1
|
Caudet J, Trelis M, Cifre S, Tapia G, Soriano JM, Rodrigo R, Merino-Torres JF. Do Intestinal Unicellular Parasites Have a Role in the Inflammatory and Redox Status among the Severely Obese? Antioxidants (Basel) 2022; 11:2090. [PMID: 36358463 PMCID: PMC9686585 DOI: 10.3390/antiox11112090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
The diagnosis of obesity comprises subjects with totally different phenotypes and metabolic profiles. Systemic inflammation and oxidative stress derived from the white adipose tissue are suggested as the link between this disease and the development of insulin resistance and metabolic comorbidities. The presence of unicellular eukaryotic parasites colonizing the human gut ecosystem is a common circumstance, and yet their influence on the inflammatory and redox status of the obese host has not been assessed. Herein, a set of inflammatory and redox biomarkers were assessed together with a parasitological analysis of 97 severely obese subjects. Information was also collected on insulin resistance and on the antioxidant composition of the diet. The global prevalence of intestinal unicellular parasites was 49.5%, with Blastocystis sp. the most prevalent protozoan found (42.3%). Colonized subjects displayed a higher total antioxidant capacity and a trend towards higher extracellular superoxide dismutase activity, regardless of their insulin resistance status, along with lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratios in plasma in the insulin-resistant subgroup. No changes in malondialdehyde levels, or in inflammatory cytokines in plasma, were found in regard to the colonization status. In conclusion, enteric eukaryotic unicellular parasites may play an important role in modulating the antioxidant defenses of an obese host, thus could have beneficial effects with respect to the development of systemic metabolic disorders.
Collapse
Affiliation(s)
- Jana Caudet
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
| | - María Trelis
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Parasite & Health Research Group, Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain
| | - Susana Cifre
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
| | - Gabriela Tapia
- Parasite & Health Research Group, Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain
| | - José M. Soriano
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain
| | - Regina Rodrigo
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
- Joint Research Unit on Rare Diseases, CIPF-Health Research Institute Hospital La Fe, 46012 Valencia, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Juan F. Merino-Torres
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
2
|
Trelis M, Taroncher-Ferrer S, Gozalbo M, Ortiz V, Soriano JM, Osuna A, Merino-Torres JF. Giardia intestinalis and Fructose Malabsorption: A Frequent Association. Nutrients 2019; 11:E2973. [PMID: 31817420 PMCID: PMC6950212 DOI: 10.3390/nu11122973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Nowadays, scientific studies are emerging on the possible etiological role of intestinal parasites in functional digestive disorders. Our study was carried out with healthy individuals (control group; n = 82) and symptomatic patients with lactose or fructose malabsorption, including positive (malabsorbers; n = 213) and negative (absorbers; n = 56) breath test, being analyzed for the presence of intestinal parasites. A high parasitic prevalence was observed in malabsorbers (41.8%), exclusively due to single-cell eukaryotes but not helminths. Giardia intestinalis was the predominant parasite in cases of abnormal absorption (26.5%), significantly associated with fructose malabsorption and doubling the probability of developing this pathology. Within controls, Blastocystis sp. (13.4%) was almost the only parasite, being the second among patients (12.6%), and Cryptosporidium parvum, the last species of clinical relevance, was detected exclusively in two malabsorbers (0.9%). The consumption of ecological food and professions with direct contact with humans arose as risk factors of parasitism. A diagnosis of carbohydrate malabsorption in adulthood is the starting point, making the search for the primary cause necessary. Accurate parasitological diagnosis should be considered another tool in the clinical routine for patients with recurrent symptoms, since their condition may be reversible with adequate therapeutic intervention.
Collapse
Affiliation(s)
- María Trelis
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain;
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain; (J.M.S.); (J.F.M.-T.)
| | - Silvia Taroncher-Ferrer
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain;
- University Clinic of Nutrition, Physical Activity and Physiotherapy (CUNAFF), Lluís Alcanyís Foundation-University of Valencia, 46020 Valencia, Spain
| | - Mónica Gozalbo
- Area of Nutrition and Bromatology, University of Valencia, 46010 Valencia, Spain;
| | - Vicente Ortiz
- Department of Gastroenterology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain;
| | - José M. Soriano
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain; (J.M.S.); (J.F.M.-T.)
