1
|
Tsai YY, Ienes Lima J, Alvarez Narvaez S, Logue CM. Whole-genome analysis of five Escherichia coli strains isolated from focal duodenal necrosis in laying hens reveals genetic similarities to the E. coli O25:H4 ST131 strain. Microbiol Spectr 2025; 13:e0211024. [PMID: 40162772 PMCID: PMC12054123 DOI: 10.1128/spectrum.02110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Focal duodenal necrosis (FDN) is an intestinal disease causing significant economic losses in the table-egg industry due to reduced egg production in laying hens. Its etiology and pathogenesis remain poorly understood. Between 2021 and 2023, 111 Escherichia coli isolates were collected from FDN lesions and screened for the presence of virulence genes using PCR panels. Five strains-FDN-4, FDN-9, FDN-11, FDN-24, and FDN-50-were selected for whole-genome sequencing due to their high virulence gene content. Core-genome analyses found that the five FDN E. coli belong to different phylogroups and strain types (ST), but they all share multiple complete operons involved in key pathogenic functions, including host cell adhesion and invasion, iron acquisition, motility, biofilm formation, and acid resistance. Comparative genomic analyses identified FDN-4 as the most genetically distinct strain, closely resembling EC958, an O25b:H4 ST131 uropathogenic E. coli (UPEC) commonly associated with extended-spectrum beta-lactamase production. FDN-4 and EC958 share unique chromosomal virulence genes absent in the other FDN strains, all located within genomic islands. This study provides the first complete genomic characterization of E. coli isolated from FDN lesions and highlights FDN-4 as a genetically distinct strain with similarities to O25b:H4 ST131 UPEC.IMPORTANCEThis study presents the first complete genomic characterization of Escherichia coli isolated from focal duodenal necrosis (FDN) lesions. Notably, FDN-4 is the first E. coli strain from a poultry disease (FDN) to show significant similarity to O25b:H4 ST131 strains, commonly classified as uropathogenic E. coli and often associated with extended-spectrum beta-lactamase production. However, caution is warranted when attributing direct transmission routes between poultry and humans.
Collapse
Affiliation(s)
- Yu-Yang Tsai
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Julia Ienes Lima
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Sonsiray Alvarez Narvaez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Catherine M. Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Ribeiro LF, Rossi GAM, Sato RA, de Souza Pollo A, Cardozo MV, do Amaral LA, Fairbrother JM. Epidemiology, Virulence and Antimicrobial Resistance of Escherichia coli Isolated from Small Brazilian Farms Producers of Raw Milk Fresh Cheese. Microorganisms 2024; 12:1739. [PMID: 39203581 PMCID: PMC11357254 DOI: 10.3390/microorganisms12081739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
This study aimed to identify contamination sources in raw milk and cheese on small farms in Brazil by isolating Escherichia coli at various stages of milk production and cheese manufacturing. The study targeted EAEC, EIEC, ETEC, EPEC, STEC, and ExPEC pathotypes, characterizing isolates for the presence of virulence genes, phylogroups, antimicrobial susceptibility, and phylogenetic relationships using PFGE and MLST. The presence of antimicrobial resistance genes and serogroups was also determined. Three categories of E. coli were identified: pathogenic, commensal, and ceftriaxone-resistant (ESBL) strains. Pathogenic EPEC, STEC, and ExPEC isolates were detected in milk and cheese samples. Most isolates belonged to phylogroups A and B1 and were resistant to antimicrobials such as nalidixic acid, ampicillin, kanamycin, streptomycin, sulfisoxazole, and tetracycline. Genetic analysis revealed that E. coli with identical virulence genes were present at different stages within the same farm. The most frequently identified serogroup was O18, and MLST identified ST131 associated with pathogenic isolates. The study concluded that E. coli was present at multiple points in milk collection and cheese production, with significant phylogroups and high antimicrobial resistance. These findings highlight the public health risk posed by contamination in raw milk and fresh cheese, emphasizing the need to adopt hygienic practices to control these microorganisms.
Collapse
Affiliation(s)
- Laryssa Freitas Ribeiro
- Mário Palmério University Center (UniFucamp), Av. Brasil Oeste, 1900, Jardim Zenith, Monte Carmelo 38500-000, MG, Brazil;
| | | | - Rafael Akira Sato
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Andressa de Souza Pollo
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Marita Vedovelli Cardozo
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Luiz Augusto do Amaral
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - John Morris Fairbrother
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, 3200 rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
3
|
Awawdeh L, Forrest R, Turni C, Cobbold R, Henning J, Gibson J. Virulence-associated genes in faecal and clinical Escherichia coli isolates cultured from broiler chickens in Australia. Aust Vet J 2024; 102:398-406. [PMID: 38721873 DOI: 10.1111/avj.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 08/03/2024]
Abstract
A healthy chicken's intestinal flora harbours a rich reservoir of Escherichia coli as part of the commensal microbiota. However, some strains, known as avian pathogenic E. coli (APEC), carry specific virulence genes (VGs) that enable them to invade and cause extraintestinal infections such as avian colibacillosis. Although several VG combinations have been identified, the pathogenic mechanisms associated with APEC are ill-defined. The current study screened a subset of 88 E. coli isolates selected from 237 pre-existing isolates obtained from commercial poultry flocks in Australia. The 88 isolates were selected based on their enterobacterial repetitive intergenic consensus (ERIC) and antimicrobial resistance (AMR) profiles and included 29 E. coli isolates cultured from chickens with colibacillosis (referred to as clinical E. coli or CEC) and 59 faecal E. coli (FEC) isolates cultured from clinically healthy chickens. The isolates were screened for the presence of 35 previously reported VGs. Of these, 34 were identified, with iucA not being detected. VGs focG, hlyA and sfa/foc were only detected in FEC isolates. Eight VGs had a prevalence of 90% or above in the CEC isolates. Specifically, astA (100%); feoB (96.6%); iutA, iss, ompT, iroN and hlyF (all 93.1%); and vat (89.7%). The prevalence of these were significantly lower in FEC isolates (astA 79.7%, feoB 77.9%, iutA 52.5%, iss 45.8%, ompT 50.9%, iroN 37.3%, hlyF 50.9% and vat 42.4%). The odds ratios that each of these eight VGs were more likely to be associated with CEC than FEC ranged from 7.8 to 21.9. These eight VGs may be used to better define APEC and diagnostically detect APEC in Australia. Further investigations are needed to identify the roles of these VGs in pathogenicity.
Collapse
Affiliation(s)
- L Awawdeh
- School of Science, Western Sydney University, Richmond, New South Wales, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - R Forrest
- Nursing & Health Science, Te Pūkenga|Eastern Institute of Technology, Napier, New Zealand
| | - C Turni
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Dutton Park, Queensland, Australia
| | - R Cobbold
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - J Henning
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - J Gibson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
4
|
Klemberg VS, Pavanelo DB, Houle S, Dhakal S, Pokharel P, Iahnig-Jacques S, Dozois CM, Horn F. The osmoregulated metabolism of trehalose contributes to production of type 1 fimbriae and bladder colonization by extraintestinal Escherichia coli strain BEN2908. Front Cell Infect Microbiol 2024; 14:1414188. [PMID: 38979511 PMCID: PMC11228248 DOI: 10.3389/fcimb.2024.1414188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In Escherichia coli, the disaccharide trehalose can be metabolized as a carbon source or be accumulated as an osmoprotectant under osmotic stress. In hypertonic environments, E. coli accumulates trehalose in the cell by synthesis from glucose mediated by the cytosolic enzymes OtsA and OtsB. Trehalose in the periplasm can be hydrolyzed into glucose by the periplasmic trehalase TreA. We have previously shown that a treA mutant of extraintestinal E. coli strain BEN2908 displayed increased resistance to osmotic stress by 0.6 M urea, and reduced production of type 1 fimbriae, reduced invasion of avian fibroblasts, and decreased bladder colonization in a murine model of urinary tract infection. Since loss of TreA likely results in higher periplasmic trehalose concentrations, we wondered if deletion of otsA and otsB genes, which would lead to decreased internal trehalose concentrations, would reduce resistance to stress by 0.6 M urea and promote type 1 fimbriae production. The BEN2908ΔotsBA mutant was sensitive to osmotic stress by urea, but displayed an even more pronounced reduction in production of type 1 fimbriae, with the consequent reduction in adhesion/invasion of avian fibroblasts and reduced bladder colonization in the murine urinary tract. The BEN2908ΔtreAotsBA mutant also showed a reduction in production of type 1 fimbriae, but in contrast to the ΔotsBA mutant, resisted better than the wild type in the presence of urea. We hypothesize that, in BEN2908, resistance to stress by urea would depend on the levels of periplasmic trehalose, but type 1 fimbriae production would be influenced by the levels of cytosolic trehalose.
Collapse
Affiliation(s)
- Vivian Souza Klemberg
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | | | - Sébastien Houle
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Sabin Dhakal
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Pravil Pokharel
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Simone Iahnig-Jacques
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Charles M. Dozois
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Fabiana Horn
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| |
Collapse
|
5
|
Naziri Z, Derakhshandeh A, Hajirajabi M, Abbasi F, Moezzi MS, Shirmohamadi Sosfad A. Molecular typing and virulence characteristics of Escherichia coli strains isolated from hospital and community acquired urinary tract infections. Mol Biol Rep 2024; 51:509. [PMID: 38622237 DOI: 10.1007/s11033-024-09485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND The main causes of hospital- and community-acquired urinary tract infections (UTIs) are a group of Escherichia coli (E. coli) strains with multiple virulence factors known as uropathogenic E. coli. METHODS AND RESULTS One hundred E. coli isolates from the urine specimens of hospital- and community-acquired UTI patients were characterized based on their virulence factors and genetic relatedness using PCR and RAPD‒PCR, respectively. Among all, the traT (71%), sitA (64%), ompT (54%), malX (49%), ibeA (44%), tsh (39%), hlyD (18%) and cnf1 (12%) genes had the highest to lowest frequencies, respectively. There was no significant difference between the frequency of tested virulence genes in E. coli isolates from inpatients and outpatients. The frequency of the hlyD gene was significantly greater in E. coli isolates from patients hospitalized in gynecology, dermatology and intensive care unit (ICU) wards than in those from other wards. Eight virulence gene patterns were common among the isolates of inpatients in different wards of the same hospital, of which five patterns belonged to the isolates of inpatients in the same ward. More E. coli isolates with similar virulence gene patterns and greater genetic similarity were found in female patients than in male patients. The analysis of the RAPD‒PCR dendrograms revealed more genetic similarities among the E. coli isolates from inpatients than among those from outpatients. CONCLUSION Our findings indicate the presence of a wide variety of virulence factors in E. coli isolates and the possibility of spreading the same clones in different wards of the hospital.
