1
|
Yang J, Du F, Zhou X, Wang L, Li S, Fang R, Zhao J. Brain proteomic differences between wild-type and CD44- mice induced by chronic Toxoplasma gondii infection. Parasitol Res 2018; 117:2623-2633. [PMID: 29948204 DOI: 10.1007/s00436-018-5954-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/31/2018] [Indexed: 11/29/2022]
Abstract
Chronic clinical Toxoplasma gondii (T. gondii) infection is the primary disease state that causes severe encephalitis. CD44 is a member of the cell adhesion molecule family and plays an important role in T. gondii infection. However, proteomic changes in CD44 during chronic T. gondii infection have rarely been reported. Thus, an iTRAQ-based proteomic study coupled with 2D-LC-MS/MS analysis was performed to screen CD44-related proteins during chronic T. gondii infection. As a result, a total of 2612 proteins were reliably identified and quantified. Subsequently, 259, 106, and 249 differentially expressed proteins (DEPs) were compared between CD44- mice (A) vs wild-type mice (B), B vs wild-type mice infected with T. gondii (C), and C vs CD44- mice infected with T. gondii (D). Gene ontology, KEGG pathway, and protein-protein interaction analyses were performed on the DEPs. According to the results, immune-related proteins were altered significantly among the A vs B, B vs C, and C vs D comparisons, which might indicate that chronic T. gondii infection caused changes in the host immune response. Additionally, Ca2+- and metabolism-related proteins were upregulated in C vs D, which supported the hypothesis that CD44 mediated the production of host Ca2+ and IFN-γ and that the parasite preferentially invaded cells expressing high levels of CD44. The present findings validate and enable a more comprehensive knowledge of the role of CD44 in hosts chronically infected with T. gondii, thus providing new ideas for future studies on the specific functions of CD44 in latent toxoplasmosis.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Fen Du
- Hubei Centre for Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiaoliu Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lixia Wang
- Hubei Provincial Centre for Diseases Control and Prevention, Wuhan, 430079, Hubei, People's Republic of China
| | - Senyang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
2
|
The potential use of melatonin to treat protozoan parasitic infections: A review. Biomed Pharmacother 2017; 97:948-957. [PMID: 29136773 DOI: 10.1016/j.biopha.2017.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a circadian hormone produced in vertebrates by the pineal gland and other organs. Melatonin is believed to influence immune cells leading to modulation of the proliferative response of stimulated lymphocytes as well as cytokine production. Due to the antioxidant and immunomodulatory effects of melatonin, it is suggested that this molecule could be a therapeutic alternative agent to fight bacterial, viral, and parasitic infections by a variety of mechanisms. Herein, we review the effects of melatonin on the cell biology of protozoan parasites and host's immune response. In toxoplasmosis, African trypanosomiasis and Chagas' disease, melatonin enhances host's immune response against the parasite via regulating the secretion of inflammatory mediators. In amoebiasis, melatonin reduces the amoebic lesions as well as increasing the leukophagocytosis and the number of dead amoebae. In giardiasis, serum melatonin levels are elevated in these patients; this suggests a positive correlation between the level of melatonin and phagocytic activity in the G. duodenalis infected patients, possibly related to melatonin's immunomodulatory effect. In leishmaniasis, melatonin arrests parasite replication accompanied by releasing mitochondrial Ca2+ into the cytosol, increasing the level of mitochondrial nitrites as well as reducing superoxide dismutase (SOD) activity. In malaria, melatonin synchronizes the Plasmodium cell cycle via modulating cAMP-PKA and IP3-Ca2+ pathways. Thus, simultaneous administration of melatonin agonists or giving pharmacological doses of melatonin may be considered a novel approach for treatment of malarial infection.
Collapse
|
3
|
Cai Y, Chen H, Mo X, Tang Y, Xu X, Zhang A, Lun Z, Lu F, Wang Y, Shen J. Toxoplasma gondii inhibits apoptosis via a novel STAT3-miR-17-92-Bim pathway in macrophages. Cell Signal 2014; 26:1204-12. [PMID: 24583285 DOI: 10.1016/j.cellsig.2014.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/21/2014] [Indexed: 02/01/2023]
Abstract
In order to accomplish their life cycles, intracellular pathogens, including the apicomplexan Toxoplasma gondii, subvert the innate apoptotic response of infected host cells. However, the precise mechanisms of parasite interference with the apoptotic pathway remain unclear. MicroRNAs (miRNAs) regulate gene expression at the posttranscriptional level. Using T. gondii strain TgCtwh3, which was isolated from felids and possesses the predominant genotype China 1 (ToxoDB(#)9) in China, we analyzed the miRNA expression profile of human macrophages challenged with TgCtwh3. The results showed that miR-17-92 miRNA expression was significantly increased and Bim was decreased in TgCtwh3-infected cells. Database analysis of miR-17-92 miRNAs revealed the potential binding sites in the 3'UTR of Bim, one of the crucial effectors of pro-apoptosis. Furthermore, we demonstrated that the promoter of the miR-17-92 gene cluster which encodes miRNAs was transactivated through the promoter binding of the STAT3 following TgCtwh3 infection. Taken together, we describe a novel STAT3-miR-17-92-Bim pathway, thus providing a mechanistic explanation for inhibition of apoptosis of host cells following Toxoplasma infection.
