul 2000; 17:657-69. [PMID: 11038124 DOI: 10.1080/026520400417702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Rasmussen-Lathrop SJ, Koshiyama K, Phillips N, Stephens RS. Chlamydia-dependent biosynthesis of a heparan sulphate-like compound in eukaryotic cells. Cell Microbiol 2000; 2:137-44. [PMID: 11207570 DOI: 10.1046/j.1462-5822.2000.00039.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One hypothesis for the mechanism of chlamydial interaction with its eukaryotic host cell invokes a trimolecular mechanism, whereby a Chlamydia-derived glycosaminoglycan bridges a chlamydial acceptor molecule and a host receptor enabling attachment and invasion. We show that a heparan sulphate-specific monoclonal antibody specifically binds a glycosa-minoglycan localized to the surface of the chlamydial organism and effectively neutralizes infectivity of both C. trachomatis and C. pneumoniae. In addition to the ability of this antibody to neutralize infectivity, direct visualization using immunofluorescence demonstrated staining of chlamydial organisms localized to the intracellular vacuole. The chlamydial-associated glycosaminoglycan was specifically labelled with [14C]-glucosamine, and the labelled compound was immunoprecipitated and resolved by gel electrophoresis. The chlamydial-associated glycosaminoglycan is a high-molecular-weight compound similar in size to heparin or heparan sulphate and was sensitive to cleavage by heparan sulphate lyase. These data demonstrate that a glucosamine-containing sulphated polysaccharide is produced within the intracellular vacuole containing chlamydiae and is a target for antibody-mediated neutralization of infectivity.
Collapse
Affiliation(s)
- S J Rasmussen-Lathrop
- The Francis I. Proctor Foundation, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|