1
|
Gao T, Wang Y, Zhu J, Chen M, Yang K, Yuan F, Liu Z, Liu W, Guo R, Tian H, Li C, Wu Q, Li L, Tian Y, Zhou D. Antibacterial activity of a plant natural poly-phenol against zoonotic Streptococcus suis. Microb Pathog 2025; 205:107655. [PMID: 40355052 DOI: 10.1016/j.micpath.2025.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/21/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
The increasing emergence and dissemination of multi-drugs resistant bacterial pathogens accelerate the desires for novel antimicrobials. Natural products are great resources for the discovery of antimicrobial compound. In this study, pyrogallol was screened from 25 poly-phenols for its antibacterial activity against multi-drugs resistant Streptococcus suis (S. suis), particularly, pyrogallol had synergistic antimicrobial effect with doxycycline, sulfafurazole and clindamycin, respectively. Pyrogallol showed significant inhibitory effects on bacterial biofilm formation, and caused cell wall and cell membrane injury to S. suis. Furthermore, mechanistic studies demonstrated that pyrogallol might interact with peptidoglycan and decreased the expression of virulence and growth-related genes, such as ftsZ, stK, sly, fbps and luxS. In cell model, pyrogallol protected Nptr cells from S. suis-mediated cell damage. Finally, in mouse model, the pyrogallol and antibiotics combination groups with dosage given in the half could be as effective as antibiotics groups. In summary, these results demonstrated the capacity of pyrogallol serving as a candidate for novel antibiotic alternative and antibiotic adjuvant to circumvent the antibiotics resistance and reduced antibiotic consumption.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yanjun Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - JiaJia Zhu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mo Chen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China; College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Haibin Tian
- Wuhan Fengmeihe Animal Husbandry Technology Co. LTD, Wuhan, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
2
|
Boueroy P, Brizuela J, Roodsant TJ, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Hatrongjit R, Phetburom N, Chareonsudjai S, Boonmars T, Schultsz C, Kerdsin A. Genomic analysis and virulence of human Streptococcus suis serotype 14. Eur J Clin Microbiol Infect Dis 2025; 44:639-651. [PMID: 39731619 DOI: 10.1007/s10096-024-05029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Streptococcus suis serotype 14 is the second most prevalent serotype being highly prevalent in Southeast Asia. This study aimed to characterize genetic background, population structure, virulent genes, antimicrobial-resistant genes, and virulence of human S. suis serotype 14. METHODS Genomes of 11 S. suis serotype 14 were sequenced by short- and long-read sequencing platforms. The genomes were analyzed for genetic relationship, virulence-associated genes, and antimicrobial-resistant genes. Antimicrobial susceptibility was conducted and the virulence was tested based on cell assay. RESULTS All isolates belonged to clonal complex (CC) 1, with nine sequence type (ST) 105 isolates and each isolate of ST1 and ST237. They were susceptible to penicillin, whereas tetracycline and macrolide were resistance due to tetO and ermB. Genomic analysis revealed that the serotype 14-ST105 isolates were closely related to zoonotic serotype 14-ST105 isolates from Vietnam and the serotype 1-ST105 Thai strain. The serotype 14-ST1 isolate was closely related to pig-diseased serotype 1-ST1 isolates from UK and USA, whereas the serotype 14-ST237 isolate was related to serotype 1-ST237 strains recovered from healthy pig from Thailand. Of 150 virulence-associated genes, 13 were absent from the serotype 14 isolates, including atl1, atlAss, hhly3, nisK, nisR, pnuC, salK, salR, sp1, srtG, virB4, virD4, and zmp. The virulence of strain 32481, a representative S. suis serotype 14-ST105 isolate showed reduced adhesion and invasion of two epithelial cell lines (A549 and HeLa) when compared to the serotype 2-ST1 strain P1/7, whereas apoptosis was similar. CONCLUSION This study highlighted the pathogenic potential of virulent serotype 14-ST105 strains and the need for increased monitoring of S. suis serotypes other than for serotype 2.
Collapse
Affiliation(s)
- Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Jaime Brizuela
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Thomas J Roodsant
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Nattamol Phetburom
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Thidarut Boonmars
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Constance Schultsz
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| |
Collapse
|
3
|
Wang L, Qiu J, He B, Wu X, Chen Q, Wang Q, Wu R, Zheng B, Zhou L, Huang X. Isolation, Identification, and Molecular Genetic Characteristics of a Pathogenic Strain of Streptococcus suis Serotype 3. Pathogens 2025; 14:192. [PMID: 40005567 PMCID: PMC11858596 DOI: 10.3390/pathogens14020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Streptococcus suis (S. suis) is considered as one of the most crucial bacterial pathogens that leads to serious economic losses to the swine industry. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Epidemiology data underscore the importance of S. suis serotype 3 (SS3). However, except for a few epidemiological information, limited study information is available on this serotype. Herein, a pathogenic SS3 (the S. suis strain YA) was isolated from infected piglets in clinical practice, and then whole genome sequencing and analysis, hemolytic activity, antimicrobial susceptibility, pathogenicity to mice and piglets were conducted. The results of the whole genome sequencing of the S. suis strain YA showed that the complete genome was 2,167,682 bp in length with a G + C content of 41.2% and exhibited a unique sequence type (ST1801). The result of phylogenetic tree showed that it was most closely related to strain DNC15 and 6407 (ST54) from Denmark. The tet(W) and erm(B) resistant genes were identified in the S. suis strain YA by inserting into rum locus, in accordance with the result of resistance to tetracyclines and macrolide-lincosamide-streptogramin antibiotics. Twenty-seven key virulence factors were detected in the S. suis strain YA, including sly, ef and mrp, which contribute to pathogenicity in mice and piglets, causing bleeding and congestion in multiple tissue organs especially in the brains. And the LD50 value for mice was 1.54 × 107 CFU. Therefore, our research emphasizes the importance of understanding SS3, and provides valuable information for the scientific prevention and control of S. suis.
Collapse
Affiliation(s)
- Longbai Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingli Qiu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Bing He
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Xuemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Qiuyong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Quanxi Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renjie Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Bohan Zheng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lunjiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Xiaohong Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Risser J, Tessman R, Bade D, Sahin O, Clavijo MJ, Dhup S, Hoffmann P. Pradofloxacin Minimum Inhibitory Concentration Profiling of Streptococcus suis Isolates: Insights into Antimicrobial Susceptibility in Swine. Pathogens 2025; 14:88. [PMID: 39861050 PMCID: PMC11768269 DOI: 10.3390/pathogens14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
This study evaluated the minimum inhibitory concentration (MIC) of pradofloxacin against various swine respiratory pathogens, including Bordetella bronchiseptica, Glaesserella parasuis, Mycoplasma hyopneumoniae, Pasteurella multocida, and Streptococcus suis (S. suis), associated with disease in swine. This research was conducted in two phases: the initial phase examined isolates from the lungs that could be either commensal or pathogenic, while the second phase focused on systemic S. suis strains that spread from the respiratory tract to the brain. The pradofloxacin MIC values of the second phase were within the MIC range of the initial phase, with MIC50 and MIC90 values highlighting its potential as an effective antimicrobial agent. Quality control data validated the reliability of our MIC findings, with all pradofloxacin MIC values for control organisms within approved ranges. These findings suggest that pradofloxacin has broad-spectrum activity against Gram-positive and Gram-negative bacteria and may serve as a reliable therapeutic option for managing S. suis and other swine respiratory infections. This study highlights pradofloxacin as an alternative antimicrobial therapy for swine respiratory diseases, offering a potential solution amidst rising concerns over antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Don Bade
- Microbial Research Incorporated, Fort Collins, CO 80525, USA
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA (M.J.C.)
| | - Maria J. Clavijo
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA (M.J.C.)
| | - Saumya Dhup
- Elanco Innovation and Alliance Centre, Bangalore 560008, India;
| | | |
Collapse
|
5
|
Azim M, Khan SA, Osman N, Sadozai SK, Khan I. Ameliorated delivery of amphotericin B to macrophages using chondroitin sulfate surface-modified liposome nanoparticles. Drug Dev Ind Pharm 2025; 51:38-49. [PMID: 39679495 DOI: 10.1080/03639045.2024.2443007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND The neglected tropical disease leishmaniasis has significant adverse effects from current treatments and limited therapeutic options are currently available. OBJECTIVE The aim of this study was to develop a surface-modified nano-liposomal drug delivery system, anchored with chondroitin sulfate (CS), to effectively transport Amphotericin B (AmB) to macrophages. METHODS Conventional liposome formulations (CL-F) and CS-coated surface-modified liposome formulations (CS-SML-F) were formulated by the thin film hydration method and characterized for particle size, polydispersity index (PDI), zeta potential, and entrapment efficiency with long-term stability. In-vitro drug release using simulation medium, deformability index (DI) by using a polycarbonate membrane, and cell uptake studies among murine macrophages via flow cytometry were analyzed. Scanning and transmission electron microscopy were used to study the surface morphology and shape of the particles. RESULTS Optimized conventional liposome CL-F6, CL-F9 and surface-modified liposomes CS-SML-F6 and CS-SML-F9 exhibited particle size diameters around 280 nm with a PDI of approximately 0.3 over six months of storage at 5 °C, maintaining stable surface charge (circa -30 mV). Sustained drug release peaked between 4 and 12 h and surface morphology showed a uniform distribution of spherical liposome particles. Cell uptake measured by flow cytometry showed the highest rate of macrophage targeting by the CS-SML-Fs. CONCLUSION These findings have demonstrated that CS surface-modification has enhanced nanoparticle targeting to macrophage binding sites, particularly the cysteine-rich domain, potentially advancing macrophage-targeted drug delivery systems.