Collapse
Affiliation(s)
- Zahra Naziri
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran.
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | - Maryam Hajirajabi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | - Fatemeh Abbasi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | - Maryam Sadat Moezzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | | |
Collapse
|
6
|
Sartini I, Vercelli C, Lebkowska-Wieruszewska B, Lisowski A, Fadel C, Poapolathep A, Dessì F, Giorgi M. Pharmacokinetics and antibacterial activity of tiamulin after single and multiple oral administrations in geese. Vet Anim Sci 2023; 22:100317. [PMID: 37920697 PMCID: PMC10618762 DOI: 10.1016/j.vas.2023.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Tiamulin is an antibiotic approved exclusively in veterinary medicine, active against G-positive bacteria as well as Mycoplasma spp. and Leptospirae spp. The study was aimed to establish its pharmacokinetics and to evaluate drug effects on resistance in cloacal flora in vivo in geese. Eight healthy geese underwent to a two-phase longitudinal study (60 mg/kg single oral administration vs 60 mg/kg/day for 4 days) with a two-week wash-out period. Blood samples and cloacal swabs were collected at pre-assigned times. Minimal inhibitory concentration (MIC) has been evaluated for each isolated bacterial species. The pharmacokinetic parameters that significantly differed between the groups were Cmax (p = 0.024), AUC0-t (p = 0.031), AUC0-inf (p = 0.038), t1/2kel (p = 0.021), Cl/F (p = 0.036), and Vd/F (p = 0.012). Tiamulin exhibited a slow to moderate terminal half-life (3.13 h single; 2.62 h multiple) and a rapid absorption (1 h single; 0.5 h multiple) in geese, with an accumulation ratio of 1.8 after multiple doses. An in-silico simulation of multiple dosing did not reflect the results of the in vivo multiple dosage study. In both treatments, the MIC values were very high demonstrating a resistance (> 64 μg/ml) against tiamulin that can be present prior the drug administration for some strains, or emerge shortly after the commencing of treatment for some others.
Collapse
Affiliation(s)
- Irene Sartini
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Cristina Vercelli
- Department of Veterinary Sciences, University of Turin, Torino, Italy
| | | | - Andrzej Lisowski
- Department of Biology and Animal Breeding, University of Life Sciences, Lublin, Poland
| | - Charbel Fadel
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Filomena Dessì
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Mario Giorgi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy
| |
Collapse
|
7
|
Navarro-Garcia F. Serine proteases autotransporter of Enterobacteriaceae: Structures, subdomains, motifs, functions, and targets. Mol Microbiol 2023; 120:178-193. [PMID: 37392318 DOI: 10.1111/mmi.15116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Serine protease autotransporters of Enterobacteriaceae (SPATE) constitute a superfamily of virulence factors, resembling the trypsin-like superfamily of serine proteases. SPATEs accomplish multiple functions associated to disease development of their hosts, which could be the consequence of SPATE cleavage of host cell components. SPATEs have been divided into class-1 and class-2 based on structural differences and biological effects, including similar substrate specificity, cytotoxic effects on cultured cells, and enterotoxin activity on intestinal tissues for class-1 SPATEs, whereas most class-2 SPATEs exhibit a lectin-like activity with a predilection to degrade a variety of mucins, including leukocyte surface O-glycoproteins and soluble host proteins, resulting in mucosal colonization and immune modulation. In this review, the structure of class-1 and class-2 are analyzed, making emphasis on their putative functional subdomains as well as a description of their function is provided, including prototypical mechanism of action.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, Mexico
| |
Collapse
|
8
|
Salmonella Typhimurium expressing chromosomally integrated Schistosoma mansoni Cathepsin B protects against schistosomiasis in mice. NPJ Vaccines 2023; 8:27. [PMID: 36849453 PMCID: PMC9969381 DOI: 10.1038/s41541-023-00599-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/13/2023] [Indexed: 03/01/2023] Open
Abstract
Schistosomiasis threatens hundreds of millions of people worldwide. The larval stage of Schistosoma mansoni migrates through the lung and adult worms reside adjacent to the colonic mucosa. Several candidate vaccines are in preclinical development, but none is designed to elicit both systemic and mucosal responses. We have repurposed an attenuated Salmonella enterica Typhimurium strain (YS1646) to express Cathepsin B (CatB), a digestive enzyme important for the juvenile and adult stages of the S. mansoni life cycle. Previous studies have demonstrated the prophylactic and therapeutic efficacy of our plasmid-based vaccine. Here, we have generated chromosomally integrated (CI) YS1646 strains that express CatB to produce a viable candidate vaccine for eventual human use (stability, no antibiotic resistance). 6-8-week-old C57BL/6 mice were vaccinated in a multimodal oral (PO) and intramuscular (IM) regimen, and then sacrificed 3 weeks later. The PO + IM group had significantly higher anti-CatB IgG titers with greater avidity and mounted significant intestinal anti-CatB IgA responses compared to PBS control mice (all P < 0.0001). Multimodal vaccination generated balanced TH1/TH2 humoral and cellular immune responses. Production of IFNγ by both CD4+ and CD8+ T cells was confirmed by flow cytometry (P < 0.0001 & P < 0.01). Multimodal vaccination reduced worm burden by 80.4%, hepatic egg counts by 75.2%, and intestinal egg burden by 78.4% (all P < 0.0001). A stable and safe vaccine that has both prophylactic and therapeutic activity would be ideal for use in conjunction with praziquantel mass treatment campaigns.
Collapse
|
9
|
Kromann S, Baig S, Olsen RH, Edslev SM, Thøfner I, Bojesen AM, Jensen HE, Stegger M. Dramatic increase in slaughter condemnations due to Escherichia coli ST23 and ST101 within the Danish broiler production. Vet Microbiol 2023; 280:109696. [PMID: 36893553 DOI: 10.1016/j.vetmic.2023.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/15/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Escherichia coli constitutes a major challenge to poultry even when the prevalence of colibacillosis is low. Additionally, specific E. coli strains can severely enhance the detrimental effects on productivity, animal welfare and antimicrobial use. In 2019-2020, a dramatic increase in colibacillosis occurred among Danish broilers causing late-onset mortality and high slaughter condemnations. In the present study, the pathology and causative E. coli-types were characterised. Furthermore, the outbreak-related strains were compared to isolates from concurrent "background" colibacillosis. During the study, 1039 birds were subjected to a comprehensive post-mortem examination, and a total of 349 E. coli isolates were sequenced and characterised by multi-locus sequence typing, virulence and resistance gene presence, plasmid replicon content and phylogenetic analysis. Productivity data from outbreak flocks revealed a mortality of 6.34% ± 3.74 and a condemnation of 5.04% ± 3.67. Contrary, the numbers were 3.18% ± 1.57% and 1.02% ± 0.4 among non-outbreak flocks, respectively. Major lesions were cellulitis (46.82%), airsacculitis (67.63%), pericarditis (55.49%), perihepatitis (41.04%) and femoral head necrosis with physeal/metaphyseal involvement (44.51%). Among non-outbreak broilers, the prevalence was 4.46%, 7.64%, 7.01%, 3.82% and 8.28%, respectively. ST23 and ST101 dominated heavily in outbreak flocks, whereas non-outbreak related isolates consisted of various other STs. A low level of resistance markers was evident, except in few multidrug-resistant isolates. Within ST23 and ST101, 13 and 12 virulence genes were significantly over-represented compared to non-outbreak isolates. In conclusion, clonal lineages were documented as the cause of a devastating outbreak of colibacillosis with great prospects for future interventions.
Collapse
Affiliation(s)
- Sofie Kromann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; DanHatch Denmark A/S, Rugerivej 26, 9760 Vrå, Denmark.
| | - Sharmin Baig
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Sofie Marie Edslev
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Ida Thøfner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Marc Stegger
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Artillerivej 5, 2300 Copenhagen, Denmark
| |
Collapse
|
10
|
Prevalence of Potential Pathogenic and Antimicrobial Resistant Escherichia coli in Danish Broilers. Antibiotics (Basel) 2023; 12:antibiotics12020344. [PMID: 36830255 PMCID: PMC9952160 DOI: 10.3390/antibiotics12020344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) are important bacteria in broiler production in terms of economy, welfare, and use of antibiotics. During a previous outbreak of APEC in the Nordic countries, it was suggested that the pathogenic clones of E. coli causing the outbreak originated from grandparent stock and were transmitted to the offspring, causing increased first week mortality. This study investigated whether the pathogenic potential of E. coli at the parent and broiler level differs in relation to pathogenic potential described by the level of virulence-associated genes and pattern of antimicrobial resistance. The hypothesis was that, due to higher biosecurity at the parent level, the E. coli population will show a lower level of antimicrobial resistance and carry fewer virulence-associated genes, as a result of fewer E. coli infections observed. From four parent flocks and eight broiler flocks, 715 E. coli were isolated from cloacal swabs of newly hatched chickens (Ross 308). The isolated E. coli were characterized by eight virulence-associated genes and phenotypic resistance against six antimicrobials. It was found that the prevalence of virulence-associated genes and phenotypic antimicrobial resistance varied significantly between flocks, and the virulence-associated genes papC and irp2 and resistance against ampicillin were significantly more prevalent in breeder flocks compared to broiler flocks.
