1
|
Noh S, Capodanno BJ, Xu S, Hamilton MC, Strassmann JE, Queller DC. Reduced and Nonreduced Genomes in Paraburkholderia Symbionts of Social Amoebas. mSystems 2022; 7:e0056222. [PMID: 36098425 PMCID: PMC9601139 DOI: 10.1128/msystems.00562-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a predatory soil protist frequently used for studying host-pathogen interactions. A subset of D. discoideum strains isolated from soil persistently carry symbiotic Paraburkholderia, recently formally described as P. agricolaris, P. bonniea, and P. hayleyella. The three facultative symbiont species of D. discoideum present a unique opportunity to study a naturally occurring symbiosis in a laboratory model protist. There is a large difference in genome size between P. agricolaris (8.7 million base pairs [Mbp]) versus P. hayleyella and P. bonniea (4.1 Mbp). We took a comparative genomics approach and compared the three genomes of D. discoideum symbionts to 12 additional Paraburkholderia genomes to test for genome evolution patterns that frequently accompany host adaptation. Overall, P. agricolaris is difficult to distinguish from other Paraburkholderia based on its genome size and content, but the reduced genomes of P. bonniea and P. hayleyella display characteristics indicative of genome streamlining rather than deterioration during adaptation to their protist hosts. In addition, D. discoideum-symbiont genomes have increased secretion system and motility genes that may mediate interactions with their host. Specifically, adjacent BurBor-like type 3 and T6SS-5-like type 6 secretion system operons shared among all three D. discoideum-symbiont genomes may be important for host interaction. Horizontal transfer of these secretion system operons within the amoeba host environment may have contributed to the unique ability of these symbionts to establish and maintain a symbiotic relationship with D. discoideum. IMPORTANCE Protists are a diverse group of typically single cell eukaryotes. Bacteria and archaea that form long-term symbiotic relationships with protists may evolve in additional ways than those in relationships with multicellular eukaryotes such as plants, animals, or fungi. Social amoebas are a predatory soil protist sometimes found with symbiotic bacteria living inside their cells. They present a unique opportunity to explore a naturally occurring symbiosis in a protist frequently used for studying host-pathogen interactions. We show that one amoeba-symbiont species is similar to other related bacteria in genome size and content, while the two reduced-genome-symbiont species show characteristics of genome streamlining rather than deterioration during adaptation to their host. We also identify sets of genes present in all three amoeba-symbiont genomes that are potentially used for host-symbiont interactions. Because the amoeba symbionts are distantly related, the amoeba host environment may be where these genes were shared among symbionts.
Collapse
Affiliation(s)
- Suegene Noh
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Benjamin J. Capodanno
- Department of Biology, Colby College, Waterville, Maine, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Songtao Xu
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Marisa C. Hamilton
- Department of Biology, Colby College, Waterville, Maine, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Krüger A, Keppel M, Sharma V, Frunzke J. The diversity of heme sensor systems - heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiol Rev 2022; 46:6506450. [PMID: 35026033 DOI: 10.1093/femsre/fuac002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme molecule are toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold - ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems therefore illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.
Collapse
Affiliation(s)
- Aileen Krüger
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Marc Keppel
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| |
Collapse
|
3
|
Hernandez EP, Talactac MR, Fujisaki K, Tanaka T. The case for oxidative stress molecule involvement in the tick-pathogen interactions -an omics approach. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103409. [PMID: 31200008 DOI: 10.1016/j.dci.2019.103409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The blood-feeding behavior of ticks has resulted in them becoming one of the most important vectors of disease-causing pathogens. Ticks possess a well-developed innate immune system to counter invading pathogens. However, the coevolution of ticks with tick-borne pathogens has adapted these pathogens to the tick's physiology and immune response through several mechanisms including transcriptional regulation. The recent development in tick and tick-borne disease research greatly involved the "omics" approach. The omics approach takes a look en masse at the different genes, proteins, metabolomes, and the microbiome of the ticks that could be differentiated during pathogen infection. Data from this approach revealed that oxidative stress-related molecules in ticks are differentiated and possibly being exploited by the pathogens to evade the tick's immune response. In this study, we review and discuss transcriptomic and proteomic data for some oxidative stress molecules differentially expressed during pathogen infection. We also discuss metabolomics and microbiome data as well as functional genomics in order to provide insight into the tick-pathogen interaction.
Collapse
Affiliation(s)
- Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Melbourne Rio Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, 4122, Philippines
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
4
|
Wei Y, Kouse AB, Murphy ER. Transcriptional and posttranscriptional regulation of Shigella shuT in response to host-associated iron availability and temperature. Microbiologyopen 2017; 6. [PMID: 28127899 PMCID: PMC5458455 DOI: 10.1002/mbo3.442] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022] Open
Abstract
Like most bacteria, Shigella must maintain a precise balance between the necessity and toxicity of iron; a balance that is achieved, at least in part, by regulating the production of bacterial iron acquisition systems in response to specific environmental signals. Using the Shigella heme utilization (Shu) system, S. dysenteriae is able to acquire iron from heme, a potentially rich source of nutritional iron within the otherwise iron-limited environment of the human host. Investigations presented within reveal two distinct molecular mechanisms underlying previously uncharacterized transcriptional and translational regulation of shuT, a gene encoding the periplasmic-binding component of the Shu system. While shuT transcription is regulated in response to iron availability via a process dependent upon the global regulator Fur and a Fur-binding site located immediately downstream of the promoter, shuT translation is regulated in response to environmental temperature via the activity of an RNA thermometer located within the 5' untranslated region of the gene. Such complex regulation likely increases the fitness of S. dysenteriae by ensuring maximal ShuT production when the pathogen is within the iron-limited and relatively warm environment of the infected host, the only environment in which heme will be encountered as a potential source of essential iron.