Collapse
Affiliation(s)
- Marium Azim
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Saeed A Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Nashwa Osman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Sajid K Sadozai
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
6
|
Li S, Chen T, Gao K, Yang YB, Qi B, Wang C, An T, Cai X, Wang S. Streptococcus suis Induces Macrophage M1 Polarization and Pyroptosis. Microorganisms 2024; 12:1879. [PMID: 39338553 PMCID: PMC11433784 DOI: 10.3390/microorganisms12091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus suis is an important bacterial pathogen that affects the global pig industry. The immunosuppressive nature of S. suis infection is recognized, and our previous research has confirmed thymus atrophy with a large number of necrotic cells. In this current work, we aimed to uncover the role of pyroptosis in cellular necrosis in thymic cells of S. suis-infected mice. Confocal microscopy revealed that S. suis activated the M1 phenotype and primed pyroptosis in the macrophages of atrophied thymus. Live cell imaging further confirmed that S. suis could induce porcine alveolar macrophage (PAM) pyroptosis in vitro, displaying cell swelling and forming large bubbles on the plasma membrane. Meanwhile, the levels of p-p38, p-extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) were increased, which indicated the mitogen-activated protein kinase (MAPK) and AKT pathways were also involved in the inflammation of S. suis-infected PAMs. Furthermore, RT-PCR revealed significant mRNA expression of pro-inflammatory mediators, including interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor (TNF)-α and chemokine CXCL8. The data indicated that the inflammation induced by S. suis was in parallel with pro-inflammatory activities of M1 macrophages, pyroptosis and MAPK and AKT pathways. Pyroptosis contributes to necrotic cells and thymocyte reduction in the atrophied thymus of mice.
Collapse
Affiliation(s)
- Siqi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Tianfeng Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Kexin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Yong-Bo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Baojie Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin 150069, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| |
Collapse
|
7
|
van Niekerk AA, Maluck S, Mag P, Kővágó C, Kerek Á, Jerzsele Á, Steinmetzer T, Pászti-Gere E. Antiviral Drug Candidate Repositioning for Streptococcus suis Infection in Non-Tumorigenic Cell Models. Biomedicines 2024; 12:783. [PMID: 38672139 PMCID: PMC11048155 DOI: 10.3390/biomedicines12040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing prevalence of antimicrobial resistance against zoonotic bacteria, including Streptococcus (S.) suis, highlights the need for new therapeutical strategies, including the repositioning of drugs. In this study, susceptibilities of bacterial isolates were tested toward ten different 3-amidinophenyalanine (Phe(3-Am)) derivatives via determination of minimum inhibitory concentration (MIC) values. Some of these protease inhibitors, like compounds MI-432, MI-471, and MI-476, showed excellent antibacterial effects against S. suis. Their drug interaction potential was investigated using human liver microsomal cytochrome P450 (CYP450) measurements. In our work, non-tumorigenic IPEC-J2 cells and primary porcine hepatocytes were infected with S. suis, and the putative beneficial impact of these inhibitors was investigated on cell viability (Neutral red assay), on interleukin (IL)-6 levels (ELISA technique), and on redox balance (Amplex red method). The antibacterial inhibitors prevented S. suis-induced cell death (except MI-432) and decreased proinflammatory IL-6 levels. It was also found that MI-432 and MI-476 had antioxidant effects in an intestinal cell model upon S. suis infection. Concentration-dependent suppression of CYP3A4 function was found via application of all three inhibitors. In conclusion, our study suggests that the potential antiviral Phe(3-Am) derivatives with 2',4' dichloro-biphenyl moieties can be considered as effective drug candidates against S. suis infection due to their antibacterial effects.
Collapse
Affiliation(s)
- Ashley Anzet van Niekerk
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Sara Maluck
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Csaba Kővágó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| |
Collapse
|
8
|
Li S, Wang C, Tang YD, Qin L, Chen T, Wang S, Bai Y, Cai X, Wang S. Interaction between Porcine Alveolar Macrophage-Tang Cells and Streptococcus suis Strains of Different Virulence: Phagocytosis and Apoptosis. Microorganisms 2023; 11:microorganisms11010160. [PMID: 36677452 PMCID: PMC9863715 DOI: 10.3390/microorganisms11010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Streptococcus suis is an important swine bacterial pathogen that activates macrophages to secrete inflammatory cytokines. Primary porcine alveolar macrophages (PAMs) are inconvenient to obtain, but it is unknown whether immortalized PAM-Tang cells can replace them as a better cell model for the study of the interaction between S. suis and macrophages. In this study, the phagocytic integrity, polarization, and pro-inflammatory cytokine secretion of PAM-Tang cells were confirmed by live-cell imaging, electron microscopy, confocal microscopy, and ELISA. Interestingly, the S. suis serotype 9 avirulent strain W7119 induced higher levels of adhesion and pro-inflammatory cytokines in PAM-Tang cells than the S. suis serotype 2 virulent strain 700794. Prolonged incubation with S. suis caused more cytotoxic cell damage, and the virulent strain induced higher levels of cytotoxicity to PAM-Tang cells. The virulent strain also induced higher levels of apoptosis in PAM-Tang cells, as shown by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assay. In addition, it is the first report of virulent and avirulent S. suis inducing PAM-Tang polarization towards pro-inflammatory M1 macrophages and p53- and caspase-dependent apoptosis in PAMs. Taken together, this study contributes to a better understand of interactions between macrophages and S. suis isolates of different virulence, and confirms that PAM-Tang cells provide a long-term, renewable resource for investigating macrophage infections with bacteria.
Collapse
Affiliation(s)
- Siqi Li
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yan-Dong Tang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Qin
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Tianfeng Chen
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shanghui Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuanzhe Bai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xuehui Cai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Correspondence: (X.C.); (S.W.)
| | - Shujie Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence: (X.C.); (S.W.)
| |
Collapse
|
9
|
Hu J, Wang D, Huang X, Yang Y, Lian X, Wang W, Xu X, Liu Y. Effects of TolC on the pathogenicity of porcine extraintestinal pathogenic Escherichia coli. Front Immunol 2022; 13:929740. [PMID: 36059454 PMCID: PMC9433895 DOI: 10.3389/fimmu.2022.929740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a well-known critical pathogenic zoonosis that causes extraintestinal infections in humans and animals by affecting their immune organs. Recently, research on the outer membrane protein of E. coli, tolerant colicin (TolC), a virulent protein in the formation of the ExPEC efflux pump, has been an attractive subject. However, the pathogenic mechanisms remain unclear. This study aimed to explore the role of TolC in the pathogenesis of the ExPEC strain PPECC42; a complementation strain (Cm-TolC) and an isogenic mutant (ΔTolC) were constructed. Loss of TolC drastically impaired the virulence of ExPEC in an experimental mouse model. ΔTolC showed a substantial decrease in the porcine aortic vascular endothelial cell (PAVEC) adherence, invasion, and pro-inflammatory response, in contrast to that of the wild type, with a reduced survival ratio in both the bacterial load and whole blood in mice. ΔTolC also showed decreased expression of necroptosis signals such as receptor-interacting protein kinase 1, phosphorylated mixed-lineage kinase domain-like protein, and mitochondrial proteins such as phosphoglycerate mutase family member 5. Our data suggest that TolC is closely associated with ExPEC pathogenesis. These results provide scientific grounds for exploring the potential of TolC as an effective drug target for controlling ExPEC infection, screening new inhibitors, and developing new drugs. This will allow for further prevention and control of ExPEC infection.
Collapse
Affiliation(s)
- Jin Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dongfang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xingfa Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, South-Central University for Nationalities, Wuhan, China
| | - Yang Yang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xin Lian
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Wenjun Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, South-Central University for Nationalities, Wuhan, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- *Correspondence: Yulan Liu,
| |
Collapse
|
10
|
Lu W, Tan J, Lu H, Wang G, Dong W, Wang C, Li X, Tan C. Function of Rhs proteins in porcine extraintestinal pathogenic Escherichia coli PCN033. J Microbiol 2021; 59:854-860. [PMID: 34382147 DOI: 10.1007/s12275-021-1189-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is an important zoonotic pathogen that places severe burdens on public health and animal husbandry. There are many pathogenic factors in E. coli. The type VI secretion system (T6SS) is a nano-microbial weapon that can assemble quickly and inject toxic effectors into recipient cells when danger is encountered. T6SSs are encoded in the genomes of approximately 25% of sequenced Gram-negative bacteria. When these bacteria come into contact with eukaryotic cells or prokaryotic microbes, the T6SS assembles and secretes associated effectors. In the porcine ExPEC strain PCN033, we identified four classic rearrangement hotspot (Rhs) genes. We determined the functions of the four Rhs proteins through mutant construction and protein expression. Animal infection experiments showed that the Δrhs-1CT, Δrhs-2CT, Δrhs-3CT, and Δrhs-4CT caused a significant decrease in the multiplication ability of PCN033 in vivo. Cell infection experiments showed that the Rhs protein is involved in anti-phagocytosis activities and bacterial adhesion and invasion abilities. The results of this study demonstrated that rhs1, rhs3, and rh4 plays an important role in the interaction between PCN033 and host cell. Rhs2 has contribution to cell and mice infection. This study helps to elucidate the pathogenic mechanism governing PCN033 and may help to establish a foundation for further research seeking to identify potential T6SS effectors.
Collapse
Affiliation(s)
- Wenjia Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Jia Tan
- Jiangxi Academy of Agricultural Science, Jiangxi, 333104, P.R. China
| | - Hao Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Gaoyan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Wenqi Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Chenchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Xiaodan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China.
| |
Collapse
|
11
|
Mayer L, Bornemann N, Lehnert S, de Greeff A, Strutzberg-Minder K, Rieckmann K, Baums CG. Survival patterns of Streptococcus suis serotypes 1 and 14 in porcine blood indicate cross-reactive bactericidal antibodies in naturally infected pigs. Vet Microbiol 2021; 260:109183. [PMID: 34304027 DOI: 10.1016/j.vetmic.2021.109183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Streptococcus suis serotype (cps) 1 and cps14 have been detected in association with severe diseases such as meningitis and polyarthritis in pigs. Though these two cps are very similar, only cps14 is an important zoonotic agent in Asia and only cps1 is described to be associated with diseases in suckling piglets rather than weaning piglets. The main objective of this study was to assess restriction of survival of cps14 and cps1 in porcine blood by IgG and IgM putatively cross-reacting with these two cps. Furthermore, we differentiate recent European cps1/14 strains by agglutination, cpsK sequencing, MLST and virulence-associated gene profiling. Our data confirmed cps1 of clonal complex 1 as an important pathotype causing polyarthritis in suckling piglets in Europe. The experimental design included also bactericidal assays with blood samples drawn at different ages of piglets naturally infected with different S. suis cps types including cps1 but not cps14. We report survival of a cps1 and a cps14 strain (both of sequence type 1) in blood of suckling piglets with high levels of maternal IgG binding to the bacterial surface. In contrast, killing of cps1 and cps14 was recorded in older piglets due to an increase of IgM as demonstrated by specific cleavage of IgM. Heterologous absorption of antibodies with cps1 or cps14 is sufficient to significantly increase the survival of the other cps. In conclusion, IgM elicited by natural S. suis infection is crucial for killing of S. suis cps1 and cps14 in older weaning piglets and has most likely the potential to cross-react between cps1 and cps14.