Collapse
|
11
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
12
|
Laconi A, Tolosi R, Apostolakos I, Piccirillo A. Biofilm Formation Ability of ESBL/pAmpC-Producing Escherichia coli Isolated from the Broiler Production Pyramid. Antibiotics (Basel) 2023; 12:antibiotics12010155. [PMID: 36671356 PMCID: PMC9855187 DOI: 10.3390/antibiotics12010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Escherichia coli able to produce extended spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (pAmpCs) represents a serious threat to public health, since these genes confer resistance to critically important antimicrobials (i.e., third generation cephalosporins) and can be transferred to non-resistant bacteria via plasmids. E. coli are known to be able to form a biofilm, which represents a favorable environment for the exchange of resistance determinants. Here, we assessed the ability of 102 ESBL/pAmpC-producing E. coli isolated from the broiler production pyramid to form a biofilm and to identify genetic factors involved in biofilm formation. All but one of the ESBL/pAmpC-producing E. coli were able to form a biofilm, and this represents a great concern to public health. E. coli belonging to phylogroups D, E, and F, as well as strains harboring the blaCTX-M-type gene, seem to be associated with an increased biofilm capability (p < 0.05). Furthermore, virulence genes involved in adherence and invasion (i.e., csgBAC, csgDEFG, matABCDEF, and sfaX) seem to enhance biofilm formation in E. coli. Efforts should be made to reduce the presence of ESBL/pAmpC- and biofilm-producing E. coli in the broiler production pyramid and, therefore, the risk of dissemination of resistant bacteria and genes.
Collapse
Affiliation(s)
- Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, PD, Italy
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, PD, Italy
| | - Ilias Apostolakos
- Dairy Research Institute, Hellenic Agricultural Organization “DIMITRA”, 45221 Ioannina, Greece
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, PD, Italy
- Correspondence: ; Tel.: +39-0498-272-793
| |
Collapse
|
13
|
Hammad AM, Gonzalez-Escalona N, El Tahan A, Abbas NH, Koenig SSK, Allué-Guardia A, Eppinger M, Hoffmann M. Pathogenome comparison and global phylogeny of Escherichia coli ST1485 strains. Sci Rep 2022; 12:18495. [PMID: 36323726 PMCID: PMC9630279 DOI: 10.1038/s41598-022-20342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 01/06/2023] Open
Abstract
Escherichia coli ST1485 strains belong to the clinically important phylogroup F and have disseminated worldwide in humans, animals, and the environment. Here, we elucidated the pathogenome of a global collection of E. coli ST1485 isolates from diverse sources retrieved from public databases and a high-quality sequenced complete genome of colistin-resistant E. coli strain CFSAN061771 isolated from raw milk cheese which designated as a reference strain. CFSAN061771 belongs to O83:H42-ST1485 pathotype and carries a conjugative ColV plasmid, pCFSAN061771_01, combining extraintestinal virulence genes (ompt, sitA, iroN, etsC, traT, cvaC, hylF, iss, tsh, mchf, iucC, iutA) with a multidrug resistance island (blaTEM-1, aph(6)-Id, aph(3″)-Ib, sul2, dfrA14). Comparative genomic analysis revealed a high frequency of pCFSAN061771_01-like plasmids in E. coli ST1485. A notable evolutionary genetic event in E. coli ST1485 strains is the acquisition of a pCFSAN061771_02-like plasmid, which confers resistance to several antimicrobials, tellurium, and quaternary ammonium compounds. The identical virulence and antibiotic resistance profiles identified in some human and animal strains are worrisome. This is the first study to emphasize the significance of E. coli ST1485 as a global high-risk virulent and multidrug-resistant clone with zoonotic potential.
Collapse
Affiliation(s)
- Ahmed M Hammad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Amira El Tahan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Nasser H Abbas
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Sara S K Koenig
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
14
|
Benavides JA, Godreuil S, Opazo-Capurro A, Mahamat OO, Falcon N, Oravcova K, Streicker DG, Shiva C. Long-term maintenance of multidrug-resistant Escherichia coli carried by vampire bats and shared with livestock in Peru. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152045. [PMID: 34883172 DOI: 10.1016/j.scitotenv.2021.152045] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) have been reported in wildlife worldwide. Whether wildlife is a transient host of ESBL-E. coli or comprises an independently maintained reservoir is unknown. We investigated this question by longitudinally monitoring ESBL-E. coli in common vampire bats and nearby livestock in Peru. Among 388 bats from five vampire bat colonies collected over three years, ESBL-E. coli were detected at a low prevalence (10% in 2015, 4% in 2017 and 2018) compared to a high prevalence (48%) from 134 livestock sampled in 2017. All ESBL-E. coli were multidrug-resistant, and whole genome sequencing of 33 randomly selected ESBL-E. coli isolates (18 recovered from bats) detected 46 genes conferring resistance to antibiotics including third-generation cephalosporins (e.g., blaCTX-M-55, blaCTX-M-15, blaCTX-M-65, blaCTX-M-3, blaCTX-M-14), aminoglycosides, fluoroquinolones, and colistin (mcr-1). The mcr-1 gene is reported for the first time on a wild bat in Latin America. ESBL-E. coli also carried 31 plasmid replicon types and 16 virulence genes. Twenty-three E. coli sequence types (STs) were detected, including STs involved in clinical infections worldwide (e.g., ST 167, ST 117, ST 10, ST 156 and ST 648). ESBL-E. coli with identical cgMLST (ST 167) were detected in the same bat roost in 2015 and 2017, and several ESBL-E. coli from different bat roosts clustered together in the cgMLST reconstruction, suggesting long-term maintenance of ESBL-E. coli within bats. Most antibiotic resistance and virulence genes were detected in E. coli from both host populations, while ESBL-E. coli ST 744 was found in a bat and a pig from the same locality, suggesting possible cross-species exchanges of genetic material and/or bacteria between bats and livestock. This study suggests that wild mammals can maintain multidrug-resistant bacteria and share them with livestock.
Collapse
Affiliation(s)
- Julio A Benavides
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK; Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Millennium Nucleus for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago, Chile.
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboratoire Mixte International, DRISA, IRD, Montpellier, France
| | - Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Millennium Nucleus for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago, Chile
| | - Oumar O Mahamat
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboratoire Mixte International, DRISA, IRD, Montpellier, France; Service de laboratoire Hôpital de la Mère et de l'Enfant, N'Djaména, Chad
| | - Nestor Falcon
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katarina Oravcova
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Carlos Shiva
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
15
|
Long J, Geng J, Xu Y, Jin Y, Yang H, Xi Y, Chen S, Duan G. Large-Scale Phylogenetic Analysis Reveals a New Genetic Clade among Escherichia coli O26 Strains. Microbiol Spectr 2022; 10:e0252521. [PMID: 35107330 PMCID: PMC8809355 DOI: 10.1128/spectrum.02525-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O26 is the predominant non-O157 serogroup causing hemolytic uremic syndrome worldwide. Moreover, the serogroup is highly dynamic and harbors several pathogenic clones. Here, we investigated the phylogenetic relationship of STEC O26 at a global level based on 1,367 strains from 20 countries deposited in NCBI and Enterobase databases. The whole-genome-based analysis identified a new genetic clade, called ST29C4. The new clade was unique in terms of multilocus sequence type (ST29), CRISPR (group Ia), and dominant plasmid gene profile (ehxA+/katP-/espP-/etpD-). Moreover, the combination of multiple typing methods (core genome single nucleotide polymorphism [SNP] typing, CRISPR typing, and virulence genes analysis) demonstrated that this new lineage ST29C4 was in the intermediate phylogenetic position between ST29C3 and other non-ST29C3 strains. Besides, we observed that ST29C4 harbored extraintestinal pathogenic E. coli (ExPEC)-related virulence gene (VG), tsh, and STEC-associated VG, stx2a, suggesting the emergence of a hybrid pathogen. The ST29C4 strains also exhibited high similarity in stx2a-prophage and integrase with the O104:H4 strain, further demonstrating its potential risk to human health. Collectively, the large-scale phylogenetic analysis extends the understanding of the clonal structure of O26 strains and provides new insights for O26 strain microevolution. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) O26 is the second prevalent STEC serogroup only to O157, which can cause a series of diseases ranging from mild diarrhea to life-threatening hemolytic uremic syndrome (HUS). The serogroup is highly diverse and multiple clones are characterized, including ST29C1-C3 and ST21C1-C2. However, the phylogenetic relationship of these clones remains fully unclear. In this study, we revealed a new genetic clade among O26 strains, ST29C4, which was unique in terms of CRISPR, multilocus sequence type (MLST), and plasmid gene profile (PGP). Moreover, the combination of multiple typing methods demonstrated that this new clone was located in the intermediate phylogenetic position between ST29C3 and other non-ST29C3 strains (i.e., ST29C1-C2 and ST21C1-C2). Overall, the large-scale phylogenetic analysis extends our current understanding of O26 microevolution.
Collapse
Affiliation(s)
- Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Juna Geng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yake Xu
- Henan Province Centers for Disease Control and Prevention, Zhengzhou, Henan, People’s Republic of China
| | - Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yuanlin Xi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
16
|
Antimicrobial Susceptibility and Detection of Virulence-Associated Genes in Escherichia coli Strains Isolated from Commercial Broilers. Antibiotics (Basel) 2021; 10:antibiotics10111303. [PMID: 34827241 PMCID: PMC8614860 DOI: 10.3390/antibiotics10111303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the presence of iron-uptake and virulence genes, antibiotic resistance profiles, and phylogenetic relatedness in 115 Escherichia coli (E. coli) strains isolated from broilers in Slovakia and to determine their potential threat to human health. The most frequent phylogroups were B1 (37%) and A (21%), and 33.9% strains were included in pathogenic groups. The commonly observed iron-uptake genes were feoB (94%), sitA (83%), and iutA (58%). Protectins (iss, kpsMTII) were identified in 30% of samples. Four percent of B2-associated broilers carried the papC (P fimbria) gene connected with upper urinary tract infection. The dominant resistance was to tetracycline (49%), ampicillin (66%), ampicillin + sulbactam (27%), ciprofloxacin (61%), and trimethoprim + sulfonamide (34%); moreover, sporadically occurring resistance to cephalosporins, aminoglycosides, fluoroquinolones, and polypeptide colistin was observed. Genotypic analysis of resistance revealed the presence of blaCTX-M-1 and blaCTX-M-2 in two isolates from broilers. Commercial broilers can be reservoirs of virulent and resistant genes as well as E. coli causing (extra-)intestinal infections, which can be a potential threat to humans via direct contact and food.
