1
|
Swistak L, Albert M, Valenzuela C, Gokerkucuk EB, Bontems F, Tachon S, Egger KT, Gazi AD, Sartori-Rupp A, Lesser CF, Paul-Gilloteaux P, Tinevez JY, Vos M, Enninga J. The bacterial type three secretion system induces mechanoporation of vacuolar membranes. PLoS Biol 2025; 23:e3003135. [PMID: 40310862 PMCID: PMC12045489 DOI: 10.1371/journal.pbio.3003135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 05/03/2025] Open
Abstract
Endomembrane breaching is a crucial strategy employed by intracellular pathogens enclosed within vacuoles to access the nutrient-rich cytosol for intracellular replication. While bacteria use various mechanisms to compromise host membranes, the specific processes and factors involved are often unknown. Shigella flexneri, a major human pathogen, accesses the cytosol relying on the Type Three Secretion System (T3SS) and secreted effectors. Using in-cell correlative light and electron microscopy, we tracked the sequential steps of Shigella host cell entry. Moreover, we captured the T3SS, which projects a needle from the bacterial surface, in the process of puncturing holes in the vacuolar membrane. This initial puncture ensures disruption of the vacuole. Together this introduces the concept of mechanoporation via a bacterial secretion system as a crucial process for bacterial pathogen-induced membrane damage.
Collapse
Affiliation(s)
- Léa Swistak
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - Marvin Albert
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - Elif Begum Gokerkucuk
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - François Bontems
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology, Paris, France
- Département de Biologie et Chimie Structurales, Institut de Chimie des Substances Naturelles, CNRS UPR2301, Gif-sur-Yvette, France
| | - Stéphane Tachon
- Institut Pasteur, Université Paris Cité, NanoImaging Core Facility, Paris, France
| | - Keith T. Egger
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - Anastasia D. Gazi
- Institut Pasteur, Université Paris Cité, Ultrastructural BioImaging Core Facility, Paris, France
| | - Anna Sartori-Rupp
- Institut Pasteur, Université Paris Cité, NanoImaging Core Facility, Paris, France
| | - Cammie F. Lesser
- Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Matthijn Vos
- Institut Pasteur, Université Paris Cité, NanoImaging Core Facility, Paris, France
| | - Jost Enninga
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| |
Collapse
|
2
|
The Shigella Type III Secretion System: An Overview from Top to Bottom. Microorganisms 2021; 9:microorganisms9020451. [PMID: 33671545 PMCID: PMC7926512 DOI: 10.3390/microorganisms9020451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Shigella comprises four species of human-restricted pathogens causing bacillary dysentery. While Shigella possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The Shigella T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes. The initial subversion of host cell activities is carried out by the effector functions of the invasion plasmid antigen (Ipa) translocator proteins, with the cell ultimately being controlled by dedicated effector proteins that are injected into the host cytoplasm though the translocon. Much of the information now available on the T3SS injectisome has been accumulated through collective studies on the T3SS from three systems, those of Shigella flexneri, Salmonella typhimurium and Yersinia enterocolitica/Yersinia pestis. In this review, we will touch upon the important features of the T3SS injectisome that have come to light because of research in the Shigella and closely related systems. We will also briefly highlight some of the strategies being considered to target the Shigella T3SS for disease prevention.
Collapse
|
3
|
Detergent Isolation Stabilizes and Activates the Shigella Type III Secretion System Translocator Protein IpaC. J Pharm Sci 2016; 105:2240-8. [PMID: 27297397 DOI: 10.1016/j.xphs.2016.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023]
Abstract
Shigella rely on a type III secretion system as the primary virulence factor for invasion and colonization of human hosts. Although there are an estimated 90 million Shigella infections, annually responsible for more than 100,000 deaths worldwide, challenges isolating and stabilizing many type III secretion system proteins have prevented a full understanding of the Shigella invasion mechanism and additionally slowed progress toward a much needed Shigella vaccine. Here, we show that the non-denaturing zwitterionic detergent N, N-dimethyldodecylamine N-oxide (LDAO) and non-ionic detergent n-octyl-oligo-oxyethylene efficiently isolated the hydrophobic Shigella translocator protein IpaC from the co-purified IpaC/IpgC chaperone-bound complex. Both detergents resulted in monomeric IpaC that exhibits strong membrane binding and lysis characteristics while the chaperone-bound complex does not, suggesting that the stabilizing detergents provide a means of following IpaC "activation" in vitro. Additionally, biophysical characterization found that LDAO provides significant thermal and temporal stability to IpaC, protecting it for several days at room temperature and brief exposure to temperatures reaching 90°C. In summary, this work identified and characterized conditions that provide stable, membrane active IpaC, providing insight into key interactions with membranes and laying a strong foundation for future vaccine formulation studies taking advantage of the native immunogenicity of IpaC and the stability provided by LDAO.