Collapse
Affiliation(s)
- Yahan Wei
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Andrew B Kouse
- Cell Biology and Metabolism Program, NICHD, NIH, Bethesda, MD, USA
| | - Erin R Murphy
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| |
Collapse
|
5
|
Zhang C. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana. Genome Integr 2015; 6:2. [PMID: 27330736 PMCID: PMC4911903 DOI: 10.4103/2041-9414.155953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 01/03/2023] Open
Abstract
The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
6
|
RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLoS One 2013; 8:e63781. [PMID: 23704938 PMCID: PMC3660397 DOI: 10.1371/journal.pone.0063781] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/07/2013] [Indexed: 12/29/2022] Open
Abstract
The initiation, progression and transmission of most bacterial infections is dependent upon the ability of the invading pathogen to acquire iron from each of the varied environments encountered during the course of a natural infection. In total, 95% of iron within the human body is complexed within heme, making heme a potentially rich source of host-associated nutrient iron for invading bacteria. As heme is encountered only within the host, pathogenic bacteria often regulate synthesis of heme utilization factors such that production is maximal under host-associated environmental conditions. This study examines the regulated production of ShuA, an outer-membrane receptor required for the utilization of heme as a source of nutrient iron by Shigella dysenteriae, a pathogenic bacterium that causes severe diarrheal diseases in humans. Specifically, the impact of the distinct environmental temperatures encountered during infection within a host (37°C) and transmission between hosts (25°C) on shuA expression is investigated. We show that shuA expression is subject to temperature-dependent post-transcriptional regulation resulting in increased ShuA production at 37°C. The observed thermoregulation is mediated by nucleic acid sequences within the 5' untranslated region. In addition, we have identified similar nucleotide sequences within the 5' untranslated region of the orthologous chuA transcript of enteropathogenic E. coli and have demonstrated that it also functions to confer temperature-dependent post-transcriptional regulation. In both function and predicted structure, the regulatory element within the shuA and chuA 5' untranslated regions closely resembles a FourU RNA thermometer, a zipper-like RNA structure that occludes the Shine-Dalgarno sequence at low temperatures. Increased production of ShuA and ChuA in response to the host body temperature allows for maximal production of these heme acquisition factors within the environment where S. dysenteriae and pathogenic E. coli strains would encounter heme, a host-specific iron source.
Collapse
|
7
|
González-López MA, Velázquez-Guadarrama N, Romero-Espejel ME, Olivares-Trejo JDJ. Helicobacter pylori secretes the chaperonin GroEL (HSP60), which binds iron. FEBS Lett 2013; 587:1823-8. [PMID: 23684642 DOI: 10.1016/j.febslet.2013.04.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/06/2013] [Accepted: 04/26/2013] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is a bacterium that can use multiple iron sources. However, it is unknown whether this bacterium secretes molecules such as siderophores or haemophores to scavenge iron. Here, we report the first secreted iron-binding protein of H. pylori, which we purified by haem-affinity chromatography. Mass spectrometry analysis revealed its identity as chaperonin (HpGroEL). When we compared HpGroEL with EcGroEL from Escherichia coli, they were homologous, showing 60% similarity. Additionally, purified cytoplasmic HpGroEL could also bind iron. Perhaps H. pylori secretes HpGroEL to maintain the appropriate folding of extracellular proteins and to bind iron.
Collapse
Affiliation(s)
- Marco Antonio González-López
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Col Del Valle, México DF, Mexico
| | | | | | | |
Collapse
|
8
|
Smidt M, Bättig P, Verhaegh SJC, Niebisch A, Hanner M, Selak S, Schüler W, Morfeldt E, Hellberg C, Nagy E, Lundberg U, Hays JP, Meinke A, Henriques-Normark B. Comprehensive antigen screening identifies Moraxella catarrhalis proteins that induce protection in a mouse pulmonary clearance model. PLoS One 2013; 8:e64422. [PMID: 23671716 PMCID: PMC3650003 DOI: 10.1371/journal.pone.0064422] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 04/15/2013] [Indexed: 11/22/2022] Open
Abstract
Moraxella catarrhalis is one of the three most common causative bacterial pathogens of otitis media, however no effective vaccine against M. catarrhalis has been developed so far. To identify M. catarrhalis vaccine candidate antigens, we used carefully selected sera from children with otitis media and healthy individuals to screen small-fragment genomic libraries that are expressed to display frame-selected peptides on a bacterial cell surface. This ANTIGENome technology led to the identification of 214 antigens, 23 of which were selected by in vitro or in vivo studies for additional characterization. Eight of the 23 candidates were tested in a Moraxella mouse pulmonary clearance model, and 3 of these antigens induced significantly faster bacterial clearance compared to adjuvant or to the previously characterized antigen OmpCD. The most significant protection data were obtained with the antigen MCR_1416 (Msp22), which was further investigated for its biological function by in vitro studies suggesting that Msp22 is a heme binding protein. This study comprises one of the most exhaustive studies to identify potential vaccine candidate antigens against the bacterial pathogen M. catarrhalis.