Collapse
|
17
|
Sandholt AKS, Neimanis A, Roos A, Eriksson J, Söderlund R. Genomic signatures of host adaptation in group B Salmonella enterica ST416/ST417 from harbour porpoises. Vet Res 2021; 52:134. [PMID: 34674747 PMCID: PMC8529817 DOI: 10.1186/s13567-021-01001-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
A type of monophasic group B Salmonella enterica with the antigenic formula 4,12:a:- (“Fulica-like”) has been described as associated with harbour porpoises (Phocoena phocoena), most frequently recovered from lung samples. In the present study, lung tissue samples from 47 porpoises found along the Swedish coast or as bycatch in fishing nets were analysed, two of which were positive for S. enterica. Pneumonia due to the infection was considered the likely cause of death for one of the two animals. The recovered isolates were whole genome sequenced and found to belong to sequence type (ST) 416 and to be closely related to ST416/ST417 porpoise isolates from UK waters as determined by core-genome MLST. Serovars Bispebjerg, Fulica and Abortusequi were identified as distantly related to the porpoise isolates, but no close relatives from other host species were found. All ST416/417 isolates had extensive loss of function mutations in key Salmonella pathogenicity islands, but carried accessory genetic elements associated with extraintestinal infection such as iron uptake systems. Gene ontology and pathway analysis revealed reduced secondary metabolic capabilities and loss of function in terms of signalling and response to environmental cues, consistent with adaptation for the extraintestinal niche. A classification system based on machine learning identified ST416/417 as more invasive than classical gastrointestinal serovars. Genome analysis results are thus consistent with ST416/417 as a host-adapted and extraintestinal clonal population of S. enterica, which while found in porpoises without associated pathology can also cause severe opportunistic infections.
Collapse
Affiliation(s)
- Arnar K S Sandholt
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden
| | - Anna Roos
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Jenny Eriksson
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Robert Söderlund
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|
18
|
Gregova G, Kmet V, Szaboova T. New Insight on Antibiotic Resistance and Virulence of Escherichia coli from Municipal and Animal Wastewater. Antibiotics (Basel) 2021; 10:antibiotics10091111. [PMID: 34572693 PMCID: PMC8471733 DOI: 10.3390/antibiotics10091111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance of the indicator microorganism Escherichia coli was investigated in isolates from samples collected during the course of one year from two wastewater treatment plants treating municipal and animal wastes in Slovakia, respectively. The genes of antibiotic resistance and virulence factors in selected resistant E. coli isolates were described. A high percentage of the isolates from municipal and animal wastewater were resistant to ampicillin, streptomycin, tetracycline, ceftiofur, ceftriaxone, and enrofloxacin. In the selected E. coli isolates, we detected the following phenotypes: ESBL (20.4% in animal wastewater; 7.7% in municipal wastewater), multidrug-resistant (17% of animal and 32% of municipal isolates), high resistance to quinolones (25% of animal and 48% of municipal samples), and CTX-M (7.9% of animal and 17.3% of municipal isolates). We confirmed an integro-mediated antibiotic resistance in 13 E. coli strains from municipal and animal wastewater samples, of which the Tn3 gene and virulence genes cvaC, iutA, iss, ibeA, kps, and papC were detected in six isolates. One of the strains of pathogenic E. coli from the animal wastewater contained genes ibeA with papC, iss, kpsII, Int1, Tn3, and Cit. In addition, one blaIMP gene was found in the municipal wastewater sample. This emphasises the importance of using the appropriate treatment methods to reduce the counts of antibiotic-resistant microorganisms in wastewater effluent.
Collapse
Affiliation(s)
- Gabriela Gregova
- The University of Veterinary Medicine and Pharmacy in Košice, Komenského 87, 040 01 Košice, Slovakia;
- Correspondence:
| | - Vladimir Kmet
- Centre of Biosciences, Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4, 040 01 Košice, Slovakia;
| | - Tatiana Szaboova
- The University of Veterinary Medicine and Pharmacy in Košice, Komenského 87, 040 01 Košice, Slovakia;
| |
Collapse
|
19
|
Aziz A, Abbas MA, Siddique N, Shah A, Rahim A, Rafique S, Khan A, Midrarullah, Khan S, Rashid F, Hui Y, Suleman M. Development of multiplex PCR for rapid and simultaneous detection of E. coli (APEC), Salmonella, Mycoplasma gallisepticum and Mycoplasma Synoviae. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Escherichia coli Specific Virulence-Gene Markers Analysis for Quality Control of Ovine Cheese in Slovakia. Microorganisms 2021; 9:microorganisms9091808. [PMID: 34576703 PMCID: PMC8467307 DOI: 10.3390/microorganisms9091808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/04/2022] Open
Abstract
Shiga toxin-producing and extra-intestinal pathogenic Escherichia coli (E. coli) have the potential to spread through faecal waste, resulting in contamination of food and causing foodborne disease outbreaks. With the aim of characterizing unpasteurized ovine cheese in Slovakia, a total of 92 E. coli strains were examined for eleven representative virulence genes typical for (extra-)intestinal pathogenic E. coli and phylogenetic grouping. Phylogenetic groups B1 (36%) and A (32%) were the most dominant, followed by groups C (14%) and D (13%), while the lowest incidence was recorded for F (4%), and E (1%), and 43 (47%) samples carried at least one virulent gene, i.e., potential pathogens. Isolates present in groups E, F and D showed higher presence of virulence genes (100%, 75%, and 67%), versus 55%, 39%, and 28% in commensal B1, C, and A, respectively. Occurrence of papC and fyuA (both 24%) was highest, followed by tsh, iss, stx2, cnf1, kpsII, cvaC, stx1, iutA and eaeA. Nine E. coli strains (almost 10% of all tested and around 21% of our virulence-gene-associated isolates) harboured stx1, stx2 or eae. Ovine cheeses in Slovakia are highly contaminated with E. coli including potentially pathogenic strains capable of causing intestinal and/or extra-intestinal diseases, and thus may pose a threat to public health while unpasteurized.
Collapse
|
21
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|
22
|
Aleksandrowicz A, Khan MM, Sidorczuk K, Noszka M, Kolenda R. Whatever makes them stick - Adhesins of avian pathogenic Escherichia coli. Vet Microbiol 2021; 257:109095. [PMID: 33940458 DOI: 10.1016/j.vetmic.2021.109095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/21/2021] [Indexed: 01/19/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) is associated with extraintestinal infections and the development of colibacillosis, causing high mortality in farm birds and extensive losses in the poultry industry worldwide. The virulence of APEC is a complex phenomenon associated with numerous mechanisms involving a variety of extracellular and intracellular structures to overcome host barriers. Initial bacterial attachment or adhesion to host cells is vital to bacterial pathogenesis and is determined by various adhesins. These proteins protect pathogens against possible host defense mechanisms, enabling the effective use of other virulence attributes. Considering this property, the current review provides a systematic and in-depth analysis of the latest information on adhesins analyzed in APEC strains. This review discusses in detail each of the adhesin types, such as fimbrial chaperone-usher, fimbrial curli, nonfimbrial and atypical adhesins, and their components, presenting an opportunity to gain a better understanding of different adhesins and mechanisms employed in pathogenesis. Additionally, the article scrutinizes and notes missing information and potential studies that need to be undertaken to develop a complete understanding of APEC adhesion.
Collapse
Affiliation(s)
- Adrianna Aleksandrowicz
- Department of Biochemistry and Molecular Biology, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Poland; Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Poland
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty Environment and Natural Sciences, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Katarzyna Sidorczuk
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| | - Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Poland.
| |
Collapse
|
23
|
Swelum AA, Elbestawy AR, El-Saadony MT, Hussein EOS, Alhotan R, Suliman GM, Taha AE, Ba-Awadh H, El-Tarabily KA, Abd El-Hack ME. Ways to minimize bacterial infections, with special reference to Escherichia coli, to cope with the first-week mortality in chicks: an updated overview. Poult Sci 2021; 100:101039. [PMID: 33752065 PMCID: PMC8010699 DOI: 10.1016/j.psj.2021.101039] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
On the commercial level, the poultry industry strives to find new techniques to combat bird's infection. During the first week, mortality rate increases in birds because of several bacterial infections of about ten bacterial species, especially colisepticemia. This affects the flock production, uniformity, and suitability for slaughter because of chronic infections. Escherichia coli (E. coli) causes various disease syndromes in poultry, including yolk sac infection (omphalitis), respiratory tract infection, and septicemia. The E. coli infections in the neonatal poultry are being characterized by septicemia. The acute septicemia may cause death, while the subacute form could be characterized through pericarditis, airsacculitis, and perihepatitis. Many E. coli isolates are commonly isolated from commercial broiler chickens as serogroups O1, O2, and O78. Although prophylactic antibiotics were used to control mortality associated with bacterial infections of neonatal poultry in the past, the commercial poultry industry is searching for alternatives. This is because of the consumer's demand for reduced antibiotic-resistant bacteria. Despite the vast and rapid development in vaccine technologies against common chicken infectious diseases, no antibiotic alternatives are commercially available to prevent bacterial infections of neonatal chicks. Recent research confirmed the utility of probiotics to improve the health of neonatal poultry. However, probiotics were not efficacious to minimize death and clinical signs associated with neonatal chicks' bacterial infections. This review focuses on the causes of the increased mortality in broiler chicks during the first week of age and the methods used to minimize death.
Collapse
Affiliation(s)
- Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, El Beheira 22511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Elsayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashed Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
24
|
Johnson TJ. Role of Plasmids in the Ecology and Evolution of "High-Risk" Extraintestinal Pathogenic Escherichia coli Clones. EcoSal Plus 2021; 9:eESP-0013-2020. [PMID: 33634776 PMCID: PMC11163845 DOI: 10.1128/ecosalplus.esp-0013-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022]
Abstract
Bacterial plasmids have been linked to virulence in Escherichia coli and Salmonella since their initial discovery. Though the plasmid repertoire of these bacterial species is extremely diverse, virulence-associated attributes tend to be limited to a small subset of plasmid types. This is particularly true for extraintestinal pathogenic E. coli, or ExPEC, where a handful of plasmids have been recognized to confer virulence- and fitness-associated traits. The purpose of this review is to highlight the biological and genomic attributes of ExPEC virulence-associated plasmids, with an emphasis on high-risk dominant ExPEC clones. Two specific plasmid types are highlighted to illustrate the independently evolved commonalities of these clones relative to plasmid content. Furthermore, the dissemination of these plasmids within and between bacterial species is examined. These examples demonstrate the evolution of high-risk clones toward common goals, and they show that rare transfer events can shape the ecological landscape of dominant clones within a pathotype.