Collapse
|
4
|
Abstract
The TTSS encoding "translocator operon" of Pseudomonas aeruginosa consists of a major translocator protein PopB, minor translocator protein PopD and their cognate chaperone PcrH. Far-UV CD spectra and secondary structure prediction servers predict an α-helical model for PopB, PcrH and PopB-PcrH complex. PopB itself forms a single species of higher order oligomer (15 mer) as seen from AUC, but in complex with PcrH, both monomeric (1:1) and oligomeric form exist. PopB has large solvent-exposed hydrophobic patches and exists as an unordered molten globule in its native state, but on forming complex with PcrH it gets transformed into an ordered molten globule. Tryptophan fluorescence spectrum indicates that PopB interacts with the first TPR region of dimeric PcrH to form a stable PopB-PcrH complex that has a partial rigid structure with a large hydrodynamic radius and few tertiary contacts. The pH-dependent studies of PopB, PcrH and complex by ANS fluorescence, urea induced unfolding and thermal denaturation experiments prove that PcrH not only provides structural support to the ordered molten globule PopB in complex but also undergoes conformational change to assist PopB to pass through the needle complex of TTSS and form pores in the host cell membrane. ITC experiments show a strong affinity (K(d) ~ 0.37 μM) of PopB for PcrH at pH 7.8, which reduces to ~0.68 μM at pH 5.8. PcrH also loses its rigid tertiary structure at pH 5 and attains a molten globule conformation. This indicates that the decrease in pH releases PopB molecules and thus triggers the TTSS activation mechanism for the formation of a functional translocon.
Collapse
|
5
|
Mounier J, Popoff MR, Enninga J, Frame MC, Sansonetti PJ, Van Nhieu GT. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 2009; 5:e1000271. [PMID: 19165331 PMCID: PMC2621354 DOI: 10.1371/journal.ppat.1000271] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 12/15/2008] [Indexed: 01/04/2023] Open
Abstract
Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S) apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitment of the Src kinase required for actin polymerization at bacterial entry sites during the initial stages of Shigella entry. Src recruitment occurred at bacterial-cell contact sites independent of actin polymerization at the onset of the invasive process and was still observed in Shigella strains mutated for translocated T3S effectors of invasion. A Shigella strain with a polar mutation that expressed low levels of the translocator components IpaB and IpaC was fully proficient for Src recruitment and bacterial invasion. In contrast, a Shigella strain mutated in the IpaC carboxyterminal effector domain that was proficient for T3S effector translocation did not induce Src recruitment. Consistent with a direct role for IpaC in Src activation, cell incubation with the IpaC last 72 carboxyterminal residues fused to the Iota toxin Ia (IaC) component that translocates into the cell cytosol upon binding to the Ib component led to Src-dependent ruffle formation. Strikingly, IaC also induced actin structures resembling bacterial entry foci that were enriched in activated Src and were inhibited by the Src inhibitor PP2. These results indicate that the IpaC effector domain determines Src-dependent actin polymerization and ruffle formation during bacterial invasion. Type III secretion systems (T3SS) are present in a wide range of Gram-negative bacteria that are pathogenic to humans, animals, and plants. These molecular devices allow the injection of bacterial virulence factors into host cells to manipulate various cellular functions. T3SSs share similar functional features. Noticeably, host cell contact triggers the secretion of two T3SS substrates that insert into host cell membranes to form a so-called “translocator” required for the injection of T3SS effectors. Shigella, an enteroinvasive pathogen responsible for bacillary dysentery, uses a T3SS to transiently reorganize the actin cytoskeleton and to induce its internalization into epithelial cells. Some Shigella-injected T3SS effectors participate in cytoskeletal reorganization, but none of these effectors are totally necessary or sufficient to induce bacterial invasion. We show here that in addition to its role in the injection of bacterial effectors, the translocator component IpaC also induces the recruitment of Src and actin polymerization driving the formation of localized membrane ruffling. Our findings suggest that major signaling through T3S translocator components occurs during the initial steps of bacterial interaction with host cell membranes. Compounds that prevent membrane insertion of the Shigella T3S translocator would likely constitute ideal candidates for antimicrobial agents.