Collapse
Affiliation(s)
| | - Patrick Bättig
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Suzanne J. C. Verhaegh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Axel Niebisch
- Intercell AG, Campus Vienna Biocenter 3, Vienna, Austria
| | - Markus Hanner
- Intercell AG, Campus Vienna Biocenter 3, Vienna, Austria
| | - Sanja Selak
- Intercell AG, Campus Vienna Biocenter 3, Vienna, Austria
| | | | - Eva Morfeldt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christel Hellberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eszter Nagy
- Intercell AG, Campus Vienna Biocenter 3, Vienna, Austria
| | - Urban Lundberg
- Intercell AG, Campus Vienna Biocenter 3, Vienna, Austria
| | - John P. Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Andreas Meinke
- Intercell AG, Campus Vienna Biocenter 3, Vienna, Austria
- * E-mail:
| | | |
Collapse
|
9
|
Cobessi D, Meksem A, Brillet K. Structure of the heme/hemoglobin outer membrane receptor ShuA fromShigella dysenteriae: Heme binding by an induced fit mechanism. Proteins 2010; 78:286-94. [DOI: 10.1002/prot.22539] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Expression of BfrH, a putative siderophore receptor of Bordetella bronchiseptica, is regulated by iron, Fur1, and the extracellular function sigma factor EcfI. Infect Immun 2009; 78:1147-62. [PMID: 20008538 DOI: 10.1128/iai.00961-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron (Fe) in soluble elemental form is found in the tissues and fluids of animals at concentrations insufficient for sustaining growth of bacteria. Consequently, to promote colonization and persistence, pathogenic bacteria evolved a myriad of scavenging mechanisms to acquire Fe from the host. Bordetella bronchiseptica, the etiologic agent of upper respiratory infections in a wide range of mammalian hosts, expresses a number of proteins for acquisition of Fe. Using proteomic and genomic approaches, three Fe-regulated genes were identified in the bordetellae: bfrH, a gene encoding a putative siderophore receptor; ecfI, a gene encoding a putative extracellular function (ECF) sigma factor; and ecfR, a gene encoding a putative EcfI modulator. All three genes are highly conserved in B. pertussis, B. parapertussis, and B. avium. Genetic analysis revealed that transcription of bfrH was coregulated by ecfI, ecfR, and fur1, one of two fur homologues carried by B. bronchiseptica. Overexpression of ecfI decoupled bfrH from Fe-dependent regulation. In contrast, expression of bfrH was significantly reduced in an ecfI deletion mutant. Deletion of ecfR, however, was correlated with a significant increase in expression of bfrH, due in part to a cis-acting nucleotide sequence within ecfR which likely reduces the frequency of readthrough transcription of bfrH from the Fe-dependent ecfIR promoter. Using a murine competition infection model, bfrH was shown to be required for optimal virulence of B. bronchiseptica. These experiments revealed ecfIR-bfrH as a locus encoding a new member of the growing family of Fe and ECF sigma factor-modulated regulons in the bordetellae.
Collapse
|
11
|
Stauff DL, Skaar EP. The heme sensor system of Staphylococcus aureus. CONTRIBUTIONS TO MICROBIOLOGY 2009; 16:120-135. [PMID: 19494582 PMCID: PMC4905552 DOI: 10.1159/000219376] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The important human pathogen Staphylococcus aureus is able to satisfy its nutrient iron requirement by acquiring heme from host hemoglobin in the context of infection. However, heme acquisition exposes S. aureus to heme toxicity. In order to detect the presence of toxic levels of exogenous heme, S. aureus is able to sense heme through the heme sensing system (HssRS) two-component system. Upon sensing heme, HssRS directly regulates the expression of the heme-regulated ABC transporter HrtAB, which alleviates heme toxicity. Importantly, the inability to sense or respond to heme alters the virulence of S. aureus, highlighting the importance of heme sensing and detoxification to staphylococcal pathogenesis. Furthermore, potential orthologues of the Hss and Hrt systems are found in many species of Gram-positive bacteria, a possible indication that heme stress is a challenge faced by bacteria whose habitats include host tissues rich in heme.
Collapse
|
12
|
Brickman TJ, Armstrong SK. Temporal signaling and differential expression of Bordetella iron transport systems: the role of ferrimones and positive regulators. Biometals 2009; 22:33-41. [PMID: 19130264 DOI: 10.1007/s10534-008-9189-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 12/07/2008] [Indexed: 01/16/2023]
Abstract
The bacterial respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica employ multiple alternative iron acquisition pathways to adapt to changes in the mammalian host environment during infection. The alcaligin, enterobactin, and heme utilization pathways are differentially expressed in response to the cognate iron source availability by a mechanism involving substrate-inducible positive regulators. As inducers, the iron sources function as chemical signals termed ferrimones. Ferrimone-sensing allows the pathogen to adapt and exploit early and late events in the infection process.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology, University of Minnesota Medical School, MMC 196, Minneapolis, MN 55455-0312, USA
| | | |
Collapse
|
13
|
Parrow NL, Abbott J, Lockwood AR, Battisti JM, Minnick MF. Function, regulation, and transcriptional organization of the hemin utilization locus of Bartonella quintana. Infect Immun 2009; 77:307-16. [PMID: 18981245 PMCID: PMC2612243 DOI: 10.1128/iai.01194-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 01/03/2023] Open
Abstract
Bartonella quintana is a gram-negative agent of trench fever, chronic bacteremia, endocarditis, and bacillary angiomatosis in humans. B. quintana has the highest known hemin requirement among bacteria, but the mechanisms of hemin acquisition are poorly defined. Genomic analyses revealed a potential locus dedicated to hemin utilization (hut) encoding a putative hemin receptor, HutA; a TonB-like energy transducer; an ABC transport system comprised of three proteins, HutB, HutC, and HmuV; and a hemin degradation/storage enzyme, HemS. Complementation analyses with Escherichia coli hemA show that HutA functions as a hemin receptor, and complementation analyses with E. coli hemA tonB indicate that HutA is TonB dependent. Quantitative reverse transcriptase PCR analyses show that hut locus transcription is subject to hemin-responsive regulation, which is mediated primarily by the iron response regulator (Irr). Irr functions as a transcriptional repressor of the hut locus at all hemin concentrations tested. Overexpression of the ferric uptake regulator (fur) represses transcription of tonB in the presence of excess hemin, whereas overexpression of the rhizobial iron regulator (rirA) has no effect on hut locus transcription. Reverse transcriptase PCR analyses show that hutA and tonB are divergently transcribed and that the remaining hut genes are expressed as a polycistronic mRNA. Examination of the promoter regions of hutA, tonB, and hemS reveals consensus sequence promoters that encompass an H-box element previously shown to interact with B. quintana Irr.