Collapse
Affiliation(s)
- Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|
25
|
Abd El-Mawgoud A, El-Sawah A, Nasef S, Dahshan AH, Ali A. Virulence and antimicrobial resistance genes associated with the in-vivo pathogenicity of avian pathogenic E. coli isolates. GMPC THESIS AND OPINIONS PLATFORM 2021; 1:17-20. [DOI: 10.51585/gtop.2021.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In the current study, ten avian pathogenic E. coli (APEC) isolates of the most predominant APEC serogroups isolated from broiler chickens in Egypt were screened for their virulence and antimicrobial resistance genes pattern using PCR. Five selected virulence gene patterns were further investigated for their in-vivo pathogenicity test. Results showed a 100% prevalence of the β-lactams and tetracyclines resistance genes. However, aminoglycoside and quinolone resistance genes were not detected. Also, 80% of the tested isolates harbored mcr-1 gene, colistin resistance gene. In-vivo pathogenic strains consistently harbored the virulence gene pattern of fimH, fimA, papC, iutA, and tsh. Additionally, the tsh gene was consistently detected with lethal APEC isolates in day-old chicks. These results highlighted the high prevalence of antimicrobial and virulence genes in APEC that potentially represent a public health concern. In this study, the virulence genes fimH, fimA, papC, iutA, and tsh were the most common virulence gene patterns associated with pathogenicity in day-old chicks.
Collapse
Affiliation(s)
| | - Azza El-Sawah
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 26511, Egypt
| | - Soad Nasef
- RLQP, Animal Health Research Institute, Giza, Egypt
| | - Al-Hussien Dahshan
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 26511, Egypt
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 26511, Egypt
| |
Collapse
|
26
|
Evolution of IS26-bounded pseudo-compound transposons carrying the tet(C) tetracycline resistance determinant. Plasmid 2020; 112:102541. [DOI: 10.1016/j.plasmid.2020.102541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
|
27
|
Gregova G, Kmet V. Antibiotic resistance and virulence of Escherichia coli strains isolated from animal rendering plant. Sci Rep 2020; 10:17108. [PMID: 33051473 PMCID: PMC7553926 DOI: 10.1038/s41598-020-72851-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/03/2020] [Indexed: 01/09/2023] Open
Abstract
Processing of animal carcasses and other animal wastes in rendering plants is a significant source of antibiotic resistant microorganisms. The main goal of this study was to investigate the resistance to 18 antibacterial agents including β-lactams, fluoroquinolones, colistin and virulence factors (iss, tsh, cvaC, iutA, papC, kps and ibeA genes) in 88 Escherichia coli strains isolated from a rendering plant over 1 year period. ESBL (Extended-spectrum beta-lactamases) and plasmid-mediated Amp were screened by interpretative reading of MIC. ESBL phenotype was detected in 20.4% of samples and high level of resistance to fluoroquinolone was found in 27.2% of strains. Cephalosporinase CTX-M1, cephamycinase CMY-2, integrase 1 and transposon 3 genes were detected by PCR. Furthermore, there were found three CMY-2 producing E. coli with O25b-ST131, resistant to the high level of enrofloxacin and containing the gene encoding the ferric aerobactin receptor (iutA). One enrofloxacin resistant E. coli strain possessed iss, ibeA, kps and papC virulence genes also with CMY-2, integrase1 and Tn3. ST131 E. coli with CMY-2 has a zoonotic potential and presents a serious health risk to humans.
Collapse
Affiliation(s)
- Gabriela Gregova
- University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81, Kosice, Slovakia.
| | - Vladimir Kmet
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Soltesovej 4, 040 01, Kosice, Slovakia
| |
Collapse
|
28
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
29
|
The Serine Protease Autotransporters TagB, TagC, and Sha from Extraintestinal Pathogenic Escherichia coli Are Internalized by Human Bladder Epithelial Cells and Cause Actin Cytoskeletal Disruption. Int J Mol Sci 2020; 21:ijms21093047. [PMID: 32357479 PMCID: PMC7246781 DOI: 10.3390/ijms21093047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
TagB, TagC (tandem autotransporter genes B and C), and Sha (Serine-protease hemagglutinin autotransporter) are recently described members of the SPATE (serine protease autotransporters of Enterobacteriaceae) family. These SPATEs can cause cytopathic effects on bladder cells and contribute to urinary tract infection in a mouse model. Bladder epithelial cells form an important barrier in the urinary tract. Some SPATEs produced by pathogenic E. coli are known to breach the bladder epithelium. The capacity of these newly described SPATEs to alter bladder epithelial cells and the role of the serine protease active site were investigated. All three SPATE proteins were internalized by bladder epithelial cells and altered the distribution of actin cytoskeleton. Sha and TagC were also shown to degrade mucin and gelatin respectively. Inactivation of the serine catalytic site in each of these SPATEs did not affect secretion of the SPATEs from bacterial cells, but abrogated entry into epithelial cells, cytotoxicity, and proteolytic activity. Thus, our results show that the serine catalytic triad of these proteins is required for internalization in host cells, actin disruption, and degradation of host substrates such as mucin and gelatin.
Collapse
|
30
|
Habouria H, Pokharel P, Maris S, Garénaux A, Bessaiah H, Houle S, Veyrier FJ, Guyomard-Rabenirina S, Talarmin A, Dozois CM. Three new serine-protease autotransporters of Enterobacteriaceae (SPATEs) from extra-intestinal pathogenic Escherichia coli and combined role of SPATEs for cytotoxicity and colonization of the mouse kidney. Virulence 2020; 10:568-587. [PMID: 31198092 PMCID: PMC6592367 DOI: 10.1080/21505594.2019.1624102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted proteins that contribute to virulence and function as proteases, toxins, adhesins, and/or immunomodulators. An extra-intestinal pathogenic E. coli (ExPEC) O1:K1 strain, QT598, isolated from a turkey, was shown to contain vat, tsh, and three uncharacterized SPATE-encoding genes. Uncharacterized SPATEs: Sha (Serine-protease hemagglutinin autotransporter), TagB and TagC (tandem autotransporter genes B and C) were tested for activities including hemagglutination, autoaggregation, and cytotoxicity when expressed in E. coli K-12. Sha and TagB conferred autoaggregation and hemagglutination activities. TagB, TagC, and Sha all exhibited cytopathic effects on a bladder epithelial cell line. In QT598, tagB and tagC are tandemly encoded on a genomic island, and were present in 10% of UTI isolates and 4.7% of avian E. coli. Sha is encoded on a virulence plasmid and was present in 1% of UTI isolates and 20% of avian E. coli. To specifically examine the role of SPATEs for infection, the 5 SPATE genes were deleted from strain QT598 and tested for cytotoxicity. Loss of all five SPATEs abrogated the cytopathic effect on bladder epithelial cells, although derivatives producing any of the 5 SPATEs retained cytopathic activity. In mouse infections, sha gene-expression was up-regulated a mean of sixfold in the bladder compared to growth in vitro. Loss of either tagBC or sha did not reduce urinary tract colonization. Deletion of all 5 SPATEs, however, significantly reduced competitive colonization of the kidney supporting a cumulative role of SPATEs for QT598 in the mouse UTI model.
Collapse
Affiliation(s)
- Hajer Habouria
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Pravil Pokharel
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Segolène Maris
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Amélie Garénaux
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Hicham Bessaiah
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Sébastien Houle
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Frédéric J Veyrier
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,c Institut Pasteur International Network
| | - Stéphanie Guyomard-Rabenirina
- c Institut Pasteur International Network.,d Unité Environnement Santé , Institut Pasteur de Guadeloupe , Les Abymes , Guadeloupe , France
| | - Antoine Talarmin
- c Institut Pasteur International Network.,d Unité Environnement Santé , Institut Pasteur de Guadeloupe , Les Abymes , Guadeloupe , France
| | - Charles M Dozois
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA).,c Institut Pasteur International Network
| |
Collapse
|
31
|
Lima MP, Yamamoto D, Santos ACDM, Ooka T, Hernandes RT, Vieira MAM, Santos FF, Silva RM, Hayashi T, Gomes TAT. Phenotypic characterization and virulence-related properties of Escherichia albertii strains isolated from children with diarrhea in Brazil. Pathog Dis 2020; 77:5379300. [PMID: 30865776 DOI: 10.1093/femspd/ftz014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/12/2019] [Indexed: 11/14/2022] Open
Abstract
Escherichia albertii are emerging enteropathogens, whose identification is difficult, as they share biochemical characteristics and some virulence-related genes with diarrheagenic Escherichia coli (DEC). Studies on phylogeny, phenotypic characteristics and potential virulence factors of human E. albertii strains are scarce. In this study, we identified by multiplex PCR five E. albertii among 106 strains isolated from diarrheic children in São Paulo, Brazil, which were previously classified as atypical enteropathogenic E. coli. All strains were investigated regarding their phylogeny, biochemical properties, virulence-related properties, antimicrobial resistance and presence of putative virulence-related genes. All strains belonged to different E. albertii lineages and adhered to and produced attaching and effacing lesions on HeLa cells. Three strains invaded Caco-2 cells, but did not persist intracellularly, and three formed biofilms on polystyrene surfaces. All strains were resistant to few antibiotics and only one carried a self-transmissible resistance plasmid. Finally, among 38 DEC and 18 extraintestinal pathogenic E. coli (ExPEC) virulence-related genes searched, six and three were detected, respectively, with paa and cdtB being found in all strains. Despite the limited number of strains, this study provided additional knowledge on human E. albertii virulence potential, showing that they share important virulence factors with DEC and ExPEC.