Collapse
Affiliation(s)
- Joëlle Mounier
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Michel R. Popoff
- Unité de Recherche et d'Expertise Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Jost Enninga
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Margaret C. Frame
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Guy Tran Van Nhieu
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
6
|
Terry CM, Picking WL, Birket SE, Flentie K, Hoffman BM, Barker JR, Picking WD. The C-terminus of IpaC is required for effector activities related to Shigella invasion of host cells. Microb Pathog 2008; 45:282-9. [PMID: 18656530 PMCID: PMC2581421 DOI: 10.1016/j.micpath.2008.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 06/17/2008] [Accepted: 06/26/2008] [Indexed: 11/15/2022]
Abstract
Invasion plasmid antigen C (IpaC) is secreted by the Shigella flexneri type III secretion system (TTSS) as an essential trigger of epithelial cell invasion. At the molecular level, IpaC possesses a distinct functional organization. The IpaC C-terminal region between amino acids 319 and 345 is predicted to form a coiled-coil structure. Such alpha-helical motifs appear to be a recurring structural theme among TTSS components. Together with IpaB, this IpaC region is also required for the formation of translocon pores in target cell membranes. In contrast, mutations within the C-terminal tail of IpaC (defined by residues 345-363) have no effect on contact hemolysis (a putative measure of translocon pore formation), but they can contribute significantly to IpaC's ability to trigger S. flexneri entry into cultured cells. Here we describe the molecular dissection of the IpaC C-terminus and how changes in this region affect selected virulence-related activities. IpaC invasion function requires its immediate C-terminus and this general region may be involved in its ability to trigger actin nucleation. In contrast, IpaC could not be shown to interact directly with Cdc42, a host GTPase closely tied to Shigella invasion.
Collapse
Affiliation(s)
- Christina M Terry
- Department of Molecular Biosciences, University of Kansas, Haworth Hall Room 8047, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Immunogenicity and efficacy of highly purified invasin complex vaccine from Shigella flexneri 2a. Vaccine 2008; 26:1353-64. [PMID: 18276045 DOI: 10.1016/j.vaccine.2007.12.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 12/13/2007] [Accepted: 12/19/2007] [Indexed: 11/20/2022]
Abstract
Development of a subunit vaccine for shigellosis requires identification of protective antigens and delivering these antigens in a manner that stimulates immunity comparable to that induced by natural infection. The Shigella invasin complex (Invaplex) vaccine is an ion-exchange-purified extract from virulent Shigella that consists of LPS and several other proteins, including the invasins IpaB and IpaC. Intranasal delivery of Invaplex stimulates protective immunity in small animal models for shigellosis. To identify the active component(s) of Invaplex responsible for its immunogenicity and efficacy, size-exclusion chromatography (SEC) was used to separate Invaplex into several different fractions. A high-molecular mass complex with a molecular mass between 669 MDa and 2 MDa consisted primarily of LPS, IpaB and IpaC and was considered to be a highly purified (HP) form of Invaplex. Using the mouse lung model to evaluate the immunogenicity and efficacy of the SEC fractions it was clearly demonstrated that the high-molecular mass complex of the invasins and LPS was responsible for the protective capacity of parent native Invaplex. Other smaller mass SEC fractions were mostly non-immunogenic and did not stimulate solid protection. In guinea pigs, the HP Invaplex stimulated an enhanced immune response as compared to the parent Invaplex and was fully protective. Isolation and characterization of the immunogenic and protective moiety within Invaplex will allow better standardization of the Invaplex product and may allow future development of an Invaplex assembled from purified components.