Collapse
Affiliation(s)
- L Mayer
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - N Bornemann
- IVD Innovative Veterinary Diagnostics (IVD GmbH), Albert-Einstein-Str. 5, 30926, Seelze, Germany
| | - S Lehnert
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - A de Greeff
- Wageningen Bioveterinary Research, part of Wageningen University and Research, Lelystad, the Netherlands
| | - K Strutzberg-Minder
- IVD Innovative Veterinary Diagnostics (IVD GmbH), Albert-Einstein-Str. 5, 30926, Seelze, Germany
| | - K Rieckmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - C G Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
12
|
Pei X, Liu M, Zhou H, Fan H. Screening for phagocytosis resistance-related genes via a transposon mutant library of Streptococcus suis serotype 2. Virulence 2021; 11:825-838. [PMID: 32614642 PMCID: PMC7567436 DOI: 10.1080/21505594.2020.1782088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a serious zoonotic pathogen which causes symptoms of streptococcal toxic shock syndrome (STSS) and septicemia; these symptoms suggest that SS2 may have evade innate immunity. Phagocytosis is an important innate immunity process where phagocytosed pathogens are killed by lysosome enzymes, reactive oxygen, and nitrogen species, and acidic environments in macrophages following engulfment. A previously constructed mutant SS2 library was screened, revealing 13 mutant strains with decreased phagocytic resistance. Through inverse PCR, the transposon insertion sites were determined. Through bioinformatic analysis, the 13 disrupted genes were identified as Cps2F, 3 genes belonging to ABC transporters, WalR, TehB, rpiA, S-transferase encoding gene, prs, HsdM, GNAT family N-acetyltransferase encoding gene, proB, and upstream region of DnaK. Except for the capsular polysaccharide biosynthesis associated Cps2F, the other genes had not been linked to a role in anti-phagocytosis. The survival ability in macrophages and whole blood of randomly picked mutant strains were significantly impaired compared with wild-type ZY05719. The virulence of the mutant strains was also attenuated in a mouse infection model. In the WalR mutant, the transcription of HP1065 decreased significantly compared with wild-type strain, indicating WalR might regulated HP1065 expression and contribute to the anti-phagocytosis of SS2. In conclusion, we identified 13 genes that influenced the phagocytosis resistant ability of SS2, and many of these genes have not been reported to be associated with resistance to phagocytosis. Our work provides novel insight into resistance to phagocytosis, and furthers our understanding of the pathogenesis mechanism of SS2.
Collapse
Affiliation(s)
- Xiaomeng Pei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Mingxing Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, China
| |
Collapse
|
13
|
Gajdács M, Németh A, Knausz M, Barrak I, Stájer A, Mestyán G, Melegh S, Nyul A, Tóth Á, Ágoston Z, Urbán E. Streptococcus suis: An Underestimated Emerging Pathogen in Hungary? Microorganisms 2020; 8:1292. [PMID: 32847011 PMCID: PMC7570012 DOI: 10.3390/microorganisms8091292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis (S. suis) is an emerging zoonotic pathogen, demonstrated as an etiological agent in human infections in increasing frequency, including diseases like purulent meningitis, sepsis, uveitis-endophtalmitis and arthritis. Due to the increased availability and utility of novel diagnostic technologies in clinical microbiology, more studies have been published on the epidemiology of S. suis, both in veterinary and human medicine; however, there are no comprehensive data available regarding human S. suis infections from East-Central European countries. As a part of our study, data were collected from the National Bacteriological Surveillance (NBS) system on patients who had at least one positive microbiological result for S. suis, corresponding to an 18-year study period (2002-2019). n = 74 S. suis strains were isolated from invasive human infections, corresponding to 34 patients. The number of affected patients was 1.89 ± 1.53/year (range: 0-5). Most isolates originated from blood culture (63.5%) and cerebrospinal fluid (18.9%) samples. Additionally, we present detailed documentation of three instructive cases from three regions of the country and with three distinctly different outcomes. Hungary has traditional agriculture, the significant portion of which includes the production and consumption of pork meat, with characteristic preparation and consumption customs and unfavorable epidemiological characteristics (alcohol consumption, prevalence of malignant diseases or diabetes), which have all been described as important predisposing factors for the development of serious infections. Clinicians and microbiologist need to be vigilant even in nonendemic areas, especially if the patients have a history of occupational hazards or having close contact with infected pigs.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., 6720 Szeged, Hungary
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Anita Németh
- Microbiology Laboratory, Petz Aladár County Teaching Hospital, Vasvári Pál utca 2–4., 9023 Győr, Hungary; (A.N.); (M.K.)
| | - Márta Knausz
- Microbiology Laboratory, Petz Aladár County Teaching Hospital, Vasvári Pál utca 2–4., 9023 Győr, Hungary; (A.N.); (M.K.)
| | - Ibrahim Barrak
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62–64., 6720 Szeged, Hungary;
| | - Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Gyula Mestyán
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (G.M.); (S.M.); (A.N.)
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (G.M.); (S.M.); (A.N.)
| | - Adrienn Nyul
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (G.M.); (S.M.); (A.N.)
| | - Ákos Tóth
- Department of Bacteriology, Mycology and Parasitology, National Public Health Center, Albert Flórián út 2–6., 1097 Budapest, Hungary;
| | - Zsuzsanna Ágoston
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary;
| | - Edit Urbán
- Institute of Translational Medicine, Faculty of Medicine, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary;
| |
Collapse
|
14
|
Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival. Toxins (Basel) 2020; 12:toxins12090531. [PMID: 32825096 PMCID: PMC7551085 DOI: 10.3390/toxins12090531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are key virulence factors involved in many lethal bacterial infections, including pneumonia, necrotizing soft tissue infections, bacterial meningitis, and miscarriage. Host responses to these diseases involve myeloid cells, especially macrophages. Macrophages use several systems to detect and respond to cholesterol-dependent cytolysins, including membrane repair, mitogen-activated protein (MAP) kinase signaling, phagocytosis, cytokine production, and activation of the adaptive immune system. However, CDCs also promote immune evasion by silencing and/or destroying myeloid cells. While there are many common themes between the various CDCs, each CDC also possesses specific features to optimally benefit the pathogen producing it. This review highlights host responses to CDC pathogenesis with a focus on macrophages. Due to their robust plasticity, macrophages play key roles in the outcome of bacterial infections. Understanding the unique features and differences within the common theme of CDCs bolsters new tools for research and therapy.
Collapse
|
15
|
Liu Y, Wang H, Gao J, Wen Z, Peng L. Cryptotanshinone ameliorates the pathogenicity of Streptococcus suis by targeting suilysin and inflammation. J Appl Microbiol 2020; 130:736-744. [PMID: 32750224 DOI: 10.1111/jam.14810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
AIMS Streptococcus suis is a highly zoonotic pathogen that is a serious threat to human health and the development of the pig industry worldwide. The virulence factors produced during S. suis infection play an important role, and the pore-forming activity of suilysin is considered an important virulence-related factor, especially in meningitis. Treatment of S. suis infection with traditional antibiotics is becoming increasingly challenging due to bacterial resistance. The purpose of this study is to verify the role of cryptotanshinone in the process of S. suis infection and provide a new drug precursor for the treatment of S. suis infection. METHODS AND RESULTS In this study, we used circular dichroism spectroscopy to demonstrate that cryptotanshinone alters the secondary structure of suilysin. The results of the antibacterial activity and haemolysis assays showed cryptotanshinone could inhibit the pore-forming activity of suilysin without affecting bacterial growth or its expression. We also showed that cryptotanshinone reduces bacterial damage and penetration in vitro, reduce the S. suis-induced inflammatory response and provide protection against bacterial infections in vivo and in vitro. CONCLUSIONS Cryptotanshinone is a potential compound precursor for treating S. suis infection. SIGNIFICANCE AND IMPACT OF THE STUDY Cryptotanshinone may be a promising leading compound for S. suis infection and related diseases.