Collapse
Affiliation(s)
- Mauricio P Lima
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| | - Denise Yamamoto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil.,Rua Prof. Enéas de Siqueira Neto, Universidade Santo Amaro (UNISA), 340 CEP 04829-300-São Paulo, SP, Brazil
| | - Ana Carolina de Mello Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Rodrigo T Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Distrito de Rubião Jr. CEP 18618-691, Botucatu, SP, Brazil
| | - Mônica A M Vieira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| | - Fernanda Fernandes Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| | - Rosa Maria Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maedashi, Higashi-ku, Fukuoka City, Fukuoka Prefecture 812-8582, Japan
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| |
Collapse
|
32
|
Aguilar-Urquizo E, Itza-Ortiz MF, Sangines-Garcia JR, Pineiro-Vázquez AT, Reyes-Ramirez A, Pinacho-Santana B. Phytobiotic Activity of Piper Auritum and Ocimum Basilicum on Avian E. Coli. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2019-1167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Pokharel P, Habouria H, Bessaiah H, Dozois CM. Serine Protease Autotransporters of the Enterobacteriaceae (SPATEs): Out and About and Chopping It Up. Microorganisms 2019; 7:E594. [PMID: 31766493 PMCID: PMC6956023 DOI: 10.3390/microorganisms7120594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Autotransporters are secreted proteins with multiple functions produced by a variety of Gram-negative bacteria. In Enterobacteriaceae, a subgroup of these autotransporters are the SPATEs (serine protease autotransporters of Enterobacteriaceae). SPATEs play a crucial role in survival and virulence of pathogens such as Escherichia coli and Shigella spp. and contribute to intestinal and extra-intestinal infections. These high molecular weight proteases are transported to the external milieu by the type Va secretion system and function as proteases with diverse substrate specificities and biological functions including adherence and cytotoxicity. Herein, we provide an overview of SPATEs and discuss recent findings on the biological roles of these secreted proteins, including proteolysis of substrates, adherence to cells, modulation of the immune response, and virulence in host models. In closing, we highlight recent insights into the regulation of expression of SPATEs that could be exploited to understand fundamental SPATE biology.
Collapse
Affiliation(s)
- Pravil Pokharel
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hajer Habouria
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
34
|
Dutta S, Yu SM, Jeong SC, Lee YH. High-throughput analysis of genes involved in biocontrol performance of Pseudomonas fluorescens NBC275 against Gray mold. J Appl Microbiol 2019; 128:265-279. [PMID: 31574191 DOI: 10.1111/jam.14475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/01/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023]
Abstract
AIMS Many physiological and microbial characteristics influence the biocontrol performance of the biological control agents (BCAs) in agricultural fields. To implement effective biocontrol, the contribution of specific genes, mechanisms and traits to the biocontrol performance of BCAs need to be characterized and explored in greater detail. METHODS AND RESULTS In this study, a transposon (Tn) mutant library using the BCA Pseudomonas fluorescens NBC275 (Pf275) was generated to explore genes and bacterial characteristics involved in antifungal activity and biocontrol performance. Among the Tn mutants, 205 strains showing variations in antifungal activity compared to wild-type (WT) were selected and further analysed for biocontrol efficacy against gray mold in pepper fruits. The genes involved in pyoverdine biosynthesis (pvdI and pvdD) and chitin-binding protein (gbpA) played essential roles in the antifungal activity and biocontrol capacity of Pf275. In addition, a mutation in phlD completely abolished the antifungal activity and significantly suppressed the biocontrol ability of the strain. Genes affecting antifungal activity of Pf275 significantly influenced swimming motility, which was identified as an important trait for the biocontrol ability of the bacterial strain. CONCLUSIONS Overall, our results suggest that antifungal compound production, siderophore biosynthesis and swimming motility synergistically contribute to Pf275 biocontrol performance. The utility of this library was demonstrated by identifying genes for antagonism and biocontrol ability in this BCA strain. The functional roles of many genes identified as contributing to antagonism and in vivo biocontrol activity require further study. SIGNIFICANCE AND IMPACT OF THIS STUDY Genes contributing to antifungal activity and biocontrol performance of P. fluorescens were identified and highlighted by Tn mutagenesis, which will give insight to improve the biocontrol performance of this BCA.
Collapse
Affiliation(s)
- S Dutta
- Division of Biotechnology, Chonbuk National University, Iksan-si, Jeollabuk-do, Republic of Korea
| | - S-M Yu
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, Republic of Korea
| | - S C Jeong
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, Republic of Korea
| | - Y H Lee
- Division of Biotechnology, Chonbuk National University, Iksan-si, Jeollabuk-do, Republic of Korea.,Advanced Institute of Environment and Bioscience, Plant Medical Research Center, and Institute of Bio-industry, Chonbuk National University, Ikansi-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
35
|
Ibrahim RA, Cryer TL, Lafi SQ, Basha EA, Good L, Tarazi YH. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Vet Res 2019; 15:159. [PMID: 31118039 PMCID: PMC6530146 DOI: 10.1186/s12917-019-1901-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) is the principle cause of colibacillosis affecting poultry. The main challenge to the poultry industry is antimicrobial resistance and the emergence of multidrug resistant bacteria that threaten the safety of the food chain. Risk factors associated with emergence of antimicrobial resistance among avian pathogenic E. coli were correlated with the inappropriate use of antimicrobials along with inadequate hygienic practices, which encourages the selection pressure of antimicrobial resistant APEC. The aim of this study was to isolate, identify, serogroup and genotype APEC from broilers, assess their antibiotic resistance profile, expressed genes and the associated risk factors. RESULTS APEC was isolated from the visceral organs of sick chickens with a prevalence of 53.4%. The most prevalent serotypes were O1, O2, O25 and O78, in percentage of 14.8, 12.6, 4.4 and 23.7%, respectively. Virulence Associated Genes; SitA, iss, iucD, iucC, astA, tsh cvi and irp2 were detected in rate of 97.4, 93.3, 75, 74, 71, 46.5, 39 and 34%, respectively and 186 (69.2%) isolates possess > 5-10 genes. The highest resistance was found against sulphamethoxazole-trimethoprim, florfenicol, amoxicillin, doxycycline and spectinomycin in percentage; 95.5, 93.7, 93.3, 92.2 and 92.2%, respectively. Sixty-eight percent of APEC isolates were found to have at least 5 out of 8 antimicrobial resistant genes. The most predominant genes were Int1 97%, tetA 78.4%, bla TEM 72.9%, Sul1 72.4%, Sul2 70.2%. Two risk factors were found to be associated with the presence of multi-drug resistant APEC in broiler chickens, with a P value ≤0.05; the use of ground water as source of drinking water and farms located in proximity to other farms. CONCLUSIONS This study characterized the VAGs of avian pathogenic E. coli and establish their antimicrobial resistance patterns. The widespread of antimicrobial resistance of APEC isolates and detection of ARGs highlighted the need to monitor the spread of ARGs in poultry farms and the environment in Jordan. Use of ground water and closely located farms were significant risk factors associated with the presence of MDR APEC in broiler chickens in Jordan.
Collapse
Affiliation(s)
- Rekaz A. Ibrahim
- Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Tillie L. Cryer
- Pathobiology and Population Sciences Department, the Royal Veterinary College, London, UK
| | - Shawkat Q. Lafi
- Department of Pathology and Public Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Ehab-Abu Basha
- Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Liam Good
- Pathobiology and Population Sciences Department, the Royal Veterinary College, London, UK
| | - Yaser H. Tarazi
- Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
36
|
Handrova L, Kmet V. Antibiotic resistance and virulence factors of Escherichia coli from eagles and goshawks. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:605-614. [PMID: 31046564 DOI: 10.1080/03601234.2019.1608103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the major global problems in medicine is microbial resistance to antibiotics (antimicrobial resistance) and this has become an increasingly frequent research topic. This study focuses on antimicrobial resistance, phylogenetic and genetic characterization of Escherichia coli from wild birds: ten isolates from eagles (Aquila chrysaetos), nine from goshawks (Accipiter gentilis) and 24 from broilers in the Slovak Republic. Twenty-two strains with presence of int1 gene were selected and examined for the presence or absence of transposon gene (tn3), genes of antibiotic resistance and virulence factors. We detected sequence type (ST) in eagles ST 442 with genes iss, papC, iutA, cvaC, tsh, fyuA, iroN, kps, feoB, sitA, irp2, ireA for virulence factors and tetA, sul1, sul2, dfrA, aadA for antibiotic resistance; in goshawks ST 1011 with iss, papC, fyuA, iroN, feoB, sitA and qnrS1, tetA, sul1, sul2, dfrA, aadA, respectively. These ST types have been found in humans too and should be evaluated further for possible zoonotic potential and transfer of resistance genes from the environment.
Collapse
Affiliation(s)
- Livia Handrova
- a Centre of biosciences of the SAS , Institute of Animal Physiology , Kosice , Slovak Republic
| | - Vladimir Kmet
- a Centre of biosciences of the SAS , Institute of Animal Physiology , Kosice , Slovak Republic
| |
Collapse
|
37
|
Secreted proteases: A new insight in the pathogenesis of extraintestinal pathogenic Escherichia coli. Int J Med Microbiol 2019; 309:159-168. [DOI: 10.1016/j.ijmm.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 11/20/2022] Open
|
38
|
MOHSENIFARD E, BASAKI M, ASASI K, SHARIFIYAZDI H, ABDI-HACHESOO B. Pathogenicity of the avian Escherichia coli isolates from pericarditis and femoral head necrosis lesions of the colibacillosis in experimentally infected chicks. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i2.87323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to evaluate the relationship between different combinations of seven (ompT, hlyF, iss, iutA, iroN, tsh and cvaC) Colicin V (ColV) plasmid associated virulence genes (VGs) and pathogenicity of avian E. coli isolates. After detection of the different patterns of VGs among 290 E. coli isolates from pericarditis and femoral head necrosis lesions of colibacillosis and the 70 isolates from feces of apparently healthy birds (AFEC), the day-old chick lethality test was conducted. Distribution of genetic patterns was different between the APECs and AFECs isolates, so that 67.3% of the APECs typed were represented by two specific genetic patterns (ompT+/hlyF+/iss+/iutA+/iroN+/tsh+/cvaC+; ompT+/hlyF+/iss+/iutA+/iroN+/tsh+/cvaC-). Furthermore, both the APECs and AFECs isolates with different genetic patterns were lethal for day-old chicks. The ColV plasmid or some of its VGs can provide helpful characteristics to describe APECs. Furthermore, extraintestinal environments may supply requirements for the pathogenicity of the avian E. coli isolates harboring different genetic background. However, further studies are needed to confirm the definite link between avian E. coli isolates pathogenicity and their genotype.