Collapse
|
8
|
Espina M, Olive AJ, Kenjale R, Moore DS, Ausar SF, Kaminski RW, Oaks EV, Middaugh CR, Picking WD, Picking WL. IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri. Infect Immun 2006; 74:4391-400. [PMID: 16861624 PMCID: PMC1539624 DOI: 10.1128/iai.00440-06] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Shigella flexneri, the causative agent of shigellosis, is a gram-negative bacterial pathogen that initiates infection by invading cells within the colonic epithelium. Contact with host cell surfaces induces a rapid burst of protein secretion via the Shigella type III secretion system (TTSS). The first proteins secreted are IpaD, IpaB, and IpaC, with IpaB and IpaC being inserted into the host cell membrane to form a pore for translocating late effectors into the target cell cytoplasm. The resulting pathogen-host cross talk results in localized actin polymerization, membrane ruffling, and, ultimately, pathogen entry. IpaD is essential for host cell invasion, but its role in this process is just now coming to light. IpaD is a multifunctional protein that controls the secretion and presentation of IpaB and IpaC at the pathogen-host interface. We show here that antibodies recognizing the surface-exposed N terminus of IpaD neutralize Shigella's ability to promote pore formation in erythrocyte membranes. We further show that MxiH and IpaD colocalize on the bacterial surface. When TTSS needles were sheared from the Shigella surface, IpaD was found at only the needle tips. Consistent with this, IpaD localized to the exposed tips of needles that were still attached to the bacterium. Molecular analyses then showed that the IpaD C terminus is required for this surface localization and function. Furthermore, mutations that prevent IpaD surface localization also eliminate all IpaD-related functions. Thus, this study demonstrates that IpaD localizes to the TTSA needle tip, where it functions to control the secretion and proper insertion of translocators into host cell membranes.
Collapse
Affiliation(s)
- Marianela Espina
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hamada D, Kato T, Ikegami T, Suzuki KN, Hayashi M, Murooka Y, Honda T, Yanagihara I. EspB from enterohaemorrhagic Escherichia coli is a natively partially folded protein. FEBS J 2005; 272:756-68. [PMID: 15670156 DOI: 10.1111/j.1742-4658.2004.04513.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The structural properties of EspB, a virulence factor of the Escherichia coli O157 type III secretion system, were characterized. Far-UV and near-UV CD spectra, recorded between pH 1.0 and pH 7.0, show that the protein assumes alpha-helical structures and that some tyrosine tertiary contacts may exist. All tyrosine side-chains are exposed to water, as determined by acrylamide fluorescence quenching spectroscopy. An increase in the fluorescence intensity of 8-anilinonaphthalene-1-sulfonate was observed at pH 2.0 in the presence of EspB, whereas no such increase in fluorescence was observed at pH 7.0. These data suggest the formation of a molten globule state at pH 2.0. Destabilization of EspB at low pH was shown by urea-unfolding transitions, monitored by far-UV CD spectroscopy. The result from a sedimentation equilibrium study indicated that EspB assumes a monomeric form at pH 7.0, although its Stokes radius (estimated by multiangle laser light scattering) was twice as large as expected for a monomeric globular structure of EspB. These data suggest that EspB, at pH 7.0, assumes a relatively expanded conformation. The chemical shift patterns of EspB 15N-1H heteronuclear single quantum correlation spectra at pH 2.0 and 7.0 are qualitatively similar to that of urea-unfolded EspB. Taken together, the properties of EspB reported here provide evidence that EspB is a natively partially folded protein, but with less exposed hydrophobic surface than traditional molten globules. This structural feature of EspB may be advantageous when EspB interacts with various biomolecules during the bacterial infection of host cells.