Collapse
Affiliation(s)
- Y Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - H Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - J Gao
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Z Wen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - L Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Wielgat P, Rogowski K, Niemirowicz-Laskowska K, Car H. Sialic Acid-Siglec Axis as Molecular Checkpoints Targeting of Immune System: Smart Players in Pathology and Conventional Therapy. Int J Mol Sci 2020; 21:ijms21124361. [PMID: 32575400 PMCID: PMC7352527 DOI: 10.3390/ijms21124361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
The sialic acid-based molecular mimicry in pathogens and malignant cells is a regulatory mechanism that leads to cross-reactivity with host antigens resulting in suppression and tolerance in the immune system. The interplay between sialoglycans and immunoregulatory Siglec receptors promotes foreign antigens hiding and immunosurveillance impairment. Therefore, molecular targeting of immune checkpoints, including sialic acid-Siglec axis, is a promising new field of inflammatory disorders and cancer therapy. However, the conventional drugs used in regular management can interfere with glycome machinery and exert a divergent effect on immune controlling systems. Here, we focus on the known effects of standard therapies on the sialoglycan-Siglec checkpoint and their importance in diagnosis, prediction, and clinical outcomes.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| |
Collapse
|
17
|
Inflammatory Monocytes and Neutrophils Regulate Streptococcus suis-Induced Systemic Inflammation and Disease but Are Not Critical for the Development of Central Nervous System Disease in a Mouse Model of Infection. Infect Immun 2020; 88:IAI.00787-19. [PMID: 31818962 PMCID: PMC7035915 DOI: 10.1128/iai.00787-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus suis is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. These pathologies are a consequence of elevated bacterial replication leading to exacerbated and uncontrolled inflammation, a hallmark of the S. suis systemic and central nervous system (CNS) infections. Monocytes and neutrophils are immune cells involved in various functions, including proinflammatory mediator production. Streptococcus suis is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. These pathologies are a consequence of elevated bacterial replication leading to exacerbated and uncontrolled inflammation, a hallmark of the S. suis systemic and central nervous system (CNS) infections. Monocytes and neutrophils are immune cells involved in various functions, including proinflammatory mediator production. Moreover, monocytes are composed of two main subsets: shorter-lived inflammatory monocytes and longer-lived patrolling monocytes. However, regardless of their presence in blood and the fact that S. suis-induced meningitis is characterized by infiltration of monocytes and neutrophils into the CNS, their role during the S. suis systemic and CNS diseases remains unknown. Consequently, we hypothesized that monocytes and neutrophils participate in S. suis infection via bacterial clearance and inflammation. Results demonstrated that inflammatory monocytes and neutrophils regulate S. suis-induced systemic disease via their role in inflammation required for bacterial burden control. In the CNS, inflammatory monocytes contributed to exacerbation of S. suis-induced local inflammation, while neutrophils participated in bacterial burden control. However, development of clinical CNS disease was independent of both cell types, indicating that resident immune cells are mostly responsible for S. suis-induced CNS inflammation and clinical disease and that inflammatory monocyte and neutrophil infiltration is a consequence of the induced inflammation. In contrast, the implication of patrolling monocytes was minimal throughout the S. suis infection. Consequently, this study demonstrates that while inflammatory monocytes and neutrophils modulate S. suis-induced systemic inflammation and disease, they are not critical for CNS disease development.
Collapse
|
18
|
Hohnstein FS, Meurer M, de Buhr N, von Köckritz-Blickwede M, Baums CG, Alber G, Schütze N. Analysis of Porcine Pro- and Anti-Inflammatory Cytokine Induction by S. suis In Vivo and In Vitro. Pathogens 2020; 9:pathogens9010040. [PMID: 31947746 PMCID: PMC7168595 DOI: 10.3390/pathogens9010040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/03/2022] Open
Abstract
Weaning piglets are susceptible to the invasive Streptococcus (S.) suis infection, which can result in septicemia. The aim of this study was to investigate the cytokine profile induced upon S. suis infection of blood, to determine the cellular sources of those cytokines, and to study the potential effects of the induced cytokines on bacterial killing. We measured TNF-α, IL-6, IFN-γ, IL-17A and IL-10 after an experimental intravenous infection with S. suis serotype 2 in vivo, and analyzed whole blood, peripheral blood mononuclear cells (PBMC) and separated leukocytes to identify the cytokine-producing cell type(s). In addition, we used a reconstituted whole blood assay to investigate the effect of TNF-α on bacterial killing in the presence of different S. suis-specific IgG levels. An increase in IL-6 and IL-10, but not in IFN-γ or IL-17A, was observed in two of three piglets with pronounced bacteremia 16 to 20 h after infection, but not in piglets with controlled bacteremia. Our results confirmed previous findings that S. suis induces TNF-α and IL-6 and could demonstrate that TNF-α is produced by monocytes in vitro. We further found that IL-10 induction resulted in reduced secretion of TNF-α and IL-6. Rapid induction of TNF-α was, however, not crucial for in vitro bacterial killing, not even in the absence of specific IgG.
Collapse
Affiliation(s)
- Florian S. Hohnstein
- Institute of Immunology, Center of Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (F.S.H.); (N.S.)
| | - Marita Meurer
- Department of Physiological Chemistry, University of Veterinary Medicine Hanover, Foundation, Bünteweg 17, 30559 Hanover, Germany; (M.M.); (N.d.B.); (M.v.K.-B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Foundation, Bünteweg 17, 30559 Hanover, Germany
| | - Nicole de Buhr
- Department of Physiological Chemistry, University of Veterinary Medicine Hanover, Foundation, Bünteweg 17, 30559 Hanover, Germany; (M.M.); (N.d.B.); (M.v.K.-B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Foundation, Bünteweg 17, 30559 Hanover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hanover, Foundation, Bünteweg 17, 30559 Hanover, Germany; (M.M.); (N.d.B.); (M.v.K.-B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Foundation, Bünteweg 17, 30559 Hanover, Germany
| | - Christoph G. Baums
- Institute of Bacteriology and Mycology, Center of Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany;
| | - Gottfried Alber
- Institute of Immunology, Center of Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (F.S.H.); (N.S.)
- Correspondence: ; Tel.: +49-341-9731221
| | - Nicole Schütze
- Institute of Immunology, Center of Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (F.S.H.); (N.S.)
| |
Collapse
|
19
|
Vötsch D, Willenborg M, Oelemann WM, Brogden G, Valentin-Weigand P. Membrane Binding, Cellular Cholesterol Content and Resealing Capacity Contribute to Epithelial Cell Damage Induced by Suilysin of Streptococcus suis. Pathogens 2019; 9:pathogens9010033. [PMID: 31905867 PMCID: PMC7168673 DOI: 10.3390/pathogens9010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
Streptococcus (S.) suis is a major cause of economic losses in the pig industry worldwide and is an emerging zoonotic pathogen. One important virulence-associated factor is suilysin (SLY), a toxin that belongs to the family of cholesterol-dependent pore-forming cytolysins (CDC). However, the precise role of SLY in host–pathogen interactions is still unclear. Here, we investigated the susceptibility of different respiratory epithelial cells to SLY, including immortalized cell lines (HEp-2 and NPTr cells), which are frequently used in in vitro studies on S. suis virulence mechanisms, as well as primary porcine respiratory cells, which represent the first line of barrier during S. suis infections. SLY-induced cell damage was determined by measuring the release of lactate dehydrogenase after infection with a virulent S. suis serotype 2 strain, its isogenic SLY-deficient mutant strain, or treatment with the recombinant protein. HEp-2 cells were most susceptible, whereas primary epithelial cells were hardly affected by the toxin. This prompted us to study possible explanations for these differences. We first investigated the binding capacity of SLY using flow cytometry analysis. Since binding and pore-formation of CDC is dependent on the membrane composition, we also determined the cellular cholesterol content of the different cell types using TLC and HPLC. Finally, we examined the ability of those cells to reseal SLY-induced pores using flow cytometry analysis. Our results indicated that the amount of membrane-bound SLY, the cholesterol content of the cells, as well as their resealing capacity all affect the susceptibility of the different cells regarding the effects of SLY. These findings underline the differences of in vitro pathogenicity models and may further help to dissect the biological role of SLY during S. suis infections.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Walter M.R. Oelemann
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Departamento de Imunologia, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro (UFRJ), 21941-901 Rio de Janeiro, Brazil
| | - Graham Brogden
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Correspondence: ; Tel.: +49-(0)511-856-7362
| |
Collapse
|
20
|
Characterization and Protective Activity of Monoclonal Antibodies Directed against Streptococcus suis Serotype 2 Capsular Polysaccharide Obtained Using a Glycoconjugate. Pathogens 2019; 8:pathogens8030139. [PMID: 31500262 PMCID: PMC6789524 DOI: 10.3390/pathogens8030139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Streptococcus suis serotype 2 is an encapsulated bacterium and an important swine pathogen. Opsonizing antibody responses targeting capsular polysaccharides (CPSs) are protective against extracellular pathogens. To elucidate the protective activity of monoclonal antibodies (mAbs) directed against S. suis serotype 2 CPS, mice were immunized with a serotype 2 CPS-glycoconjugate and three hybridomas were isolated; of which, two were murine IgMs and the other a murine IgG1. Whereas the IgMs (mAbs 9E7 and 13C8) showed different reactivity levels with S. suis serotypes 1, 1/2, 2 and 14, the IgG1 (mAb 16H11) was shown to be serotype 2-specific. All mAbs targeted the sialylated chain of the CPSs. Using an opsonophagocytosis assay, the IgMs were opsonizing towards the S. suis serotypes to which they cross-react, while the IgG1 failed to induce bacterial elimination. In a model of mouse passive immunization followed by a lethal challenge with S. suis serotype 2, the IgG1 and IgM cross-reacting only with serotype 14 (mAb 13C8) failed to protect, while the IgM cross-reacting with serotypes 1, 1/2, and 14 (mAb 9E7) was shown to be protective by limiting bacteremia. These new mAbs show promise as new S. suis diagnostic tools, as well as potential for therapeutic applications.
Collapse
|
21
|
Zong B, Zhang Y, Wang X, Liu M, Zhang T, Zhu Y, Zheng Y, Hu L, Li P, Chen H, Tan C. Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic Escherichia coli. Virulence 2019; 10:118-132. [PMID: 30676217 PMCID: PMC6363058 DOI: 10.1080/21505594.2019.1573491] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Porcine extra-intestinal pathogenic Escherichia coli (ExPEC) causes great economic losses to the pig industry and poses a serious threat to public health worldwide. Some secreted virulence factors have been reported to be involved in the pathogenicity of the infection caused by ExPEC. Type-VI secretion system (T6SS) is discovered in many Gram-negative bacteria and contributes to the virulence of pathogenic bacteria. Valine-glycine repeat protein G (VgrG) has been reported as an important component of the functional T6SS. In our previous studies, a functional T6SS was identified in porcine ExPEC strain PCN033. Further analysis of the PCN033 genome identified two putative vgrGs genes (vgrG1 and 0248) located inside T6SS cluster and another two (vgrG2 and 1588) outside it. This study determined the function of the four putative VgrG proteins by constructing a series of mutants and complemented strains. In vitro, the VgrG1 protein was observed to be involved in the antibacterial ability and the interactions with cells. The animal model experiment showed that the deletion of vgrG1 significantly led to the decrease in the multiplication capacity of PCN033. However, the deletion of 0248 and/or the deletion of vgrG2 and 1588 had no effect on the pathogenicity of PCN033. The study of four putative VgrGs in PCN033 indicated that only VgrG1 plays an important role in the interaction between PCN033 and other bacteria or host cells. This study can provide a novel perspective to the pathogenesis of PCN033 and lay the foundation for discovering potential T6SS effectors.