Collapse
|
39
|
SodA Contributes to the Virulence of Avian Pathogenic Escherichia coli O2 Strain E058 in Experimentally Infected Chickens. J Bacteriol 2019; 201:JB.00625-18. [PMID: 30602490 DOI: 10.1128/jb.00625-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Strains of avian pathogenic Escherichia coli (APEC), the common pathogen of avian colibacillosis, encounter reactive oxygen species (ROS) during the infection process. Superoxide dismutases (SODs), acting as antioxidant factors, can protect against ROS-mediated host defenses. Our previous reports showed that the sodA gene (encoding a Mn-cofactor-containing SOD [MnSOD]) is highly expressed during the septicemic infection process of APEC. sodA has been proven to be a virulence factor of certain pathogens, but its role in the pathogenicity of APEC has not been fully identified. In this study, we deleted the sodA gene from the virulent APEC O2 strain E058 and examined the in vitro and in vivo phenotypes of the mutant. The sodA mutant was more sensitive to hydrogen peroxide in terms of both its growth and viability than was the wild type. The ability to form a biofilm was weakened in the sodA mutant. The sodA mutant was significantly more easily phagocytosed by chicken macrophages than was the wild-type strain. Chicken infection assays revealed significantly attenuated virulence of the sodA mutant compared with the wild type at 24 h postinfection. The virulence phenotype was restored by complementation of the sodA gene. Quantitative real-time reverse transcription-PCR revealed that the inactivation of sodA reduced the expression of oxidative stress response genes katE, perR, and osmC but did not affect the expression of sodB and sodC Taken together, our studies indicate that SodA is important for oxidative resistance and virulence of APEC E058.IMPORTANCE Avian colibacillosis, caused by strains of avian pathogenic Escherichia coli, is a major bacterial disease of severe economic significance to the poultry industry worldwide. The virulence mechanisms of APEC are not completely understood. This study investigated the influence of an antioxidant protein, SodA, on the phenotype and pathogenicity of APEC O2 strain E058. This is the first report demonstrating that SodA plays an important role in protecting a specific APEC strain against hydrogen peroxide-induced oxidative stress and contributes to the virulence of this pathotype strain. Identification of this virulence factor will enhance our knowledge of APEC pathogenic mechanisms, which is crucial for designing successful strategies against associated infections and transmission.
Collapse
|
40
|
Magray SN, Wani SA, Kashoo ZA, Bhat MA, Adil S, Farooq S, Rather MA, Kabli ZA, Banday MT, Nishikawa Y. Serological diversity, molecular characterisation and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolates from broiler chickens in Kashmir, India. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study has determined the serological diversity, virulence-gene profile and in vitro antibiogram of avian pathogenic Escherichia coli (APEC) isolates from broiler chickens in India suspected to have died of colibacillosis. The virulence-gene profile of APEC was compared with that of the Escherichia coli isolates from faeces of apparently healthy chickens, called avian faecal E. coli (AFEC). In total, 90 representative isolates of APEC and 63 isolates of AFEC were investigated in the present study. The APEC were typed into 19 serogroups, while some isolates were rough and could not be typed. Most prevalent serogroup was O2 (24.44%). Among the eight virulence genes studied, the prevalence of seven genes (iss, iucD, tsh, cva/cvi, irp2, papC and vat) was significantly higher in APEC than in AFEC isolates. However, there was no significant difference between APEC and AFEC isolates for possession of astA gene. The most frequent gene detected among the two groups of organisms was iss, which was present in 98.88% and 44.44% of APEC and AFEC isolates respectively. The in vitro antibiogram showed that the majority (96.6%) of APEC isolates were resistant to tetracycline, while 82.2% were resistant to cephalexin, 78.8% to cotrimoxazole, 68.8% to streptomycin and 63.3% to ampicillin. However, most of them (84.45%) were sensitive to gentamicin. Thus, it is concluded that APEC from the broiler chickens carried putative virulence genes that attributed to their pathogenicity. Furthermore, the majority of APEC isolates were found to be multi-drug resistant, which, in addition to leading treatment failures in poultry, poses a public health threat.
Collapse
|
41
|
Al-Kandari F, Woodward MJ. Genotypic and phenotypic diversity differences of presumptive commensal and avian pathogenic E. coli. Br Poult Sci 2018; 60:79-86. [PMID: 30392387 DOI: 10.1080/00071668.2018.1544415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. The objective of the experiment was to characterise the genotypic and phenotypic differences between presumptive commensal E. coli and avian pathogenic E. coli (APEC) of poultry. 2. DNA was extracted from 65 confirmed APEC E. coli from chicken, 100 presumptive commensal E. coli from healthy turkey and 35 from healthy chicken. Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and virulence factors genotyping was performed to characterise genetic features. 3. Carbon source utilisation and antimicrobial susceptibility tests were performed to characterise phenotypic features of isolates. 4. The genetic divergence between E. coli strains tested by ERIC-PCR profiles and virulence-associated genes showed a clear genetic separation between E. coli APEC and turkey E. coli strains. 5. The carbon utilisation profile of turkey isolates was different from chicken and APEC strains; whereas antimicrobial susceptibility was highest for turkey isolates (53%), and lowest for APEC strains (33.8%). 6. The study showed a significant negative correlation between utilisation of arabitol and adonitol with different virulence determinants tested, which suggests that the ability to utilise some uncommon carbon sources may be used to discriminate between presumptive commensal E. coli and APEC.
Collapse
Affiliation(s)
- F Al-Kandari
- a Department of Food and Nutrition Science, School of Chemistry , University of Reading , Reading , UK
| | - M J Woodward
- a Department of Food and Nutrition Science, School of Chemistry , University of Reading , Reading , UK
| |
Collapse
|
42
|
Peng L, Matthijs MGR, Haagsman HP, Veldhuizen EJA. Avian pathogenic Escherichia coli-induced activation of chicken macrophage HD11 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:75-83. [PMID: 29890365 DOI: 10.1016/j.dci.2018.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) can cause severe respiratory diseases in poultry. The initial interaction between APEC and chicken macrophages has not been characterized well and it is unclear how effective chicken macrophages are in neutralizing APEC. Therefore, the effect of APEC on activation of chicken macrophage HD11 cells was studied. Firstly, the effect of temperature (37 vs 41 °C) on phagocytosis of APEC by HD11 cells was determined. The results showed that APEC was more susceptible to being phagocytosed by HD11 cells at 41 °C than 37 °C. Subsequently, the capacity of HD11 cells to kill APEC was shown. In addition, HD11 cells produced nitric oxide (NO) at 18 h post-infection and a strong increase in the mRNA expression of IL-8, IL-6, IL-1β and IL-10 was detected, while IFN-β gene expression remained unaffected. Finally, it was shown that the response of HD11 was partially dependent on viability of APEC since stimulation of HD11 cells with heat-killed APEC resulted in a reduced expression level of these cytokines. In conclusion, APEC induces an effector response in chicken macrophages by enhanced NO production and cytokines gene expression.
Collapse
Affiliation(s)
- Lianci Peng
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mieke G R Matthijs
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P Haagsman
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
43
|
Matter LB, Ares MA, Abundes-Gallegos J, Cedillo ML, Yáñez JA, Martínez-Laguna Y, De la Cruz MA, Girón JA. The CpxRA stress response system regulates virulence features of avian pathogenic Escherichia coli. Environ Microbiol 2018; 20:3363-3377. [PMID: 30062827 DOI: 10.1111/1462-2920.14368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/29/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) causes localized and systemic avian infections and is responsible for considerable economic losses in the poultry industry. This organism adheres and invades human and avian cells, however, the regulatory networks that dictate its virulence are largely unknown. The CpxRA two-component system is responsible for sensing and controlling outer-membrane stress and detecting misfolded proteins in the bacterial periplasmic space. CpxA is a membrane sensor kinase and CpxR is a cytoplasmic transcriptional regulator. In this study, we found that the CpxRA system regulates the virulence properties of APEC. Adherence, invasiveness, motility, production of type 1 fimbriae and biofilm were negatively affected in the ΔcpxA mutant indicating that the CpxA is required for full manifestation of these phenotypes. We also found that CpxR-P directly bound to the fimA promoter, locking the fimS region of type 1 fimbriae in the phase-OFF orientation. In addition, the absence of CpxA also reduced flagella production strongly suggesting that CpxRA regulates these two important surface organelles in APEC. This study provides compelling evidence of the role of the CpxRA two-component system in the regulation of virulence factors of avian pathogenic E. coli.
Collapse
Affiliation(s)
- Letícia B Matter
- Emerging Pathogens Institute, University of Florida, P.O. Box 100009, 2055 Mowry Road, Gainesville, FL, USA.,Departamento de Ciências da Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Rua Universidade das Missões, CEP: 98.802-470, Santo Ângelo, Rio Grande do Sul, Brasil
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, México
| | - Judith Abundes-Gallegos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, México
| | - María L Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Jorge A Yáñez
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Ygnacio Martínez-Laguna
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, México
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
44
|
Ding X, Zhang Q, Wang H, Quan G, Zhang D, Ren W, Liao Y, Xia P, Zhu G. The different roles of hcp 1 and hcp 2 of the type VI secretion system in Escherichia coli strain CE129. J Basic Microbiol 2018; 58:938-946. [PMID: 30247772 DOI: 10.1002/jobm.201800156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 01/15/2023]
Abstract
Type VI secretion system (T6SS) is a secretory system found in Gram-negative bacteria. One of the main structures for T6SS is Hcp (hemolysin co-regulation protein) pipeline. To investigate the role of Hcp major sub-unit genes hcp1 and hcp2 , we deleted hcp1 and hcp2 genes for constructing the in-frame gene deletion mutants. The properties of biofilm formation and the adhesion to chicken embryo fibroblasts cells (DF1 cells) were reduced in the hcp2 mutant. The knockout of hcp1 and hcp2 genes reduced the ability of the avian pathogenic Escherichia coli (APEC) strain CE129 to infect developing chicken embryos. The expression of quorum sensing (QS)-associated genes luxS, lsrR, and pfs were down-regulated in the hcp1 mutant, and the expression of type 1 fimbriae gene fimA and the adhesion-related genes fimC and papC were decreased in the hcp2 mutant, as well as the expression of anti-serum survival factor genes ompA and iss were inhibited in both hcp1 and hcp2 mutants. These results described above from this study help to further elaborate the role of HCP in APEC.