Collapse
Affiliation(s)
- Daizo Hamada
- Department of Developmental Infectious Diseases, Research Institute, Osaka Medical Center for Maternal and Child Health, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Berring E, Brancato S, Grant K, Schaper E, Kadavil S, Smagin H, Hatic SO, Picking W, Serfis AB. Destabilization of phospholipid model membranes by YplA, a phospholipase A2 secreted by Yersinia enterocolitica. Chem Phys Lipids 2005; 131:135-49. [PMID: 15351266 DOI: 10.1016/j.chemphyslip.2004.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 04/21/2004] [Accepted: 04/22/2004] [Indexed: 11/27/2022]
Abstract
Yersinia enterocolitica produces a virulence-associated phospholipase A(2) (YplA) that is secreted via its flagellar type-III secretion apparatus. When the N-terminal 59 amino acids of YplA are removed (giving YplA(S)), it retains phospholipase activity; however, it is altered with respect to the apparent kinetics of hydrolysis using fluorescent phospholipid substrates in micellar form. To explore the physical properties of YplA more carefully, Langmuir phospholipid monolayers were used to study the association of YplA with biological membranes. YPlA and YplA(S) both associate with Langmuir monolayers, but YplA(S) appears to interact better at low initial lipid densities while YplA interacts better at higher densities. This may indicate that the N-terminus of YplA has a role in mediating its initial interaction with compact cellular membranes, which is consistent with spectroscopic observations that fluorescein-labeled YplA may interact more readily with the nonpolar region of liposomes than does YplA(S).
Collapse
Affiliation(s)
- Erin Berring
- Department of Chemistry, Saint Louis University, Monsanto Hall 125, 3501 Laclede Avenue, St. Louis, MO 63103-2010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yao X, Wang HL, Shi ZX, Yan XY, Feng EL, Yang BL, Huang LY. Identification of RanBMP interacting with Shigella flexneri IpaC invasin by two-hybrid system of yeast. World J Gastroenterol 2003; 9:1347-51. [PMID: 12800254 PMCID: PMC4611814 DOI: 10.3748/wjg.v9.i6.1347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Bacillary dysentery caused by Shigella flexneri is still a threat to human health. Of four invasion plasmid antigen proteins (IpaA, B, C and D), IpaC plays an important role in the pathogenicity of this pathogen. The purpose of this study was to investigate the proteins interacting with IpaC in the host cell during the pathogenic process of this disease.
METHODS: By applying two-hybrid system, the bait plasmid containing ipaC gene was constructed and designated pGBKT-ipaC. The bait plasmid was transformed AH109, and proved to express IpaC and then HeLa cDNA library plasmids were introduced into the above transformed AH109. The transformation mixture was plated on medium lacking Trp, Leu, and His in the initial screen, then restreaked on medium lacking Trp, Leu, His and Ade. Colonies growing on the selection medium were further assayed for β-galactosidase activity. BLAST was carried out in the database after sequencing the inserted cDNA of the positive library plasmid.
RESULTS: Among the 2 × 106 transformants, 64 positive clones were obtained as determined by activation of His, Ade and LacZ reporter genes. Sequence analysis revealed that cDNA inserts of two colonies were highly homologous to a known human protein, RanBPM.
CONCLUSION: These results provide evidence that IpaC may be involved in the invasion process of S. flexneri by interacting with RanBPM, and RanBPM is most likely to be the downstream target of IpaC in the cascade events of S. flexneri infection.