Collapse
Affiliation(s)
- Bingbing Zong
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Yanyan Zhang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Xiangru Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Manli Liu
- e Hubei Biopesticide Engineering Research Centre , Hubei Academy of Agricultural Sciences , Wuhan Hubei , China
| | - Tongchao Zhang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Yongwei Zhu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Yucheng Zheng
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Linlin Hu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Pei Li
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Huanchun Chen
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Chen Tan
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| |
Collapse
|
22
|
Shen X, Liu H, Li G, Deng X, Wang J. Silibinin attenuates Streptococcus suis serotype 2 virulence by targeting suilysin. J Appl Microbiol 2018; 126:435-442. [PMID: 30408277 DOI: 10.1111/jam.14149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
AIMS To determine the antivirulence properties of silibinin against suilysin (SLY), a virulence factor of Streptococcus suis serotype 2 (SS2) that plays an important role in the pathogenesis of S. suis infection and its protective effect against SS2 infection in a mouse model. METHODS AND RESULTS Susceptibility testing, haemolysis assay and Western blot assays were employed to evaluate the performance of silibinin on SLY pore-forming activity. Cytotoxicity assays and mouse infection tests were also performed to determine the efficacy of silibinin against SS2 infection. The results showed that silibinin, a flavonoid with little anti-S. suis activity, was identified to be a potent antagonist of SLY-mediated haemolysis through the inhibition of its oligomerization. Treatment with silibinin reduced S. suis-induced cytotoxicity in macrophages (J774 cells). In addition, S. suis-infected mice that received silibinin showed a lower bacterial burden. CONCLUSIONS Our results demonstrated that silibinin is a promising candidate for the development of antivirulence therapeutic agents to treat S. suis infections. SIGNIFICANCE AND IMPACT OF THE STUDY The antivirulent property of silibinin against SS2 by targeting SLY provides the possibility for the future pharmaceutical application of silibinin to prevent and treat S. suis infection.
Collapse
Affiliation(s)
- X Shen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - H Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - G Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - J Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
23
|
Zhang Y, Zong B, Wang X, Zhu Y, Hu L, Li P, Zhang A, Chen H, Liu M, Tan C. Fisetin Lowers Streptococcus suis serotype 2 Pathogenicity in Mice by Inhibiting the Hemolytic Activity of Suilysin. Front Microbiol 2018; 9:1723. [PMID: 30105012 PMCID: PMC6077255 DOI: 10.3389/fmicb.2018.01723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis serotype 2 is a serious zoonotic pathogen and has attracted worldwide attention since the first human case was reported in Denmark in 1968. Some virulence factors have been reported to be involved in the pathogenesis of the infection caused by Streptococcus suis serotype 2, and then novel strategies to identify some anti-virulence compounds which can effectively inhibit the pathogenic bacterial infection have recently been reported. Suilysin is an essential virulence factor for Streptococcus suis serotype 2 since it creates pores in the target cells membranes, which aids bacterial colonization. The important role of suilysin in the virulence of Streptococcus suis serotype 2 renders it an ideal target for designing novel anti-virulence therapeutics. We find that fisetin, as a natural flavonoid, is a potent antagonist against suilysin-mediated hemolysis. The aim of this study is to evaluate the effect of fisetin on the hemolytic activity of suilysin from Streptococcus suis serotype 2. Fisetin is found to significantly inhibit the hemolytic activity of suilysin. Within the range of effective concentrations, fisetin does not influence the growth of Streptococcus suis serotype 2 and the expression of suilysin protein. In vitro, fisetin effectively inhibits the death of macrophages (J774A.1 and RAW264.7) infected with Streptococcus suis serotype 2 by weakening intracellular bacterial multiplication. Animal model experiment shows that fisetin effectively improves the survival rate of animals infected with Streptococcus suis serotype 2. Our findings suggest that fisetin could be used as an antitoxin against suilysin and be developed into a promising therapeutic candidate for treating Streptococcus suis serotype 2 infection.
Collapse
Affiliation(s)
- Yanyan Zhang
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingbing Zong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongwei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Pei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Manli Liu
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
24
|
Zhang B, Sun X, Fan H, He K, Zhang X. The Fimbrial Gene z3276 in Enterohemorrhagic Escherichia coli O157:H7 Contributes to Bacterial Pathogenicity. Front Microbiol 2018; 9:1628. [PMID: 30072979 PMCID: PMC6060243 DOI: 10.3389/fmicb.2018.01628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen of worldwide importance that causes foodborne infections in humans. It is not capable of expressing type I fimbrial because of base deletion in the fim operon. BLAST analysis shows that the open reading frame z3276, a specific genetic marker of EHEC O157:H7, encodes a sequence with high amino acid identity to other E. coli type I fimbrial, but its definitive function in EHEC O157:H7 remains unclear. We are here to report that a z3276 mutant (Δz3276) was constructed using the reference EHEC O157:H7, the mutant Δz3276 was biologically characterized, and the pathogenicity of Δz3276 was assessed in mice in comparison with the wild-type (WT) strain. Motility and biofilm formation assays revealed a smaller twitching motility zone for Δz3276 on the agar surface and significantly decreased biofilm formation by Δz3276 compared with the parental strain. The adhesion and invasion ability of Δz3276 to HEp-2 cells showed no significant change, but the invasion ability of Δz3276 to IPEC-J2 cells was attenuated. Furthermore, in the animal study, we observed shortened and lower fecal shedding among the Δz3276 mutant-infected animals compared with those infected WT strain. The data in this study indicate that this unique gene of z3276 in EHEC O157:H7 seems to play an important role in bacterial pathogenicity.
Collapse
Affiliation(s)
- Bicheng Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaohan Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
25
|
Fang L, Zhou J, Fan P, Yang Y, Shen H, Fang W. A serine/threonine phosphatase 1 of Streptococcus suis type 2 is an important virulence factor. J Vet Sci 2018; 18:439-447. [PMID: 28057904 PMCID: PMC5746436 DOI: 10.4142/jvs.2017.18.4.439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/30/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is regarded as one of the major pathogens of pigs, and Streptococcus suis type 2 (SS2) is considered a zoonotic bacterium based on its ability to cause meningitis and streptococcal toxic shock-like syndrome in humans. Many bacterial species contain genes encoding serine/threonine protein phosphatases (STPs) responsible for dephosphorylation of their substrates in a single reaction step. This study investigated the role of stp1 in the pathogenesis of SS2. An isogenic stp1 mutant (Δstp1) was constructed from SS2 strain ZJ081101. The Δstp1 mutant exhibited a significant increase in adhesion to HEp-2 and bEnd.3 cells as well as increased survival in RAW264.7 cells, as compared to the parent strain. Increased survival in macrophage cells might be related to resistance to reactive oxygen species since the Δstp1 mutant was more resistant than its parent strain to paraquat-induced oxidative stress. However, compared to parent strain virulence, deletion of stp1 significantly attenuated virulence of SS2 in mice, as shown by the nearly double lethal dose 50 value and the lower bacterial load in organs and blood in the murine model. We conclude that Stp1 has an essential role in SS2 virulence.
Collapse
Affiliation(s)
- Lihua Fang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China.,Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingjing Zhou
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Pengcheng Fan
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Yunkai Yang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Hongxia Shen
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
26
|
Wang S, Wang C, Gao L, Cai H, Zhou Y, Yang Y, Xu C, Ding W, Chen J, Muhammad I, Chen X, He X, Liu D, Li Y. Rutin Inhibits Streptococcus suis Biofilm Formation by Affecting CPS Biosynthesis. Front Pharmacol 2017; 8:379. [PMID: 28670278 PMCID: PMC5472726 DOI: 10.3389/fphar.2017.00379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/31/2017] [Indexed: 11/28/2022] Open
Abstract
Streptococcus suis (S. suis) form biofilms and causes severe diseases in humans and pigs. Biofilms are communities of microbes embedded in a matrix of extracellular polymeric substances. Eradicating biofilms with the use of antibiotics or biocides is often ineffective and needs replacement with other potential agents. Compared to conventional agents, promising and potential alternatives are biofilm-inhibiting compounds without impairing growth. Here, we screened a S. suis adhesion inhibitor, rutin, derived from Syringa. Rutin, a kind of flavonoids, shows efficient biofilm inhibition of S. suis without impairing its growth. Capsular polysaccharides(CPS) are reported to be involved in its adherence to influence bacterial biofilm formation. We investigated the effect of rutin on S. suis CPS content and structure. The results showed that rutin was beneficial to improve the CPS content of S. suis without changing its structure. We further provided evidence that rutin specifically affected S. suis biofilm susceptibility by affecting CPS biosynthesis in vitro. The study explores the antibiofilm potential of rutin against S. suis which can be used as an adhesion inhibitor for the prevention of S. suis biofilm-related infections. Nevertheless, rutin could be used as a novel natural inhibitor of biolfilm and its molecular mechanism provide basis for its pharmacological and clinical applications.