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
| | - Antonio Osuna
- Biochemistry and Molecular Parasitology Group, Department of Parasitology, Institute of Biotechnology, University of Granada, 18003 Granada, Spain;
| | - Juan F. Merino-Torres
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain; (J.M.S.); (J.F.M.-T.)
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
3
|
Shaddel M, Mirzaii-Dizgah I, Sharifi-Sarasiabi K, Kamali Z, Dastgheib M. Stimulated and Unstimulated Saliva Levels of Calcium and Magnesium in Giardiasis. Biol Trace Elem Res 2017; 179:8-12. [PMID: 28111708 DOI: 10.1007/s12011-017-0943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
Giardia lamblia causes malabsorption. The aim of this study was to evaluate serum and saliva calcium and magnesium levels in patients with giardiasis. Thirty patients with giardiasis as a case and 30 person without giardiasis as a control group were enrolled. The stimulated and unstimulated whole saliva and serum calcium and magnesium levels were assayed by Arsenazo reaction and xylidyl blue complex methods, respectively. Mean calcium and magnesium level was low in serum and stimulated saliva of case group than that of controls. However, they were higher in the unstimulated saliva of the case group. It is suggested that patients suffering from giardiasis have low calcium and magnesium levels, and they lose the most of calcium and magnesium by saliva during unstimulated condition.
Collapse
Affiliation(s)
- Minoo Shaddel
- Department of Parasitology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Iraj Mirzaii-Dizgah
- Department of Physiology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran.
| | - Khojasteh Sharifi-Sarasiabi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Kamali
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | |
Collapse
|
4
|
|
5
|
Lee HY, Kim J, Noh HJ, Kim HP, Park SJ. Giardia lamblia binding immunoglobulin protein triggers maturation of dendritic cells via activation of TLR4-MyD88-p38 and ERK1/2 MAPKs. Parasite Immunol 2015; 36:627-46. [PMID: 24871487 DOI: 10.1111/pim.12119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/23/2014] [Indexed: 11/28/2022]
Abstract
Much remains unknown about the mammalian immune response to Giardia lamblia, a protozoan pathogen that causes diarrhoeal outbreaks. We fractionated protein extracts of G. lamblia trophozoites by Viva-spin centrifugation, DEAE ion exchange and gel filtration chromatography. Resultant fractions were screened for antigenic molecules by western blots analysis using anti-G. lamblia antibodies (Abs), resulting in identification of G. lamblia binding immunoglobulin protein (GlBiP). Maturation of mouse dendritic cells (DCs) in response to recombinant GlBiP (rGlBiP) was detected by increased expression of surface molecules such as CD80, CD86 and MHC class II; these mature DCs, produced pro-inflammatory cytokines (TNF-α, IL-12 and IL-6). Especially, the truncated rGlBiP containing the heat-shock protein 70 domain-induced cytokine production from mouse DCs. rGlBiP-induced DC activation was initiated by TLR4 in a MyD88-dependent way and occurred through activation of p38 and ERK1/2 MAPKs as well as increased activity of NF-κB and AP-1. Moreover, CD4(+) T cells stimulated with rGlBiP-treated DCs produced high levels of IL-2 and IFN-γ. Together, our results suggest that GlBiP contributes to maturation of DCs via activation of TLR4-MyD88-p38, ERK1/2 MAPK, NF-κB and AP-1.
Collapse
Affiliation(s)
- H-Y Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
6
|
de la Guardia RD, Lopez MB, Burgos M, Osuna A. Purification and characterization of a protein capable of binding to fatty acids and bile salts in Giardia lamblia. J Parasitol 2011; 97:642-7. [PMID: 21506852 DOI: 10.1645/ge-2469.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A specific fatty acid binding protein was isolated from Giardia lamblia, using an affinity column with butyric acid acting as a ligand in place of stearic acid. This method has proved to be more efficient than the one previously described using stearic acid as ligand. The purified fraction showed 8 electrophoretic bands of proteins, with molecular weights ranging between 8 and 80 kDa. This pattern is a consequence of the aggregation of a protein with a molecular weight of 8,215 Da, corresponding to the lower molecular weight band, the only one capable of binding to fatty acids. The labeled oleic acid bound to these purified proteins was replaced by a 100-fold greater concentration of taurocholate, glycocholate, deoxycholate, palmitic acid, and arachidonic acid, having a greater displacement of the bile salts than the free fatty acids.