Collapse
Affiliation(s)
- Xueyan Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Guomei Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Dong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuexia Liao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
45
|
Escherichia coli isolates from patients with inflammatory bowel disease: ExPEC virulence- and colicin-determinants are more frequent compared to healthy controls. Int J Med Microbiol 2018; 308:498-504. [PMID: 29735381 DOI: 10.1016/j.ijmm.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
A set of 178 Escherichia coli isolates taken from patients with inflammatory bowel disease (IBD) was analyzed for bacteriocin production and tested for the prevalence of 30 bacteriocin and 22 virulence factor determinants. Additionally, E. coli phylogenetic groups were also determined. Pulsed-field gel electrophoresis (PFGE) was used for exclusion of clonal character of isolates. Results were compared to data from a previously published analysis of 1283 fecal commensal E. coli isolates. The frequency of bacteriocinogenic isolates (66.9%) was significantly higher in IBD E. coli compared to fecal commensal E. coli isolates (54.2%, p < 0.01). In the group of IBD E. coli isolates, a higher prevalence of determinants for group B colicins (i.e., colicins B, D, Ia, Ib, M, and 5/10) (p < 0.01), including a higher prevalence of the colicin B determinant (p < 0.01) was found. Virulence factor determinants encoding fimbriae (fimA, 91.0%; pap, 27.5%), cytotoxic necrotizing factor (cnf1, 11.2%), aerobactin synthesis (aer, 43.3%), and the locus associated with invasivity (ial, 9.0%) were more prevalent in IBD E. coli (p < 0.05 for all five determinants). E. coli isolates from IBD mucosal biopsies were more frequently bacteriocinogenic (84.6%, p < 0.01) compared to fecal IBD isolates and fecal commensal E. coli. PFGE analysis revealed clusters specific for IBD E. coli isolates (n = 11), for fecal isolates (n = 13), and clusters containing both IBD and fecal isolates (n = 10). ExPEC (Extraintestinal Pathogenic E. coli) virulence and colicin determinants appear to be important characteristics of IBD E. coli isolates, especially the E. coli isolates obtained directly from biopsy samples.
Collapse
|
46
|
Role of outer membrane protein T in pathogenicity of avian pathogenic Escherichia coli. Res Vet Sci 2017; 115:109-116. [DOI: 10.1016/j.rvsc.2017.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 11/19/2022]
|
47
|
Altered Regulation of the Diguanylate Cyclase YaiC Reduces Production of Type 1 Fimbriae in a Pst Mutant of Uropathogenic Escherichia coli CFT073. J Bacteriol 2017; 199:JB.00168-17. [PMID: 28924030 DOI: 10.1128/jb.00168-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/07/2017] [Indexed: 11/20/2022] Open
Abstract
The pst gene cluster encodes the phosphate-specific transport (Pst) system. Inactivation of the Pst system constitutively activates the two-component regulatory system PhoBR and attenuates the virulence of pathogenic bacteria. In uropathogenic Escherichia coli strain CFT073, attenuation by inactivation of pst is predominantly attributed to the decreased expression of type 1 fimbriae. However, the molecular mechanisms connecting the Pst system and type 1 fimbriae are unknown. To address this, a transposon library was constructed in the pst mutant, and clones were tested for a regain in type 1 fimbrial production. Among them, the diguanylate cyclase encoded by yaiC (adrA in Salmonella) was identified to connect the Pst system and type 1 fimbrial expression. In the pst mutant, the decreased expression of type 1 fimbriae is connected by the induction of yaiC This is predominantly due to altered expression of the FimBE-like recombinase genes ipuA and ipbA, affecting at the same time the inversion of the fim promoter switch (fimS). In the pst mutant, inactivation of yaiC restored fim-dependent adhesion to bladder cells and virulence. Interestingly, the expression of yaiC was activated by PhoB, since transcription of yaiC was linked to the PhoB-dependent phoA-psiF operon. As YaiC is involved in cyclic di-GMP (c-di-GMP) biosynthesis, an increased accumulation of c-di-GMP was observed in the pst mutant. Hence, the results suggest that one mechanism by which deletion of the Pst system reduces the expression of type 1 fimbriae is through PhoBR-mediated activation of yaiC, which in turn increases the accumulation of c-di-GMP, represses the fim operon, and, consequently, attenuates virulence in the mouse urinary tract infection model.IMPORTANCE Urinary tract infections (UTIs) are common bacterial infections in humans. They are mainly caused by uropathogenic Escherichia coli (UPEC). We previously showed that interference with phosphate homeostasis decreases the expression of type 1 fimbriae and attenuates UPEC virulence. Herein, we identified that alteration of the phosphate metabolism increases production of the signaling molecule c-di-GMP, which in turn decreases the expression of type 1 fimbriae. We also determine the regulatory cascade leading to the accumulation of c-di-GMP and identify the Pho regulon as new players in c-di-GMP-mediated cell signaling. By understanding the molecular mechanisms leading to the expression of virulence factors, we will be in a better position to develop new therapeutics.
Collapse
|
48
|
Moran RA, Hall RM. Evolution of Regions Containing Antibiotic Resistance Genes in FII-2-FIB-1 ColV-Colla Virulence Plasmids. Microb Drug Resist 2017; 24:411-421. [PMID: 28922058 DOI: 10.1089/mdr.2017.0177] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three ColV virulence plasmids carrying antibiotic resistance genes were assembled from draft genome sequences of commensal ST95, ST131, and ST2705 Escherichia coli isolates from healthy Australians. Plasmids pCERC4, pCERC5, and pCERC9 include almost identical backbones containing FII-2 and FIB-1 replicons and the conserved ColV virulence region with an additional ColIa determinant. Only pCERC5 includes a complete, uninterrupted F-like transfer region and was able to conjugate. pCERC5 and pCERC9 contain Tn1721, carrying the tet(A) tetracycline resistance determinant in the same location, with Tn2 (blaTEM; ampicillin resistance) interrupting the Tn1721 in pCERC5. pCERC4 has a Tn1721/Tn21 hybrid transposon carrying dfrA5 (trimethoprim resistance) and sul1 (sulfamethoxazole resistance) in a class 1 integron. Four FII-2:FIB-1 ColV-ColIa plasmids in the GenBank nucleotide database have a related transposon in the same position, but an IS26 has reshaped the resistance gene region, deleting 2,069 bp of the integron 3'-CS, including sul1, and serving as a target for IS26 translocatable units containing blaTEM, sul2 and strAB (streptomycin resistance), or aphA1 (kanamycin/neomycin resistance). Another ColV-ColIa plasmid containing a related resistance gene region has lost the FII replicon and acquired a unique transfer region via recombination within the resistance region and at oriT. Eighteen further complete ColV plasmid sequences in GenBank contained FIB-1, but the FII replicons were of three types, FII-24, FII-18, and a variant of FII-36.
Collapse
Affiliation(s)
- Robert A Moran
- School of Life and Environmental Sciences, The University of Sydney , Sydney, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney , Sydney, Australia
| |
Collapse
|
49
|
New Insights into the Roles of Long Polar Fimbriae and Stg Fimbriae in Salmonella Interactions with Enterocytes and M Cells. Infect Immun 2017. [PMID: 28630073 DOI: 10.1128/iai.00172-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi causes the systemic disease typhoid fever. After ingestion, it adheres to and invades the host epithelium while evading the host innate immune response, causing little if any inflammation. Conversely, Salmonella enterica serovar Typhimurium causes gastroenteritis in humans and thrives in the inflamed gut. Upon entering the host, S Typhimurium preferentially colonizes Peyer's patches, a lymphoid organ in which microfold cells (M cells) overlay an arrangement of B cells, T cells, and antigen-presenting cells. Both serovars can adhere to and invade M cells and enterocytes, and it has been assumed that S Typhi also preferentially targets M cells. In this study, we present data supporting the alternative hypothesis that S Typhi preferentially targets enterocytes. Using a tissue culture M cell model, we examined S Typhi strains with a deletion in the stg fimbriae. The stg deletion resulted in increased adherence to M cells and, as expected, decreased adherence to Caco-2 cells. Adherence to M cells could be further enhanced by introduction of the long polar fimbriae (Lpf), which facilitate adherence of S Typhimurium to M cells. Deletion of stg and/or introduction of lpf enhanced M cell invasion as well, leading to significant increases in secretion of interleukin 8. These results suggest that S Typhi may preferentially target enterocytes in vivo.
Collapse
|
50
|
Hejair HMA, Zhu Y, Ma J, Zhang Y, Pan Z, Zhang W, Yao H. Functional role of ompF and ompC porins in pathogenesis of avian pathogenic Escherichia coli. Microb Pathog 2017; 107:29-37. [PMID: 28315387 DOI: 10.1016/j.micpath.2017.02.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Avian pathogenic Escherichia coli is an important pathogen causes systemic infections in avian species and large economic losses in poultry industry worldwide. The functional role of porins during the infection and their mechanisms of interaction with host tissues for adhesion to and invasion are poorly understood. However, whether porins play a role in infection remains unclear. In this study we evaluated the potential of ompF and ompC outer membrane porins in the pathogenesis of avian pathogenic E. coli (APEC) strain TW-XM. The ompF and ompC were deleted to generate a series of mutants. We found that, ΔompF and ΔompC reduced significantly the adherence by 41.3% and 46.1% and invasion capabilities of APEC to mouse brain microvascular endothelial cell (BMEC) bEnd.3 cells in vitro by 51.9% and 49.7% respectively, compared with the wild strain TW-XM. In vivo experiment based on the measurement of the LD50 have also shown that, ΔompF and ΔompC reduced the bacterial virulence by 9.8-fold, 12.3-fold in ducklings and 9-fold, 10.2-fold in mouse models. Animal infection experiments further revealed that, loss of ompF and ompC reduced TW-XM colonization and invasion capacity in brains, lungs and blood compared to wild-type strain TW-XM (P > 0.01). These virulence-related phenotypes were partially recoverable by genetic complementation. The results of the quantitative real-time reverse transcription-PCR (qRT-PCR) indicated that, the loss of ompF and ompC significantly decreased the expression levels of ompA, fimC and iBeA genes in the mutant strains, compared to wild-type strainTW-XM (P < 0.01). Collectively, our data demonstrate that inactivation of these two porins decreased adhesion, invasion, colonization, proliferation capacities, possibly by reduced expression levels of ompA, fimC and iBeA, which may indicate the involvement of ompF and ompC in APEC pathogenesis.
Collapse
Affiliation(s)
- Hassan M A Hejair
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; College of Veterinary Sciences, University of Nyala, Nyala, Sudan
| | - Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China.
| |
Collapse
|