Collapse
Affiliation(s)
- Nermi L Parrow
- Division of Biological Sciences, The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | | | | | | | | |
Collapse
|
14
|
Lee WC, Reniere ML, Skaar EP, Murphy MEP. Ruffling of metalloporphyrins bound to IsdG and IsdI, two heme-degrading enzymes in Staphylococcus aureus. J Biol Chem 2008; 283:30957-63. [PMID: 18713745 DOI: 10.1074/jbc.m709486200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IsdG and IsdI are paralogous proteins that are intracellular components of a complex heme uptake system in Staphylococcus aureus. IsdG and IsdI were shown previously to reductively degrade hemin. Crystal structures of the apoproteins show that these proteins belong to a newly identified heme degradation family distinct from canonical eukaryotic and prokaryotic heme oxygenases. Here we report the crystal structures of an inactive N7A variant of IsdG in complex with Fe(3+)-protoporphyrin IX (IsdG-hemin) and of IsdI in complex with cobalt protoporphyrin IX (IsdI-CoPPIX) to 1.8 A or better resolution. These structures show that the metalloporphyrins are buried into similar deep clefts such that the propionic acids form salt bridges to two Arg residues. His(77) (IsdG) or His(76) (IsdI), a critical residue required for activity, is coordinated to the Fe(3+) or Co(3+) atoms, respectively. The bound porphyrin rings form extensive steric interactions in the binding cleft such that the rings are highly distorted from the plane. This distortion is best described as ruffled and places the beta- and delta-meso carbons proximal to the distal oxygen-binding site. In the IsdG-hemin structure, Fe(3+) is pentacoordinate, and the distal side is occluded by the side chain of Ile(55). However, in the structure of IsdI-CoPPIX, the distal side of the CoPPIX accommodates a chloride ion in a cavity formed through a conformational change in Ile(55). The chloride ion participates in a hydrogen bond to the side chain amide of Asn(6). Together the structures suggest a reaction mechanism in which a reactive peroxide intermediate proceeds with nucleophilic oxidation at the beta- or delta-meso carbon of the hemin.
Collapse
Affiliation(s)
- Woo Cheol Lee
- Department of Microbiology and Immunology, Life Sciences Institute, the University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
15
|
Grigg JC, Vermeiren CL, Heinrichs DE, Murphy MEP. Heme Coordination by Staphylococcus aureus IsdE. J Biol Chem 2007; 282:28815-28822. [PMID: 17666394 DOI: 10.1074/jbc.m704602200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single alpha-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met(78) and His(229). Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His(229) is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.
Collapse
Affiliation(s)
- Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Christie L Vermeiren
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.
| |
Collapse
|
16
|
Paulley JT, Anderson ES, Roop RM. Brucella abortus requires the heme transporter BhuA for maintenance of chronic infection in BALB/c mice. Infect Immun 2007; 75:5248-54. [PMID: 17709407 PMCID: PMC2168305 DOI: 10.1128/iai.00460-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gene annotated BAB2_1150 in the Brucella abortus 2308 genome sequence is predicted to encode a homolog of the well-characterized heme transporter ShuA of Shigella dysenteriae and accordingly has been given the designation bhuA (Brucella heme utilization). Phenotypic analysis of an isogenic bhuA mutant derived from B. abortus 2308 verified that there is a link between BhuA and the ability of the parent strain to use heme as an iron source in in vitro assays. Maximum expression of bhuA in B. abortus 2308 is observed during stationary phase when this strain in cultivated in low-iron minimal medium, and a comparison of the growth characteristics of the B. abortus bhuA mutant and 2308 in this medium suggested that heme serves as an important iron source for the parent strain during stationary phase. The B. abortus bhuA mutant HR1703 exhibits significant attenuation in cultured murine macrophages compared to strain 2308, and unlike its parent strain, the B. abortus bhuA mutant is unable to maintain a chronic spleen infection in experimentally infected BALB/c mice. These experimental findings suggest that heme and/or heme-containing proteins represent important iron sources for B. abortus 2308 during its residence in the mammalian host and that BhuA is required for efficient utilization of these iron sources.
Collapse
Affiliation(s)
- James T Paulley
- Department of Microbiology and Immunology, East Carolina University School of Medicine, 600 Moye Boulevard, Greenville, NC 27834, USA
| | | | | |
Collapse
|
17
|
Mocny JC, Olson JS, Connell TD. Passively released heme from hemoglobin and myoglobin is a potential source of nutrient iron for Bordetella bronchiseptica. Infect Immun 2007; 75:4857-66. [PMID: 17664260 PMCID: PMC2044545 DOI: 10.1128/iai.00407-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization by Bordetella bronchiseptica results in a variety of inflammatory respiratory infections, including canine kennel cough, porcine atrophic rhinitis, and a whooping cough-like disease in humans. For successful colonization, B. bronchiseptica must acquire iron (Fe) from the infected host. A vast amount of Fe within the host is sequestered within heme, a metalloporphyrin which is coordinately bound in hemoglobin and myoglobin. Utilization of hemoglobin and myoglobin as sources of nutrient Fe by B. bronchiseptica requires expression of BhuR, an outer membrane protein. We hypothesize that hemin is acquired by B. bronchiseptica in a BhuR-dependent manner after spontaneous loss of the metalloporphyrin from hemoglobin and/or myoglobin. Sequestration experiments demonstrated that direct contact with hemoglobin or myoglobin was not required to support growth of B. bronchiseptica in an Fe-limiting environment. Mutant myoglobins, each exhibiting a different affinity for heme, were employed to demonstrate that the rate of growth of B. bronchiseptica was directly correlated with the rate at which heme was lost from the hemoprotein. Finally, Escherichia coli cells expressing recombinant BhuR had the capacity to remove hemin from solution. Collectively, these experiments provided strong experimental support for the model that BhuR is a hemin receptor and B. bronchiseptica likely acquires heme during infection after passive loss of the metalloporphyrin from hemoglobin and/or myoglobin. These results also suggest that spontaneous hemin loss by hemoglobin and myoglobin may be a common mechanism by which many pathogenic bacteria acquire heme and heme-bound Fe.