Collapse
Affiliation(s)
- Shuai Wang
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, China
| | - Chang Wang
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, China
| | - Lingfei Gao
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, China
| | - Hua Cai
- Harbin Pharmaceutical Group Bio-Vaccine Co. Ltd. (Hayao Vaccine),Harbin, China
| | - Yonghui Zhou
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, China
| | - Yanbei Yang
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, China
| | - Changgeng Xu
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, China
| | - Wenya Ding
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, China
| | - Jianqing Chen
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, China
| | - Ishfaq Muhammad
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xueying Chen
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, China
| | - Xinmiao He
- Harbin Pharmaceutical Group Bio-Vaccine Co. Ltd. (Hayao Vaccine),Harbin, China
| | - Di Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural UniversityHarbin, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, China
| |
Collapse
|
27
|
Hsueh KJ, Chen MC, Cheng LT, Lee JW, Chung WB, Chu CY. Transcutaneous immunization of Streptococcus suis bacterin using dissolving microneedles. Comp Immunol Microbiol Infect Dis 2016; 50:78-87. [PMID: 28131383 DOI: 10.1016/j.cimid.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/14/2016] [Accepted: 12/08/2016] [Indexed: 11/17/2022]
Abstract
Vaccine delivery using microneedle (MN) patches is an easy, safe and painless alternative to traditional needle injections. In this study, we examined whether MN patches can enhance the efficacy of a Streptococcus suis serotype 2 (S. suis 2) vaccine in a mouse model. Results showed that MNs can reach 200-250μm into the skin, a depth beneficial for targeted delivery of antigens to antigen-presenting cells in the epidermis and dermis. Vaccination with prime-boost of MN induced higher levels of IgG2a antibody titer, T cell proliferation, and TH1 cytokines (IFN-γ and IL-12) as compared to intramuscular (IM) injection. In addition, single dose MN vaccination better protected mice against lethal challenge than IM vaccination. MN vaccination also conferred long-term IgG2a antibody against S. suis 2 bacteria presence for up to 7 months. Taken together, these data showed that vaccine delivery by MNs results in superior immune response and protection rate when compared to IM injections.
Collapse
Affiliation(s)
- Kai-Jen Hsueh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Mei-Chin Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Wen-Bin Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan.
| |
Collapse
|
28
|
Zong B, Liu W, Zhang Y, Wang X, Chen H, Tan C. Effect of kpsM on the virulence of porcine extraintestinal pathogenic Escherichia coli. FEMS Microbiol Lett 2016; 363:fnw232. [PMID: 27737948 DOI: 10.1093/femsle/fnw232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/30/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, extraintestinal pathogenic Escherichia coli (ExPEC) has been found to pose a great threat to human and animal health, but its pathogenic mechanism is not fully understood yet. Capsular polysaccharide, an essential virulence factor in these bacteria, can damage the host immune system, and kpsM is a member of the gene cluster responsible for capsular polysaccharide synthesis. In this study, whole sequence alignment of the virulent strain PCN033 and the attenuated strain PCN061 revealed that kpsM exists in PCN033 but not in PCN061. To determine its function and biological characteristics, we deleted kpsM from PCN033 by homologous recombination. The results of adhesion assays, phagocytosis assays and serum bactericidal assays together with the results of colonization assays in mice indicate that the deletion of kpsM decreases the virulence of porcine ExPEC. Our findings about the biological characteristics of kpsM help to elucidate the complex pathogenic mechanism of ExPEC.
Collapse
Affiliation(s)
- Bingbing Zong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wugang Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
29
|
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772-3799. [PMID: 27539145 DOI: 10.1002/1873-3468.12364] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Interactions between a bacterial pathogen and its potentially susceptible host are initiated with the colonization step. During respiratory/oral infection, the pathogens must compete with the normal microflora, resist defense mechanisms of the local mucosal immunity, and finally reach, adhere, and breach the mucosal epithelial cell barrier in order to induce invasive disease. This is the case during infection by the swine and zoonotic pathogen Streptococcus suis, which is able to counteract mucosal barriers to induce severe meningitis and sepsis in swine and in humans. The initial steps of the pathogenesis of S. suis infection has been a neglected area of research, overshadowed by studies on the systemic and central nervous phases of the disease. In this Review article, we provide for the first time, an exclusive focus on S. suis colonization and the potential mechanisms involved in S. suis establishment at the mucosa, as well as the mechanisms regulating mucosal barrier breakdown. The role of mucosal immunity is also addressed. Finally, we demystify the extensive list of putative adhesins and virulence factors reported to be involved in the initial steps of pathogenesis by S. suis.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
30
|
Tenenbaum T, Asmat TM, Seitz M, Schroten H, Schwerk C. Biological activities of suilysin: role in Streptococcus suis pathogenesis. Future Microbiol 2016; 11:941-54. [PMID: 27357518 DOI: 10.2217/fmb-2016-0028] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Streptococcus suis is an important swine and zoonotic pathogen equipped with several virulence factors. The pore-forming toxins are the most abundant bacterial toxins and classified as critical virulence (associated) factors of several pathogens. The role of suilysin (SLY), a pore-forming cholesterol-dependent cytolysin of S. suis, as a true virulence factor is under debate. Most of the bacterial toxins have been reported to modulate the host immune system to facilitate invasion and subsequent replication of bacteria within respective host cells. SLY has been demonstrated to play an important role in the pathogenesis of S. suis infection and inflammatory response in vitro and in vivo. This review highlights the contributions of SLY to the pathogenicity of S. suis. It will address its role during the development of S. suis meningitis in pigs, as well as humans, and discuss SLY as a potential vaccine candidate.
Collapse
Affiliation(s)
- Tobias Tenenbaum
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| | - Tauseef M Asmat
- Center for Advanced Studies in Vaccinology and Biotechnology, Brewery Road, University of Balochistan, 87300 Quetta, Pakistan
| | - Maren Seitz
- Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover D-30173, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| |
Collapse
|
31
|
Seele J, Nau R, Prajeeth CK, Stangel M, Valentin-Weigand P, Seitz M. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures. Pathogens 2016; 5:pathogens5020043. [PMID: 27304968 PMCID: PMC4931394 DOI: 10.3390/pathogens5020043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/28/2016] [Accepted: 06/07/2016] [Indexed: 01/09/2023] Open
Abstract
Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.
Collapse
Affiliation(s)
- Jana Seele
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover 30173, Germany.
- Institute for Neuropathology, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen 37099, Germany.
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, Göttingen 37075, Germany.
| | - Roland Nau
- Institute for Neuropathology, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen 37099, Germany.
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, Göttingen 37075, Germany.
| | - Chittappen K Prajeeth
- Department of Neurology, Center for Systems Neuroscience (ZSN), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany.
| | - Martin Stangel
- Department of Neurology, Center for Systems Neuroscience (ZSN), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany.
| | - Peter Valentin-Weigand
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover 30173, Germany.
| | - Maren Seitz
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover 30173, Germany.
| |
Collapse
|
32
|
Efficient suilysin-mediated invasion and apoptosis in porcine respiratory epithelial cells after streptococcal infection under air-liquid interface conditions. Sci Rep 2016; 6:26748. [PMID: 27229328 PMCID: PMC4882623 DOI: 10.1038/srep26748] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/05/2016] [Indexed: 12/25/2022] Open
Abstract
Streptococci may colonize the epithelium in the airways and other entry sites. While local infection often remains asymptomatic, severe or even fatal diseases occur when streptococci become invasive and spread to different sites in the infected host. We have established porcine respiratory air-liquid interface cultures (ALI) from the porcine lung to analyze the interaction of streptococci with their primary target cells. As representative of the streptococcal family we chose Streptococcus suis (S. suis) that is not only a major swine respiratory pathogen but can also infect humans. Suilysin, a cholesterol-dependent cytolysin (CDC), is an important virulence factor. By comparing a S. suis wt strain with a suilysin-deficient mutant, we demonstrate that suilysin contributes to (i) adherence to airway cells (ii) loss of ciliated cells (iii) apoptosis, and (iv) invasion. Furthermore, we show that cytolytic activity of suilysin is crucial for these effects. A striking result of our analysis was the high efficiency of S. suis-induced apoptosis and invasion upon infection under ALI conditions. These properties have been reported to be less efficient when analyzed with immortalized cells. We hypothesize that soluble effectors such as suilysin are present at higher concentrations in cells kept at ALI conditions and thus more effective. These results should be relevant also for infection of the respiratory tract by other respiratory pathogens.
Collapse
|
33
|
Van Calsteren MR, Goyette-Desjardins G, Gagnon F, Okura M, Takamatsu D, Roy R, Gottschalk M, Segura M. Explaining the Serological Characteristics of Streptococcus suis Serotypes 1 and 1/2 from Their Capsular Polysaccharide Structure and Biosynthesis. J Biol Chem 2016; 291:8387-98. [PMID: 26912653 DOI: 10.1074/jbc.m115.700716] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 11/06/2022] Open
Abstract
The capsular polysaccharide (CPS) is a major virulence factor in many encapsulated pathogens, as it is the case for Streptococcus suis, an important swine pathogen and emerging zoonotic agent. Moreover, the CPS is the antigen at the origin of S. suis classification into serotypes. Hence, analyses of the CPS structure are an essential step to dissect its role in virulence and the serological relations between important serotypes. Here, the CPSs of serotypes 1 and 1/2 were purified and characterized for the first time. Chemical and spectroscopic data gave the following repeating unit sequences: [6)[Neu5Ac(α2-6)GalNAc(β1-4)GlcNAc(β1-3)]Gal(β1-3)Gal(β1-4)Glc(β1-]n (serotype 1) and [4)[Neu5Ac(α2-6)GalNAc(β1-4)GlcNAc(β1-3)]Gal(β1-4)[Gal(α1-3)]Rha(β1-4)Glc(β1-]n (serotype 1/2). The Sambucus nigra lectin, which recognizes the Neu5Ac(α2-6)Gal/GalNAc sequence, showed binding to both CPSs. Compared with previously characterized serotype 14 and 2 CPSs, N-acetylgalactosamine replaces galactose as the sugar bearing the sialic acid residue in the side chain. Serological analyses of the cross-reaction of serotype 1/2 with serotypes 1 and 2 and that between serotypes 1 and 14 suggested that the side chain, and more particularly the terminal sialic acid, constitutes one important epitope for serotypes 1/2 and 2. The side chain is also an important serological determinant for serotype 1, yet sialic acid seems to play a limited role. In contrast, the side chain does not seem to be part of a major epitope for serotype 14. These results contribute to the understanding of the relationship between S. suis serotypes and provide the basis for improving diagnostic tools.