Collapse
Affiliation(s)
- Yihong Cai
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China; Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China; Department of Immunology, Anhui Medical University, Hefei, China
| | - He Chen
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China; Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuwei Mo
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China
| | - Yuanyuan Tang
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China
| | - Xiucai Xu
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China; The Central Laboratory of Affiliated Provincial Hospital, Anhui Medical University, Hefei, China
| | - Aimei Zhang
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China; The Central Laboratory of Affiliated Provincial Hospital, Anhui Medical University, Hefei, China
| | - Zhaorong Lun
- State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control, The Ministry of Education, Zhongshan Medical College, China; Department of Pathogen Biology, Sun Yat-Sen University, Guangzhou, China
| | - Fangli Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control, The Ministry of Education, Zhongshan Medical College, China; Department of Pathogen Biology, Sun Yat-Sen University, Guangzhou, China
| | - Yong Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jilong Shen
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
John B, Harris TH, Tait ED, Wilson EH, Gregg B, Ng LG, Mrass P, Roos DS, Dzierszinski F, Weninger W, Hunter CA. Dynamic Imaging of CD8(+) T cells and dendritic cells during infection with Toxoplasma gondii. PLoS Pathog 2009; 5:e1000505. [PMID: 19578440 PMCID: PMC2700268 DOI: 10.1371/journal.ppat.1000505] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 06/05/2009] [Indexed: 12/21/2022] Open
Abstract
To better understand the initiation of CD8+ T cell responses during infection, the primary response to the intracellular parasite Toxoplasma gondii was characterized using 2-photon microscopy combined with an experimental system that allowed visualization of dendritic cells (DCs) and parasite specific CD8+ T cells. Infection with T. gondii induced localization of both these populations to the sub-capsular/interfollicular region of the draining lymph node and DCs were required for the expansion of the T cells. Consistent with current models, in the presence of cognate antigen, the average velocity of CD8+ T cells decreased. Unexpectedly, infection also resulted in modulation of the behavior of non-parasite specific T cells. This TCR-independent process correlated with the re-modeling of the lymph node micro-architecture and changes in expression of CCL21 and CCL3. Infection also resulted in sustained interactions between the DCs and CD8+ T cells that were visualized only in the presence of cognate antigen and were limited to an early phase in the response. Infected DCs were rare within the lymph node during this time frame; however, DCs presenting the cognate antigen were detected. Together, these data provide novel insights into the earliest interaction between DCs and CD8+ T cells and suggest that cross presentation by bystander DCs rather than infected DCs is an important route of antigen presentation during toxoplasmosis. Toxoplasma gondii is a protozoan parasite that can infect a wide range of hosts, including humans. Infection with T. gondii is potentially life threatening in immuno-compromised individuals and it can be detrimental during pregnancy, often leading to abortion of the fetus. Dendritic cells are thought to play a vital role in the development of protective immunity to Toxoplasma gondii through their ability to produce immunological signals such as cytokines and also process and present parasite derived peptides to T cells. However, little is known about the actual interactions between these cell types in an intact organ, such as the lymph node, during infection. Using the technology of live imaging by 2-photon microscopy we have identified a very early window of time during infection when dendritic cells and T cells make sustained contacts with one another, which appears crucial for the generation of protective responses. We also show that substantial changes are induced in the lymph node micro-architecture as a result of infection, which in turn could have effects on immune responses to secondary pathogens. Understanding the interaction between these immune cells in vivo that leads to resistance to active infection would help in the design of better strategies to develop protective immune responses against this pathogen in immuno-compromised individuals.
Collapse
Affiliation(s)
- Beena John
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tajie H. Harris
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elia D. Tait
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emma H. Wilson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Biomedical Sciences, University of California, Riverside, California, United States of America
| | - Beth Gregg
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lai Guan Ng
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - Paulus Mrass
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Wolfgang Weninger
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
Interleukin (IL)-12p75 is a heterodimeric cytokine composed of the product of two different genes that specify p35 and p40 subunits. The prevailing view is that IL-12 acts as a proinflammatory cytokine that bridges the innate and adaptive immune responses and skews T-cell reactivity toward a TH1 cytokine pattern. Though the terms IL-12 and IL-12p40 are often used interchangeably, and measurements of the p40 chain are often interpreted as measurements of the intact p75 heterodimer, such interchangeable usage may be incorrect. In the following discussion, I will delineate an alternative hypothesis for the roles of the p40 and p75 proteins, suggesting specifically, that: (1) in vivo, secretion of free p40 precedes that of p75 in response to pathogens; (2) induction of p40 is a T-independent response by antigen presenting cells (APCs) to early host-pathogen interactions; and (3) IL-12p75 is a late product, whose induction requires T-dependent signals. It is made as a result, rather than as a cause, of TH1 differentiation. Thus, it is the p40 protein, either alone or paired with other polypeptides, rather than p75, that acts as an interface between the innate and adaptive immune responses.
Collapse
Affiliation(s)
- K Abdi
- Ghost Laboratory, Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville Pike, Bethesda, MD 20892-0420, USA.
| |
Collapse
|