Collapse
Affiliation(s)
- Jeffrey C Mocny
- Department of Microbiology and Immunology, The University at Buffalo, NY 14221, USA
| | | | | |
Collapse
|
18
|
Brickman TJ, Anderson MT, Armstrong SK. Bordetella iron transport and virulence. Biometals 2007; 20:303-22. [PMID: 17295050 DOI: 10.1007/s10534-006-9031-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 07/20/2006] [Indexed: 11/26/2022]
Abstract
Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica are pathogens with a complex iron starvation stress response important for adaptation to nutrient limitation and flux in the mammalian host environment. The iron starvation stress response is globally regulated by the Fur repressor using ferrous iron as the co-repressor. Expression of iron transport system genes of Bordetella is coordinated by priority regulation mechanisms that involve iron source sensing. Iron source sensing is mediated by distinct transcriptional activators that are responsive to the cognate iron source acting as the inducer.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology, University of Minnesota Medical School, MMC 196, 420 Delaware Street S.E., Minneapolis, MN 55455-0312, USA
| | | | | |
Collapse
|
19
|
Grigg JC, Vermeiren CL, Heinrichs DE, Murphy MEP. Haem recognition by a Staphylococcus aureus NEAT domain. Mol Microbiol 2007; 63:139-49. [PMID: 17229211 DOI: 10.1111/j.1365-2958.2006.05502.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Successful pathogenic organisms have developed mechanisms to thrive under extreme levels of iron restriction. Haem-iron represents the largest iron reservoir in the human body and is a significant source of iron for some bacterial pathogens. NEAT (NEAr Transporter) domains are found exclusively in a family of cell surface proteins in Gram-positive bacteria. Many NEAT domain-containing proteins, including IsdA in Staphylococcus aureus, are implicated in haem binding. Here, we show that overexpression of IsdA in S. aureus enhances growth and an inactivation mutant of IsdA has a growth defect, compared with wild type, when grown in media containing haem as the sole iron source. Furthermore, the haem-binding property of IsdA is contained within the NEAT domain. Crystal structures of the apo-IsdA NEAT domain and in complex with haem were solved and reveal a clathrin adapter-like beta-sandwich fold with a large hydrophobic haem-binding pocket. Haem is bound with the propionate groups directed at the molecular surface and the iron is co-ordinated solely by Tyr(166). The phenol groups of Tyr(166) and Tyr(170) form an H-bond that may function in regulating haem binding and release. An analysis of IsdA structure-sequence alignments indicate that conservation of Tyr(166) is a predictor of haem binding by NEAT domains.
Collapse
Affiliation(s)
- Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
20
|
Diavatopoulos DA, Cummings CA, van der Heide HGJ, van Gent M, Liew S, Relman DA, Mooi FR. Characterization of a highly conserved island in the otherwise divergent Bordetella holmesii and Bordetella pertussis genomes. J Bacteriol 2006; 188:8385-94. [PMID: 17041054 PMCID: PMC1698220 DOI: 10.1128/jb.01081-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The recently discovered pathogen Bordetella holmesii has been isolated from the airways and blood of diseased humans. Genetic events contributing to the emergence of B. holmesii are not understood, and its phylogenetic position among the bordetellae remains unclear. To address these questions, B. holmesii strains were analyzed by comparative genomic hybridization (CGH) to a Bordetella pertussis microarray and by multilocus sequence typing. Both methods indicated substantial sequence divergence between B. pertussis and B. holmesii. However, CGH identified a putative pathogenicity island of 66 kb that is highly conserved between these species and contains several IS481 elements that may have been laterally transferred from B. pertussis to B. holmesii. This island contains, among other genes, a functional, iron-regulated locus encoding the biosynthesis, export, and uptake of the siderophore alcaligin. The acquisition of this genomic island by B. holmesii may have significantly contributed to its emergence as a human pathogen. Horizontal gene transfer between B. pertussis and B. holmesii may also explain the unusually high sequence identity of their 16S rRNA genes.
Collapse
Affiliation(s)
- D A Diavatopoulos
- Laboratory for Vaccine Preventable Diseases, National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Sebaihia M, Preston A, Maskell DJ, Kuzmiak H, Connell TD, King ND, Orndorff PE, Miyamoto DM, Thomson NR, Harris D, Goble A, Lord A, Murphy L, Quail MA, Rutter S, Squares R, Squares S, Woodward J, Parkhill J, Temple LM. Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis, and B. parapertussis reveals extensive diversity in surface structures associated with host interaction. J Bacteriol 2006; 188:6002-15. [PMID: 16885469 PMCID: PMC1540077 DOI: 10.1128/jb.01927-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella avium is a pathogen of poultry and is phylogenetically distinct from Bordetella bronchiseptica, Bordetella pertussis, and Bordetella parapertussis, which are other species in the Bordetella genus that infect mammals. In order to understand the evolutionary relatedness of Bordetella species and further the understanding of pathogenesis, we obtained the complete genome sequence of B. avium strain 197N, a pathogenic strain that has been extensively studied. With 3,732,255 base pairs of DNA and 3,417 predicted coding sequences, it has the smallest genome and gene complement of the sequenced bordetellae. In this study, the presence or absence of previously reported virulence factors from B. avium was confirmed, and the genetic bases for growth characteristics were elucidated. Over 1,100 genes present in B. avium but not in B. bronchiseptica were identified, and most were predicted to encode surface or secreted proteins that are likely to define an organism adapted to the avian rather than the mammalian respiratory tracts. These include genes coding for the synthesis of a polysaccharide capsule, hemagglutinins, a type I secretion system adjacent to two very large genes for secreted proteins, and unique genes for both lipopolysaccharide and fimbrial biogenesis. Three apparently complete prophages are also present. The BvgAS virulence regulatory system appears to have polymorphisms at a poly(C) tract that is involved in phase variation in other bordetellae. A number of putative iron-regulated outer membrane proteins were predicted from the sequence, and this regulation was confirmed experimentally for five of these.