Collapse
Affiliation(s)
- Marie-Rose Van Calsteren
- From the Food Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Quebec J2S 8E3, Canada, the Swine and Poultry Infectious Disease Research Centre and
| | - Guillaume Goyette-Desjardins
- the Swine and Poultry Infectious Disease Research Centre and Research Group on Infectious Diseases of Swine, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Fleur Gagnon
- From the Food Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Masatoshi Okura
- the Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305 0856, Japan
| | - Daisuke Takamatsu
- the Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305 0856, Japan, the United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501 1193, Japan, and
| | - René Roy
- the Department of Chemistry, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada
| | - Marcelo Gottschalk
- the Swine and Poultry Infectious Disease Research Centre and Research Group on Infectious Diseases of Swine, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Mariela Segura
- the Swine and Poultry Infectious Disease Research Centre and Research Group on Infectious Diseases of Swine, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec J2S 2M2, Canada,
| |
Collapse
|
34
|
Zhang Y, Ding D, Liu M, Yang X, Zong B, Wang X, Chen H, Bei W, Tan C. Effect of the glycosyltransferases on the capsular polysaccharide synthesis of Streptococcus suis serotype 2. Microbiol Res 2016; 185:45-54. [PMID: 26946377 DOI: 10.1016/j.micres.2016.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/04/2016] [Accepted: 02/03/2016] [Indexed: 02/03/2023]
Abstract
Streptococcus suis serotype 2 (S. suis 2) is a serious zoonotic pathogen causing septicemia and meningitis in piglets and humans. The capsular polysaccharide (CPS) is an essential virulence factor for S. suis 2 to infect the host. The synthesis of CPS repeating units involves multiple glycosyltransferases. In this study, four genes (cps2E, cps2G, cps2J and cps2L) encoding different glycosyltransferases involved in CPS synthesis were researched in S. suis 2. Four deletion mutants (Δcps2E, Δcps2G, Δcps2J and Δcps2L) with their CPS incomplete and their sialic acid content significantly decreased were constructed in S. suis 2 SC19. All these four mutant strains showed enhanced adhesion to Hep-2 cells and increased sensitivity to phagocytosis. Flow cytometric analysis also revealed that these four mutants were more susceptible to the attack by the complement system. In a mouse model of infection, the mutant strains were rapidly cleared by the immune system, compared with the wild-type strain. In summary, this study characterized four genes (cps2E, cps2G, cps2J and cps2L) involved in CPS synthesis of S. suis 2 SC19 and it revealed that these genes were all crucial for SC19 to invade and survive in the host.
Collapse
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Dandan Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Manli Liu
- Center of Bio-Pesticide Engineering Research, Hubei Academy of Agricultural Science, Wuhan 430064, Hubei, China
| | - Xiaopei Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Bingbing Zong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
35
|
Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ. Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 2015; 17:1721-41. [PMID: 26433203 DOI: 10.1111/cmi.12531] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (Streptococcus agalactiae) and Streptococcus pneumoniae (pneumococcus) are host-adapted bacterial pathogens among the leading infectious causes of human morbidity and mortality. These microbes and related members of the genus Streptococcus produce an array of toxins that act against human cells or tissues, resulting in impaired immune responses and subversion of host physiological processes to benefit the invading microorganism. This toxin repertoire includes haemolysins, proteases, superantigens and other agents that ultimately enhance colonization and survival within the host and promote dissemination of the pathogen.
Collapse
Affiliation(s)
- Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jason N Cole
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anna Henningham
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
36
|
Novel variant serotype of streptococcus suis isolated from piglets with meningitis. Appl Environ Microbiol 2014; 81:976-85. [PMID: 25416757 DOI: 10.1128/aem.02962-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen causing severe infections in pigs and humans. In previous studies, 33 serotypes of S. suis have been identified using serum agglutination. Here, we describe a novel S. suis strain, CZ130302, isolated from an outbreak of acute piglet meningitis in eastern China. Strong pathogenicity of meningitis caused by strain CZ130302 was reproduced in the BALB/c mouse model. The strain showed a high fatality rate (8/10), higher than those for known virulent serotype 2 strains P1/7 (1/10) and 9801 (2/10). Cell adhesion assay results with bEnd.3 and HEp2 cells showed that CZ130302 was significantly close to P1/7 and 9801. Both the agglutination test and its complementary test showed that strain CZ130302 had no strong cross-reaction with the other 33 S. suis serotypes. The multiplex PCR assays revealed no specified bands for all four sets used to detect the other 33 serotypes. In addition, genetic analysis of the whole cps gene clusters of all serotypes was performed in this study. The results of comparative genomics showed that the cps gene cluster of CZ130302, which was not previously reported, showed no homology to the gene sequences of the other strains. Especially, the wzy, wzx, and acetyltransferase genes of strain CZ130302 are phylogenetically distinct from strains of the other 33 serotypes. Therefore, this study suggested that strain CZ130302 represents a novel variant serotype of S. suis (designated serotype Chz) which has a high potential to be virulent and associated with meningitis in animals.
Collapse
|
37
|
He Z, Pian Y, Ren Z, Bi L, Yuan Y, Zheng Y, Jiang Y, Wang F. Increased production of suilysin contributes to invasive infection of the Streptococcus suis strain 05ZYH33. Mol Med Rep 2014; 10:2819-26. [PMID: 25241621 PMCID: PMC4227431 DOI: 10.3892/mmr.2014.2586] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 06/05/2014] [Indexed: 11/09/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is widely recognized in the veterinary world as the cause of rapidly progressive and fatal sepsis in infant pigs, manifested with meningitis, polyarthritis and pneumonia. It has evolved into a highly infectious strain, and caused two large-scale outbreaks of human epidemic in China, characterized bytypical toxic-shock syndrome and invasive infection. However, the molecular basis of virulence of this emerging zoonotic pathogen is still largely unknown. The present study shows that the sequence type (ST)7 epidemic strain S. suis 05ZYH33 causes higher mortality, higher necrosis of polymorphonuclear neutrophils and a significantly higher damage to human umbilical vein endothelial cells compared to the non-epidemic strain S. suis 1940. These differences appear to associate with the enhanced secretion of suilysin (sly) by S. suis 05ZYH33 compared to the non-epidemic strain 1940. Inclusion of additional strains confirmed that the epidemic ST7 strains produce more sly protein (mean, 1.49 g/ml; range, 0.76–1.91 g/ml) than non-epidemic strains (mean, 0.33 g/ml; range, 0.07–0.94 g/ml), and this difference is significant (P<0.001). The nonpolar mutant strain S. suis Δsly, constructed from the epidemic ST7 strain S. suis 05ZYH33 confirmed the role of sly on the enhanced virulence of S. suis ST7 strains. These findings suggest that increased sly production in S. suis 05ZYH33 facilitates penetration to the epithelium and its survival in the bloodstream, thereby contributing to the invasive infection.
Collapse
Affiliation(s)
- Zhengxin He
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA, Shijiazhuang, Hebei 050082, P.R. China
| | - Yaya Pian
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Zhiqiang Ren
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Lili Bi
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Fukun Wang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA, Shijiazhuang, Hebei 050082, P.R. China
| |
Collapse
|
38
|
Fura JM, Sabulski MJ, Pires MM. D-amino acid mediated recruitment of endogenous antibodies to bacterial surfaces. ACS Chem Biol 2014; 9:1480-9. [PMID: 24870969 DOI: 10.1021/cb5002685] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The number of antibiotic resistant bacterial strains has been continuously increasing over the last few decades. Nontraditional routes to combat bacteria may offer an attractive alternative to the ongoing problem of drug discovery in this field. Herein, we describe the initial framework toward the development of bacterial d-amino acid antibody recruitment therapy (DART). DART represents a promising antibiotic strategy by exploiting the promiscuity of bacteria to incorporate unnatural d-amino acids and subsequently recruit antibodies to the bacterial surface. The conjugation of 2,4-dinitrophenyl (DNP) to various d-amino acids led to the discovery of a d-amino acid that specifically tags the surface of Bacillus subtilis and Staphylococcus aureus for the recruitment of anti-DNP antibodies (a highly abundant antibody in human serum). This system represents a novel strategy as an antibacterial therapy that targets planktonic Gram-positive bacteria.
Collapse
Affiliation(s)
- Jonathan M. Fura
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Mary J. Sabulski
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Marcos M. Pires
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
39
|
Nakayama T, Ezoe K. Heat Incubation Inactivates Streptococcal Exotoxins and Recombinant Cholesterol-Dependent Cytolysins: Suilysin, Pneumolysin and Streptolysin O. Curr Microbiol 2014; 69:690-8. [DOI: 10.1007/s00284-014-0639-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
|
40
|
Seitz M, Baums C, Neis C, Benga L, Fulde M, Rohde M, Goethe R, Valentin-Weigand P. Subcytolytic effects of suilysin on interaction of Streptococcus suis with epithelial cells. Vet Microbiol 2013; 167:584-91. [DOI: 10.1016/j.vetmic.2013.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/26/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
|
41
|
Takeuchi D, Akeda Y, Nakayama T, Kerdsin A, Sano Y, Kanda T, Hamada S, Dejsirilert S, Oishi K. The contribution of suilysin to the pathogenesis of Streptococcus suis meningitis. J Infect Dis 2013; 209:1509-19. [PMID: 24285845 DOI: 10.1093/infdis/jit661] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus suis is an emerging zoonotic pathogen, and causes sepsis and meningitis in humans. Although sequence type (ST) 1 and ST104 strains are capable of causing sepsis, ST1 strains commonly cause meningitis. In this study, we investigated the role of suilysin, a member of cholesterol-dependent cytolysins, in differential pathogenicity between ST1 and ST104 strains. METHODS The levels of transcription and translation of the sly gene and messenger RNA of both ST strains were compared by means of quantitative polymerase chain reaction and Western blotting. Survival rates and bacterial densities in brain were compared between mice infected with wild-type and sly-knockout ST1 strain. ST104 infections with or without complementation of suilysin were also assessed. RESULTS The amounts of suilysin produced by ST1 strains were much higher than those produced by ST104 strains. Lower production of suilysin by ST104 strains were attributed to the attenuated sly gene expression, which seemed to be associated with 2 nucleotide insertions in sly promoter region. Furthermore, suilysin contributed to the higher bacterial density and enhanced inflammation in brain and increased mortality. CONCLUSIONS Our data may explain why ST1 strains, but not ST104 strains, commonly cause meningitis and also suggest the contribution of suilysin to the pathogenesis of meningitis in humans.