Collapse
Affiliation(s)
- Xiao Yao
- College of Environmental and Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Harrington AT, Hearn PD, Picking WL, Barker JR, Wessel A, Picking WD. Structural characterization of the N terminus of IpaC from Shigella flexneri. Infect Immun 2003; 71:1255-64. [PMID: 12595440 PMCID: PMC148864 DOI: 10.1128/iai.71.3.1255-1264.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 10/30/2002] [Accepted: 12/04/2002] [Indexed: 01/08/2023] Open
Abstract
The primary effector for Shigella invasion of epithelial cells is IpaC, which is secreted via a type III secretion system. We recently reported that the IpaC N terminus is required for type III secretion and possibly other functions. In this study, mutagenesis was used to identify an N-terminal secretion signal and to determine the functional importance of the rest of the IpaC N terminus. The 15 N-terminal amino acids target IpaC for secretion by Shigella flexneri, and placing additional amino acids at the N terminus does not interfere with IpaC secretion. Furthermore, amino acid sequences with no relationship to the native IpaC secretion signal can also direct its secretion. Deletions introduced beyond amino acid 20 have no effect on secretion and do not adversely affect IpaC function in vivo until they extend beyond residue 50, at which point invasion function is completely eliminated. Deletions introduced at amino acid 100 and extending toward the N terminus reduce IpaC's invasion function but do not eliminate it until they extend to the N-terminal side of residue 80, indicating that a region from amino acid 50 to 80 is critical for IpaC invasion function. To explore this further, the ability of an IpaC N-terminal peptide to associate in vitro with its translocon partner IpaB and its chaperone IpgC was studied. The N-terminal peptide binds tightly to IpaB, but the IpaC central hydrophobic region also appears to participate in this binding. The N-terminal peptide also associates with the chaperone IpgC and IpaB is competitive for this interaction. Based on additional biophysical data, we propose that a region between amino acids 50 and 80 is required for chaperone binding, and that the IpaB binding domain is located downstream from, and possibly overlapping, this region. From these data, we propose that the secretion signal, chaperone binding region, and IpaB binding domain are located at the IpaC N terminus and are essential for presentation of IpaC to host cells during bacterial entry; however, IpaC effector activity may be located elsewhere.
Collapse
Affiliation(s)
- Amanda T Harrington
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | |
Collapse
|
13
|
Kueltzo LA, Osiecki J, Barker J, Picking WL, Ersoy B, Picking WD, Middaugh CR. Structure-function analysis of invasion plasmid antigen C (IpaC) from Shigella flexneri. J Biol Chem 2003; 278:2792-8. [PMID: 12427760 DOI: 10.1074/jbc.m208383200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Shigella flexneri causes a self-limiting gastroenteritis in humans, characterized by severe localized inflammation and ulceration of the colonic mucosa. Shigellosis most often targets young children in underdeveloped countries. Invasion plasmid antigen C (IpaC) has been identified as the primary effector protein for Shigella invasion of epithelial cells. Although an initial model of IpaC function has been developed, no detailed structural information is available that could assist in a better understanding of the molecular basis for its interactions with the host cytoskeleton and phospholipid membrane. We have therefore initiated structural studies of IpaC, IpaC I', (residues 101-363 deleted), and IpaC Delta H (residues 63-170 deleted). The secondary and tertiary structure of the protein was examined as a function of temperature, employing circular dichroism and high resolution derivative absorbance techniques. ANS (8-anilino-1-napthalene sulfonic acid) was used to probe the exposure of the hydrophobic surfaces under different conditions. The interaction of IpaC and these mutants with a liposome model (liposomes with entrapped fluorescein) was also examined. Domain III (residues 261-363) was studied using linker-scanning mutagenesis. It was shown that domain III contains periodic, sequence-dependent activity, suggesting helical structure in this section of the protein. In addition to these structural studies, investigation into the actin nucleation properties of IpaC was conducted, and actin nucleation by IpaC and some of the mutants was exhibited. Structure-function relationships of IpaC are discussed.
Collapse
Affiliation(s)
- Lisa A Kueltzo
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Delahay RM, Frankel G. Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol Microbiol 2002; 45:905-16. [PMID: 12180912 DOI: 10.1046/j.1365-2958.2002.03083.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pathogenic potential of many Gram-negative bacteria is indicated by the possession of a specialized type III secretion system that is used to deliver virulence effector proteins directly into the cellular environment of the eukaryotic host. Extracellular assemblies of secreted proteins contrive a physical link between the pathogen and host cytosol and enable the translocated effectors to bypass the bacterial and host membranes in a single step. Subsequent interactions of some effector proteins with host cytoskeletal and signalling proteins result in modulation of the cytoskeletal architecture of the aggressed cell and facilitate entry, survival and dissemination of the pathogen. Although the secreted components of type III secretion systems are diverse, many are predicted to share a common coiled-coil structural feature. Coiled-coils are ubiquitous and highly versatile assembly motifs found in a wide range of structural and regulatory proteins. The prevalence of these domains in secreted virulence effector proteins suggests a fundamental contribution to multiple aspects of their function, and evidence accumulating from functional studies suggests an intrinsic involvement of coiled-coils in subunit assembly, translocation and flexible interactions with multiple bacterial and host proteins. The known functional flexibility that coiled-coil domains confer upon proteins provides insights into some of the pathogenic mechanisms used during interaction with the host.