Collapse
Affiliation(s)
- Mohammed Sebaihia
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Morton DJ, Van Wagoner TM, Seale TW, Whitby PW, Stull TL. Utilization of myoglobin as a heme source by Haemophilus influenzae requires binding of myoglobin to haptoglobin. FEMS Microbiol Lett 2006; 258:235-40. [PMID: 16640579 DOI: 10.1111/j.1574-6968.2006.00230.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Haemophilus influenzae has an absolute growth requirement for heme. One potential in vivo source of heme is the protein myoglobin which is found at low levels in human serum. No tested H. influenzae strain was able to use myoglobin as a heme source. However, all strains were able to utilize the heme from myoglobin when myoglobin was complexed with haptoglobin. Utilization of the haptoglobin-myoglobin complex was shown to be mediated by the previously described hemoglobin/hemoglobin-haptoglobin-binding proteins of H. influenzae.
Collapse
Affiliation(s)
- Daniel J Morton
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
23
|
Ong ST, Ho JZS, Ho B, Ding JL. Iron-withholding strategy in innate immunity. Immunobiology 2006; 211:295-314. [PMID: 16697921 DOI: 10.1016/j.imbio.2006.02.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
The knowledge of how organisms fight infections has largely been built upon the ability of host innate immune molecules to recognize microbial determinants. Although of overwhelming importance, pathogen recognition is but only one of the facets of innate immunity. A primitive yet effective antimicrobial mechanism which operates by depriving microbial organisms of their nutrients has been brought into the forefront of innate immunity once again. Such a tactic is commonly referred to as the iron-withholding strategy of innate immunity. In this review, we introduce various vertebrate iron-binding proteins and their invertebrate homologues, so as to impress upon readers an obscured arm of innate immune defense. An excellent comprehension of the mechanics of innate immunity paves the way for the possibility that novel antimicrobial therapeutics may emerge one day to overcome the prevalent antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Sek Tong Ong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | | | | | | |
Collapse
|
24
|
Wyckoff EE, Lopreato GF, Tipton KA, Payne SM. Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J Bacteriol 2005; 187:5658-64. [PMID: 16077111 PMCID: PMC1196095 DOI: 10.1128/jb.187.16.5658-5664.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella dysenteriae serotype 1, a major cause of bacillary dysentery in humans, can use heme as a source of iron. Genes for the transport of heme into the bacterial cell have been identified, but little is known about proteins that control the fate of the heme molecule after it has entered the cell. The shuS gene is located within the heme transport locus, downstream of the heme receptor gene shuA. ShuS is a heme binding protein, but its role in heme utilization is poorly understood. In this work, we report the construction of a chromosomal shuS mutant. The shuS mutant was defective in utilizing heme as an iron source. At low heme concentrations, the shuS mutant grew slowly and its growth was stimulated by either increasing the heme concentration or by providing extra copies of the heme receptor shuA on a plasmid. At intermediate heme concentrations, the growth of the shuS mutant was moderately impaired, and at high heme concentrations, shuS was required for growth on heme. The shuS mutant did not show increased sensitivity to hydrogen peroxide, even at high heme concentrations. ShuS was also required for optimal utilization of heme under microaerobic and anaerobic conditions. These data are consistent with the model in which ShuS binds heme in a soluble, nontoxic form and potentially transfers the heme from the transport proteins in the membrane to either heme-containing or heme-degrading proteins. ShuS did not appear to store heme for future use.
Collapse
Affiliation(s)
- Elizabeth E Wyckoff
- The University of Texas, Section of Molecular Genetics and Microbiology, 1 University Station A5000, Austin, TX 78712-0162, USA.
| | | | | | | |
Collapse
|
25
|
Pawelek PD, Coulton JW. Hemoglobin-binding protein HgbA in the outer membrane of Actinobacillus pleuropneumoniae: homology modelling reveals regions of potential interactions with hemoglobin and heme. J Mol Graph Model 2005; 23:211-21. [PMID: 15530817 DOI: 10.1016/j.jmgm.2004.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 06/25/2004] [Accepted: 06/25/2004] [Indexed: 11/21/2022]
Abstract
Analyses of the primary sequence of hemoglobin-binding protein HgbA from Actinobacillus pleuropneumoniae by comparative modelling and by a Hidden Markov Model identified its topological similarities to bacterial outer membrane receptors BtuB, FepA, FhuA, and FecA of Escherichia coli. The HgbA model has a globular N-terminal cork domain contained within a 22-stranded beta barrel domain, its folds being similar to the structures of outer membrane receptors that have been solved by X-ray crystallography. The barrel domain of the HgbA model superimposes onto the barrel domains of the four outer membrane receptors with rmsd values less than 1.0 A. This feature is consistent with a phylogenetic tree which indicated clustering of polypeptide sequences for three barrel domains. Furthermore, the HgbA model shares the highest structural similarity to BtuB, with the modelled HgbA barrel having approximately the same elliptical cross-section and height as that of BtuB. Extracellular loop regions of HgbA are predicted to be more extended than those of the E. coli outer membrane receptors, potentially facilitating a protein-protein interface with hemoglobin. Fold recognition modelling of the HgbA loop regions showed that 10 out of 11 predicted loops are highly homologous to known structures of protein loops that contribute to heme/iron or protein-protein interactions. Strikingly, HgbA loop 2 has structural homology to a loop in bovine endothelial nitric acid oxidase that is proximal to a heme-binding site; and HgbA loop 7 contains a histidine residue conserved in a motif that is involved in heme/hemoglobin interactions. These findings implicate HgbA loops 2 and 7 in recognition and binding of hemoglobin or the heme ligand.