Collapse
Affiliation(s)
- R Diaz de la Guardia
- Instituto de Biotecnologia, Grupo de Bioquimica y Parasitologia Molecular, Campus de Fuentenueva, Universidad de Granada, Granada 18071, Spain.
| | | | | | | |
Collapse
|
7
|
Proteomic analysis of Giardia: Studies from the pre- and post-genomic era. Exp Parasitol 2010; 124:26-30. [DOI: 10.1016/j.exppara.2009.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 03/11/2009] [Accepted: 03/17/2009] [Indexed: 01/21/2023]
|
8
|
López-Abán J, Casanueva P, Nogal J, Arias M, Morrondo P, Diez-Baños P, Hillyer GV, Martínez-Fernández AR, Muro A. Progress in the development of Fasciola hepatica vaccine using recombinant fatty acid binding protein with the adjuvant adaptation system ADAD. Vet Parasitol 2007; 145:287-96. [PMID: 17275191 DOI: 10.1016/j.vetpar.2006.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 11/30/2006] [Accepted: 12/12/2006] [Indexed: 11/19/2022]
Abstract
Fatty acid binding proteins (FABP) have been designed as a potential vaccine against fasciolosis. In this work, the immunoprophylaxis of the recombinant Fh15 FABP from F. hepatica (Fh15) in adjuvant/immunomodulator ADAD system was evaluated using mice and sheep challenged with F. hepatica. The ADAD system combines the Fh15 antigen with an immunomodulator (hydroalcoholic extract of Polypodium leucotomos; PAL) and/or an adjuvant (saponins of Quillaja saponaria; Qs) in a water/oil emulsion (30/70) with a non-mineral oil (Montanide). All the infected control mice died by 41-48 days post-infection. The mice vaccinated with ADAD only with PAL+Fh15 present a survival rate of 40-50% and those vaccinated with ADAD containing PAL+Qs+Fh15 had a survival rate of 50-62.5%. IgG1 antibodies were lower in surviving mice in comparison with non-surviving mice. The sheep vaccinated with ADAD PAL+Qs+Fh15 showed lower fluke recovery (43%), less hepatic lesions and higher post-infection daily weight gain than F. hepatica infected control animals. Thus, the ADAD system using recombinant fatty acid binding proteins from F. hepatica could be a good option to develop vaccines against F. hepatica.
Collapse
Affiliation(s)
- J López-Abán
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Salamanca, Avda. Campo Charro s/n, 37007 Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Müller N, von Allmen N. Recent insights into the mucosal reactions associated with Giardia lamblia infections. Int J Parasitol 2005; 35:1339-47. [PMID: 16182298 DOI: 10.1016/j.ijpara.2005.07.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/22/2005] [Accepted: 07/27/2005] [Indexed: 01/18/2023]
Abstract
Giardia lamblia is an intestinal protozoan parasite infecting humans and various other mammalian hosts. The most important clinical signs of giardiasis are diarrhoea and malabsorption. Giardia lamblia is able to undergo continuous antigenic variation of its major surface antigen, named VSP (variant surface protein). While intestinal antibodies, and more specifically anti-VSP IgA antibodies, were proven to be involved in modulating antigenic variation of the parasite the participation of the local antibody response in control of the parasite infection is still controversial. Conversely, previous studies based on experimental infections in mice showed that cellular immune mechanisms are essential for elimination of the parasite from its intestinal habitat. Furthermore, recent data indicated that inflammatory mast cells have a potential to directly, or indirectly, interfere in duodenal growth of G. lamblia trophozoites. However, this finding was challenged by other reports, which did not find a correlation between intestinal inflammation and resistance to infection. Since intestinal infiltration of inflammatory cells and/or CD8+T-cells were demonstrated to coincide with villus-shortening and crypt hyperplasia immunological reactions were considered to be a potential factor of pathogenesis in giardiasis. The contribution of physiological factors to pathogenesis was essentially assessed in vitro by co-cultivation of G. lamblia trophozoites with epithelial cell lines. By using this in vitro model, molecular (through surface lectins) and mechanical (through ventral disk) adhesion of trophozoites to the epithelium was shown to be crucial for increased epithelial permeability. This phenomenon as well as other Giardia-induced intestinal abnormalities such as loss of intestinal brush border surface area, villus flattening, inhibition of disaccharidase activities, and eventually also overgrowth of the enteric bacterial flora seem to be involved in the pathophysiology of giardiasis. However, it remains to be elucidated whether at least part of these pathological effects are causatively linked to the clinical manifestation of the disease.