Collapse
Affiliation(s)
- Robin M Delahay
- Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London, UK.
| | | |
Collapse
|
15
|
Osiecki JC, Barker J, Picking WL, Serfis AB, Berring E, Shah S, Harrington A, Picking WD. IpaC from Shigella and SipC from Salmonella possess similar biochemical properties but are functionally distinct. Mol Microbiol 2001; 42:469-81. [PMID: 11703668 DOI: 10.1046/j.1365-2958.2001.02654.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Invasion plasmid antigen C (IpaC) is secreted via the type III secretion system (TTSS) of Shigella flexneri and serves as an essential effector molecule for epithelial cell invasion. The only homologue of IpaC identified thus far is Salmonella invasion protein C (SipC/SspC), which is essential for enterocyte invasion by Salmonella typhimurium. To explore the biochemical and functional relatedness of IpaC and SipC, recombinant derivatives of both proteins were purified so that their in vitro biochemical properties could be compared. Both proteins were found to: (i) enhance the entry of wild-type S. flexneri and S. typhimurium into cultured cells; (ii) interact with phospholipid membranes; and (iii) oligomerize in solution; however, IpaC appeared to be more efficient in carrying out several of the biochemical properties examined. Overall, the data indicate that purified IpaC and SipC are biochemically similar, although not identical with respect to their in vitro activities. To extend these observations, complementation analyses were conducted using S. flexneri SF621 and S. typhimurium SB220, neither of which is capable of invading epithelial cells because of non-polar null mutations in ipaC and sipC respectively. Interestingly, both ipaC and sipC restored invasiveness to SB220 whereas only ipaC restored invasiveness to SF621, suggesting that SipC lacks an activity possessed by IpaC. This functional difference is not at the level of secretion because IpaC and SipC are both secreted by SF621 and it does not appear to be because of SipC dependency on this native chaperone as coexpression of sipC and sicA in SF621 still failed to restore detectable invasiveness. Taken together, the data suggest that IpaC and SipC differ in either their ability to be translocated into host cells or in their function as effectors of host cell invasion. Because IpaB shares significant sequence homology with the YopB translocator of Yersinia species, the ability for IpaC and SipC to associate with this protein was explored as a potential indicator of translocation function. Both proteins were found to bind to purified IpaB with an apparent dissociation constant in the nanomolar range, suggesting that they may differ with respect to effector function. Interestingly, whereas SB220 expressing sipC behaved like wild-type Salmonella, in that it remained within its membrane-bound vacuole following entry into host cells, SB220 expressing ipaC was found in the cytoplasm of host cells. This observation indicates that IpaC and SipC are responsible for a major difference in the invasion strategies of Shigella and Salmonella, that is, they escape into the host cell cytoplasm. The implications of the role of each protein's biochemistry relative to its in vivo function is discussed.
Collapse
Affiliation(s)
- J C Osiecki
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kuwae A, Yoshida S, Tamano K, Mimuro H, Suzuki T, Sasakawa C. Shigella invasion of macrophage requires the insertion of IpaC into the host plasma membrane. Functional analysis of IpaC. J Biol Chem 2001; 276:32230-9. [PMID: 11413141 DOI: 10.1074/jbc.m103831200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Shigella infects residential macrophages via the M cell entry, after which the pathogen induces macrophage cell death. The bacterial strategy of macrophage infection, however, remains largely speculative. Wild type Shigella flexneri (YSH6000) invaded macrophages more efficiently than the noninvasive mutants, where YSH6000 induced large scale lamellipodial extension including ruffle formation around the bacteria. When macrophages were infected with the noninvasive ipaC mutant, the invasiveness and induction of membrane extension were dramatically reduced as compared with that of YSH6000. J774 macrophages infected with YSH6000 showed tyrosine phosphorylation of several proteins including paxillin and c-Cbl, and this pattern was distinctive from those stimulated by Salmonella typhimurium or phorbol ester. Upon addition of IpaC into the external medium of macrophages, membrane extensions were rapidly induced, and this promoted uptake of Escherichia coli. The exogenously added IpaC was found to be integrated into the host cell membrane as detected by immunostaining. The IpaC domain required for the induction of membrane extension from J774 was narrowed down within the region of residues 117-169, which contains a putative membrane-spanning sequence. Our data indicate that Shigella directs its own entry into macrophages, and the IpaC domain which is required for the association with its host membrane is crucial.