Collapse
Affiliation(s)
- Peter D Pawelek
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4
| | | |
Collapse
|
26
|
King ND, Kirby AE, Connell TD. Transcriptional control of the rhuIR-bhuRSTUV heme acquisition locus in Bordetella avium. Infect Immun 2005; 73:1613-24. [PMID: 15731061 PMCID: PMC1064947 DOI: 10.1128/iai.73.3.1613-1624.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 09/20/2004] [Accepted: 11/06/2004] [Indexed: 11/20/2022] Open
Abstract
Iron (Fe) is an essential nutrient for most bacterial pathogens. In these organisms, a variety of regulatory systems that respond to specific Fe complexes found within their vertebrate hosts have evolved. In Bordetella avium, the heme utilization locus encoded by rhuIR-bhuRSTUV mediates efficient acquisition of Fe from heme and hemoproteins. Control of bhuRSTUV expression is promulgated at two levels. When Fe is abundant, expression is repressed in a Fur-dependent manner which is partially relieved when Fe is limiting. In the presence of heme or hemoproteins, expression of the bhuRSTUV operon is induced via a three-component signal transduction cascade composed of RhuI, RhuR, and BhuR. Herein, we report the identification of two promoters (PrhuI and PbhuR) that control expression of the rhuIR-bhuRSTUV cluster. Primer extension analysis identified the transcriptional start site of PrhuI within a putative Fur box. Transcriptional initiation of PbhuR mapped within the rhuR-bhuR intergenic region. Maximal transcription from PbhuR required Fe-limiting conditions, the presence of heme (or hemoglobin), and rhuI; however, analysis of transcripts produced from the rhuIR-bhuRSTUV locus revealed a pattern of low-level bhuR transcription in the absence of heme which originated from both PbhuR and PrhuI. Transcription from PrhuI was repressed by Fe in the presence of fur and somewhat enhanced by the addition of hemin to Fe-limited media. The nature of this hemin-associated PrhuI stimulation was rhuI independent and therefore not induced by heme via the BhuR-RhuR-RhuI signal cascade. Fe also repressed transcription from PbhuR in a fur-dependent manner; however, activation from this promoter, in the presence or absence of heme, did not occur without rhuI.
Collapse
Affiliation(s)
- Natalie D King
- Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, 138 Farber Hall, 3435 Main St., Buffalo, NY 14214, USA
| | | | | |
Collapse
|
27
|
Mulenga A, Simser JA, Macaluso KR, Azad AF. Stress and transcriptional regulation of tick ferritin HC. INSECT MOLECULAR BIOLOGY 2004; 13:423-433. [PMID: 15271215 DOI: 10.1111/j.0962-1075.2004.00502.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We previously identified a partial Dermacentor variabilis cDNA encoding ferritin HC (HC) subunit homolog (DVFER) that was differentially upregulated in Rickettsia montanensis infected ticks (Mulenga et al., 2003a). We have used rapid amplification of cDNA ends to clone full-length DVFER cDNA and its apparent ortholog from the wood tick, D. andersoni (DAFER), both of which show high sequence similarity to vertebrate than insect ferritin. Both DVFER and DAFER contain the stem-loop structure of a putative iron responsive element in the 5' untranslated region (nucleotide positions, 16-42) and the feroxidase centre loop typical for vertebrate ferritin HC subunits. Quantitative Western and Northern blotting analyses of protein and RNA from unfed and partially fed whole tick as well as dissected tick tissues demonstrated that DVFER is constitutively and ubiquitously expressed. Based on densitometric analysis of detected protein and mRNA bands, DVFER is predominantly expressed in the midgut, and to a lesser extent in the salivary glands, ovary and fatbody. Sham treatment (mechanical injury) and Escherichia coli challenge of D. variabilis ticks stimulated statistically significant (approximately 1.5- and approximately 3.0-fold, respectively) increases in DVFER mRNA abundance over time point matched naive control ticks. These data suggest that DVFER mRNA is nonspecifically up regulated in response to mechanical injury or bacterial infection induced stress.
Collapse
Affiliation(s)
- A Mulenga
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
28
|
Alderete JF, Nguyen J, Mundodi V, Lehker MW. Heme-iron increases levels of AP65-mediated adherence by Trichomonas vaginalis. Microb Pathog 2004; 36:263-71. [PMID: 15043861 DOI: 10.1016/j.micpath.2003.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2003] [Accepted: 12/22/2003] [Indexed: 11/24/2022]
Abstract
Trichomonas vaginalis is a protozoan responsible for the number one, non-viral sexually transmitted disease. Surface proteins (AP65, AP51, AP33 and AP23) mediate adherence to vaginal epithelial cells (VECs). Iron increases growth of trichomonads and synthesis and surface placement of adhesins. We observed by immunofluorescence using monoclonal antibody (mAb) 12G4 the placement of AP65 on surfaces of trichomonads supplemented with hemoglobin or hemin as a source of iron. We, therefore, tested the hypothesis that heme-bound iron is an alternative source of iron important to trichomonal growth and regulation of expression of the adhesin genes. Here we show that the inhibition of parasite growth by the iron chelator 2,2-dipyridal is rescued by hemoglobin or hemin, but not protoporphyrin IX. Importantly, trichomonads grown in iron-limiting medium supplemented with free iron, hemoglobin and hemin had elevated levels of ap65 transcript that were 12.6-, 12.3- and 9.2-fold higher, respectively, than low-iron organisms, as determined by RT-PCR. Similarly, the amounts of AP65 were 8.9-, 11.2-, and 4.8-fold higher in parasites grown in free iron, hemoglobin and hemin, respectively, than organisms in low-iron medium. The heme-iron-regulated AP65 increased adherence of parasites to immortalized VECs. Not surprisingly, parasites pretreated with anti-AP65 serum IgG had decreased adherence compared to organisms incubated with prebleed serum IgG. These data illustrate that heme-bound iron is a source of iron similar to lactoferrin. This work extends our findings about the multiple sources of iron for regulating virulence genes of T. vaginalis.