Collapse
Affiliation(s)
- N Müller
- Institute of Parasitology, Länggass-Str. 122, CH-3012 Bern, Switzerland.
| | | |
Collapse
|
10
|
Hassan SMT, Maache M, de la Guardia RD, Córdova OM, García JRG, Galiana M, Acuña Castroviejo D, Martins M, Osuna A. BINDING PROPERTIES AND IMMUNOLOCALIZATION OF A FATTY ACID–BINDING PROTEIN IN GIARDIA LAMBLIA. J Parasitol 2005; 91:284-92. [PMID: 15986602 DOI: 10.1645/ge-3352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We describe here a fatty acid-binding protein (FABP) isolated and purified from the parasitic protozoon Giardia lamblia. The protein has a molecular mass of 8 kDa and an isoelectric point of 4.96. A Scatchard analysis of the data at equilibrium revealed a dissociation constant of 3.12 x 10(-8) M when the labeled oleic acid was displaced by a 10-fold greater concentration of unlabeled oleic acid. Testosterone, sodium desoxycholate, taurocholate, metronidazol, and alpha-tocopherol, together with butyric, arachidonic, palmitic, retinoic, and glycocholic acids, were also bound to the protein. Assays with polyclonal antibodies revealed that the protein is located in the ventral disk and also appears in the dorsal membrane, the cytoplasm, and in the vicinity of the lipid vacuoles.
Collapse
Affiliation(s)
- S M T Hassan
- Instituto de Biotecnología, Universidad de Granada, Campus Universitario de Fuentenueva, E-18071 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Giardia intestinalis (syn. duodenalis or lamblia) is one of the most common intestinal parasites in the world, with an estimated 2.8 x 10(6) infections per year in humans, and it contributes to diarrhea and nutritional deficiencies in children in developing regions. The wide prevalence of Giardia and its unique place in evolutionary biology have led to ongoing research. RECENT FINDINGS Research into the basic biology of Giardia has highlighted some of its unique properties as an 'early-branching' eukaryote. Although Giardia do not contain mitochondria, they have developed pathways to perform some mitochondrial functions. Investigations into encystation and excystation have identified new gene products that are important in cyst wall formation, and signal transduction events that occur during excystation. The ability to transfect Giardia stably will lead to an improved understanding of its development and metabolism. Molecular typing of G. intestinalis isolates indicates that most animal parasites are not associated with human infection. Insights into immunology have helped define the role of IL-6 in the early control of murine giardiasis, and the contributions of IgA in controlling infection. Further studies of giardiasis in poorly nourished children in developing regions supports an important contributing role of Giardia in stunting and cognitive impairment. Finally, new diagnostic assays using antigen detection are being evaluated and a new agent, nitazoxanide, has been approved in the USA for the treatment of giardiasis and cryptosporidiosis in children. SUMMARY Research into the biology of Giardia should increase knowledge about protist differentiation and will complement studies in other biological systems. Continued study of the role of Giardia in chronic diarrhea and malnutrition in developing regions will help focus strategies to improve childhood growth and nutrition.
Collapse
Affiliation(s)
- Syed A Ali
- Division of Infectious Diseases, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | | |
Collapse
|