Collapse
Affiliation(s)
- A Kuwae
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Brancato S, Serfis A. Incorporation of Blood-Clotting Proteins into Phospholipid Langmuir Monolayers: A Fluorescence Microscopy Study. J Colloid Interface Sci 2001; 239:139-144. [PMID: 11397058 DOI: 10.1006/jcis.2001.7557] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipid monolayers adsorbed at an air-water interface are model cell membranes and have been used in this work to study interactions with blood-clotting proteins. Factor I (non-membrane binding) was used as a control protein, and its association with L-alpha-dipalmitoylphosphatidylcholine Langmuir monolayers was compared to factor VII, a membrane-binding protein. Fluorescence micrographs indicated that factor I penetration of the lipid monolayers in the phase transition region occurred extensively, causing condensation of the lipid film. The association of factor I with phospholipid monolayers was deemed nonspecific. Factor VII was shown to associate with the periphery of lipid domains in the absence of calcium ions, causing flattening of domain edges. In the presence of calcium, factor VII induced expansion of the lipid monolayer. This effect is a specific interaction attributed to exposure of hydrophobic residues upon calcium binding, followed by protein association with lipid hydrocarbon chains. Copyright 2001 Academic Press.
Collapse
Affiliation(s)
- Sam Brancato
- Department of Chemistry, Saint Louis University, Monsanto Hall 125, 3501 Laclede Avenue, St. Louis, Missouri, 63103-2010
| | | |
Collapse
|
18
|
Picking WL, Coye L, Osiecki JC, Barnoski Serfis A, Schaper E, Picking WD. Identification of functional regions within invasion plasmid antigen C (IpaC) of Shigella flexneri. Mol Microbiol 2001; 39:100-11. [PMID: 11123692 DOI: 10.1046/j.1365-2958.2001.02210.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Shigella flexneri causes bacillary dysentery with symptoms resulting from the inflammation that accompanies bacterial entry into the cells of the colonic epithelium. The effectors of S. flexneri invasion are the Ipa proteins, particularly IpaB and IpaC, which are secreted at the host-pathogen interface following bacterial contact with a host cell. Of the purified Ipa proteins, only IpaC has been shown to possess quantifiable in vitro activities that are related to cellular invasion. In this study, ipaC deletion mutants were generated to identify functional regions within the IpaC protein. From these data, we now know that the N-terminus and an immunogenic central region are not required for IpaC-dependent enhancement of cellular invasion by S. flexneri. However, to restore invasiveness to an ipaC null mutant of S. flexneri, the N-terminus is essential, because IpaC mutants lacking the N-terminus are not secreted by the bacterium. Deletion of the central hydrophobic region eliminates IpaC's ability to interact with phospholipid membranes, and fusion of this region to a modified form of green fluorescent protein converts it into an efficient membrane-associating protein. Meanwhile, deletion of the C-terminus eliminates the mutant protein's ability to establish protein-protein contacts with full-length IpaC. Interestingly, the mutant form of ipaC that restores partial invasiveness to the S. flexneri ipaC null mutant also restores full contact-mediated haemolysis activity to this bacterium. These data support a model in which IpaC possesses a distinct functional organization that is important for bacterial invasion. This information will be important in defining the precise role of IpaC in S. flexneri pathogenesis and in exploring the potential effects of purified IpaC at mucosal surfaces.
Collapse
Affiliation(s)
- W L Picking
- Department of Molecular Biosciences, University of Kansas, 8047 Haworth, Lawrence, KS 66045, USA.
| | | | | | | | | | | |
Collapse
|