Collapse
Affiliation(s)
- J F Alderete
- Department of Microbiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., MC 7758, San Antonio TX 78284-7758, USA.
| | | | | | | |
Collapse
|
29
|
Vanderpool CK, Armstrong SK. Integration of environmental signals controls expression of Bordetella heme utilization genes. J Bacteriol 2004; 186:938-48. [PMID: 14761988 PMCID: PMC344224 DOI: 10.1128/jb.186.4.938-948.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bordetella pertussis heme utilization gene cluster hurIR bhuRSTUV encodes regulatory and transport functions required for assimilation of iron from heme and hemoproteins. Expression of the bhu genes is iron regulated and heme inducible. The putative extracytoplasmic function (ECF) sigma factor, HurI, is required for heme-responsive bhu gene expression. In this study, transcriptional activation of B. pertussis bhu genes in response to heme compounds was shown to be dose dependent and specific for heme; protoporphyrin IX and other heme structural analogs did not activate bhu gene expression. Two promoters controlling expression of the heme utilization genes were mapped by primer extension analysis. The hurI promoter showed similarity to sigma(70)-like promoters, and its transcriptional activity was iron regulated and heme independent. A second promoter identified upstream of bhuR exhibited little similarity to previously characterized ECF sigma factor-dependent promoters. Expression of bhuR was iron regulated, heme responsive, and hurI dependent in B. pertussis, as shown in a previous study with Bordetella bronchiseptica. Further analyses showed that transcription originating at a distal upstream site and reading through the hurR-bhuR intergenic region contributes to bhuR expression under iron starvation conditions in the absence of heme inducer. The pattern of regulation of the readthrough transcript was consistent with transcription from the hurI promoter. The positions and regulation of the two promoters within the hur-bhu gene cluster influence the production of heme transport machinery so that maximal expression of the bhu genes occurs under iron starvation conditions only in the presence of heme iron sources.
Collapse
Affiliation(s)
- Carin K Vanderpool
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455-0312, USA
| | | |
Collapse
|
30
|
Kirby AE, King ND, Connell TD. RhuR, an extracytoplasmic function sigma factor activator, is essential for heme-dependent expression of the outer membrane heme and hemoprotein receptor of Bordetella avium. Infect Immun 2004; 72:896-907. [PMID: 14742534 PMCID: PMC321627 DOI: 10.1128/iai.72.2.896-907.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 09/20/2003] [Accepted: 10/23/2003] [Indexed: 11/20/2022] Open
Abstract
Genes involved in iron (Fe) acquisition often are regulated in response to the local availability of Fe. In many bacteria, Fe-dependent responsiveness is mediated by Fur, a global Fe-dependent transcriptional repressor. Tighter regulatory control of Fur-responsive genes is afforded by incorporating additional regulators into Fur-dependent regulatory cascades. RhuI, a Fur-dependent extracytoplasmic function sigma factor of Bordetella avium, in response to the dual stimulation of Fe starvation and the presence of heme (or hemoproteins), regulates P(bhuR), a heme-responsive promoter which directs expression of the bhuRSTUV heme utilization operon. While BhuR, the outer membrane heme receptor, and RhuI have been shown to be indispensable for heme-dependent activation of P(bhuR), collateral components of the regulatory cascade have not been described. In this investigation, RhuR, an integral cytoplasmic membrane protein with homology to anti-sigma factors, is shown to be an essential activator of P(bhuR) expression. The functional domain of RhuR required for heme-dependent activation of P(bhuR) expression was mapped to the N-terminal 97 amino acids of the protein by use of a chimeric RhuR-BlaM fusion. Expression of the chimera in a rhuR mutant rendered P(bhuR) constitutive, thereby decoupling the promoter from heme dependency. Growth studies confirmed that B. avium requires RhuR for optimal utilization of hemoglobin, but not hemin, as a sole source of nutrient Fe. These data imply that B. avium expresses, in addition to the BhuR heme/hemoprotein utilization system, an alternative RhuR-independent heme utilization mechanism. A model is proposed in which RhuR is the functional bridge between BhuR and RhuI in a heme-dependent regulatory cascade.
Collapse
Affiliation(s)
- Amy E Kirby
- The Witebsky Center for Microbial Pathogenesis and Immunology, Department of Microbiology and Immunology, The University of Buffalo, The State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
31
|
Abstract
Bordetella pertussis and Bordetella bronchiseptica, gram-negative respiratory pathogens of mammals, possess a heme iron utilization system encoded by the bhuRSTUV genes. Preliminary evidence suggested that expression of the BhuR heme receptor was stimulated by the presence of heme under iron-limiting conditions. The hurIR (heme uptake regulator) genes were previously identified upstream of the bhuRSTUV gene cluster and are predicted to encode homologs of members of the iron starvation subfamily of extracytoplasmic function (ECF) regulators. In this study, B. pertussis and B. bronchiseptica DeltahurI mutants, predicted to lack an ECF sigma factor, were constructed and found to be deficient in the utilization of hemin and hemoglobin. Genetic complementation of DeltahurI strains with plasmid-borne hurI restored wild-type levels of heme utilization. B. bronchiseptica DeltahurI mutant BRM23 was defective in heme-responsive production of the BhuR heme receptor; hurI in trans restored heme-inducible BhuR expression to the mutant and resulted in BhuR overproduction. Transcriptional analyses with bhuR-lacZ fusion plasmids confirmed that bhuR transcription was activated in iron-starved cells in response to heme compounds. Heme-responsive bhuR transcription was not observed in mutant BRM23, indicating that hurI is required for positive regulation of bhu gene expression. Furthermore, bhuR was required for heme-inducible bhu gene activation, supporting the hypothesis that positive regulation of bhuRSTUV occurs by a surface signaling mechanism involving the heme-iron receptor BhuR.
Collapse
Affiliation(s)
- Carin K Vanderpool
- Department of Microbiology, University of Minnesota Medical School, 420 Delaware Street S.E., Minneapolis, MN 55455-0312, USA
| | | |
Collapse
|