Collapse
Affiliation(s)
- Dan Takeuchi
- Laboratory for Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xu J, Fu S, Liu M, Xu Q, Bei W, Chen H, Tan C. The two-component system NisK/NisR contributes to the virulence of Streptococcus suis serotype 2. Microbiol Res 2013; 169:541-6. [PMID: 24342108 DOI: 10.1016/j.micres.2013.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/09/2013] [Indexed: 10/26/2022]
Abstract
Two-component signal-transduction systems (TCSTSs) may regulate some virulence factors in response to external stimuli, and thus allowing Streptococcus suis serotype 2 to interact with the host, promote survival, and cause disease. Here, a mutant of the NisKR TCSTS had attenuated virulence in vitro, as exemplified by lowered hemolytic activity, reduced adherence to epithelial cells, increased elimination by macrophages, and decreased resistance to killing by neutrophils. Results also showed that this system is important for the ability of S. suis serotype 2 to survive and proliferate in an in vivo mouse model. Thus, the NisKR system plays a significant role in pathogenesis, both in colonization and invasive disease.
Collapse
Affiliation(s)
- Juan Xu
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shulin Fu
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Manli Liu
- Center of Bio-Pesticide Engineering Research, Hubei Academy of Agricultural Science, Wuhan, Hubei 430064, China
| | - Qiaoxia Xu
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weicheng Bei
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chen Tan
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
43
|
Du H, Huang W, Xie H, Ye C, Jing H, Ren Z, Xu J. The genetically modified suilysin, rSLY(P353L), provides a candidate vaccine that suppresses proinflammatory response and reduces fatality following infection with Streptococcus suis. Vaccine 2013; 31:4209-15. [PMID: 23856333 DOI: 10.1016/j.vaccine.2013.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 01/13/2023]
Abstract
Streptococcus suis is a persistent global hazard in the swine industry and an emerging threat to public health. The high mortality in China following outbreaks of streptococcal toxic shock syndrome (STSS) underscores the urgency for effective prevention. A limited understanding of the pathogenesis of S. suis in STSS may explain the lack of biological products for prevention. Suilysin (SLY) is an important virulence factor in the pathogenesis of S. suis. To identify a candidate vaccine for S. suis-induced STSS, we constructed a recombinant non-hemolytic mutant of SLY that has hemagglutination activity, rSLY(P353L), and evaluated its ability to induce inflammatory response and prevent fatal S. suis infection in mice. The rSLY(P353L) mutant, as compared with hemolytic rSLY, elicited lower levels of IL-6, KC and IL-10 at 3h and 5h post-treatment (p<0.05), indicating that hemolytic activity is associated with rSLY-mediated inflammation. Furthermore, passive immunization with anti-SLY(P353L) antisera protected mice from acute death after infection with S. suis SC84 (p<0.05). Effects were not due to protection against tissue damage, as S. suis SC84 caused no detectable histopathological lesions in mice within 24h. However, immunization with rSLY(P353L) caused significantly reduced levels of KC and IL-1β at 6 and 9h post-challenge and IL-6 at 9h post-challenge (p<0.05). In conclusion, rSLY(P353L) may provide a potential vaccine for protection against S. suis-induced STSS due to its reduction in proinflammatory response early in S. suis infection.
Collapse
Affiliation(s)
- Huamao Du
- College of Biotechnology, Southwest University, Beibei, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Kouki A, Pieters RJ, Nilsson UJ, Loimaranta V, Finne J, Haataja S. Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands. BIOLOGY 2013; 2:918-35. [PMID: 24833053 PMCID: PMC3960878 DOI: 10.3390/biology2030918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 11/16/2022]
Abstract
Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar) to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP), was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections.
Collapse
Affiliation(s)
- Annika Kouki
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland.
| | - Roland J Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht 3508 TB, The Netherlands.
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB 124, Lund SE-22100, Sweden.
| | - Vuokko Loimaranta
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland.
| | - Jukka Finne
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, P.O.B. 56, Helsinki FI-00014, Finland.
| | - Sauli Haataja
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland.
| |
Collapse
|
45
|
Use of tetravalent galabiose for inhibition of streptococcus suis serotype 2 infection in a mouse model. BIOLOGY 2013; 2:702-18. [PMID: 24832804 PMCID: PMC3960886 DOI: 10.3390/biology2020702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 11/24/2022]
Abstract
Streptococcus suis is an important swine pathogen associated with a variety of infections such as meningitis, arthritis and septicemia. The bacterium is zoonotic and has been found to cause meningitis especially in humans occupationally exposed to infected pigs. Since adhesion is a prerequisite for colonization and subsequent infection, anti-adhesion treatment seems a natural alternative to traditional treatment with antibiotics. In order to optimize the inhibitory potency a multivalency approach was taken in the inhibitor design. A synthetic tetravalent galabiose compound was chosen which had previously shown promising anti-adhesion effects with S. suis in vitro. The aim of this study was to evaluate the in vivo effects of the compound using an infection peritonitis mouse model. As such S. suis serotype 2 infection and treatment were tested in vivo and the effects were compared to the effect of treatment with penicillin.
Collapse
|
46
|
Seitz M, Beineke A, Seele J, Fulde M, Valentin-Weigand P, Baums CG. A novel intranasal mouse model for mucosal colonization by Streptococcus suis serotype 2. J Med Microbiol 2012; 61:1311-1318. [DOI: 10.1099/jmm.0.043885-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Maren Seitz
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jana Seele
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marcus Fulde
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christoph Georg Baums
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
47
|
Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 2012; 7:259-79. [PMID: 22324994 DOI: 10.2217/fmb.11.149] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Streptococcus suis is a major swine pathogen responsible for important economic losses to the swine industry worldwide. It is also an emerging zoonotic agent of meningitis and streptococcal toxic shock-like syndrome. Since the recent recognition of the high prevalence of S. suis human disease in southeast and east Asia, the interest of the scientific community in this pathogen has significantly increased. In the last few years, as a direct consequence of these intensified research efforts, large amounts of data on putative virulence factors have appeared in the literature. Although the presence of some proposed virulence factors does not necessarily define a S. suis strain as being virulent, several cell-associated or secreted factors are clearly important for the pathogenesis of the S. suis infection. In order to cause disease, S. suis must colonize the host, breach epithelial barriers, reach and survive in the bloodstream, invade different organs, and cause exaggerated inflammation. In this review, we discuss the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection. Finally, we briefly discuss other described virulence factors, virulence factor candidates and virulence markers for which a precise role at specific steps of the pathogenesis of the S. suis infection has not yet been clearly established.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc & Centre de Recherche en Infectiologie Porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, CP5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | | | | | | |
Collapse
|
48
|
Schultsz C, Jansen E, Keijzers W, Rothkamp A, Duim B, Wagenaar JA, van der Ende A. Differences in the population structure of invasive Streptococcus suis strains isolated from pigs and from humans in The Netherlands. PLoS One 2012; 7:e33854. [PMID: 22563452 PMCID: PMC3341392 DOI: 10.1371/journal.pone.0033854] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/22/2012] [Indexed: 12/03/2022] Open
Abstract
Streptococcus suis serotype 2 is the main cause of zoonotic S. suis infection despite the fact that other serotypes are frequently isolated from diseased pigs. Studies comparing concurrent invasive human and pig isolates from a single geographical location are lacking. We compared the population structures of invasive S. suis strains isolated between 1986 and 2008 from human patients (N = 24) and from pigs with invasive disease (N = 124) in the Netherlands by serotyping and multi locus sequence typing (MLST). Fifty-six percent of pig isolates were of serotype 9 belonging to 15 clonal complexes (CCs) or singleton sequence types (ST). In contrast, all human isolates were of serotype 2 and belonged to two non-overlapping clonal complexes CC1 (58%) and CC20 (42%). The proportion of serotype 2 isolates among S. suis strains isolated from humans was significantly higher than among strains isolated from pigs (24/24 vs. 29/124; P<0.0001). This difference remained significant when only strains within CC1 and CC20 were considered (24/24 vs. 27/37,P = 0.004). The Simpson diversity index of the S. suis population isolated from humans (0.598) was smaller than of the population isolated from pigs (0.765, P = 0.05) indicating that the S. suis population isolated from infected pigs was more diverse than the S. suis population isolated from human patients. S. suis serotype 2 strains of CC20 were all negative in a PCR for detection of genes encoding extracellular protein factor (EF) variants. These data indicate that the polysaccharide capsule is an important correlate of human S. suis infection, irrespective of the ST and EF encoding gene type of S. suis strains.
Collapse
Affiliation(s)
- Constance Schultsz
- Academic Medical Center, Department of Global Health, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Segura M. Fisher scientific award lecture - the capsular polysaccharides of Group B Streptococcus and Streptococcus suis differently modulate bacterial interactions with dendritic cells. Can J Microbiol 2012; 58:249-60. [PMID: 22356626 DOI: 10.1139/w2012-003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infections with encapsulated bacteria cause serious clinical problems. Besides being poorly immunogenic, the bacterial capsular polysaccharide (CPS) cloaks antigenic proteins, allowing bacterial evasion of the host immune system. Despite the clinical significance of bacterial CPS and its suggested role in the pathogenesis of the infection, the mechanisms underlying innate and, critically, adaptive immune responses to encapsulated bacteria have not been fully elucidated. As such, we became interested in studying the CPS of two similar, but unique, streptococcal species: Group B Streptococcus (GBS) and Streptococcus suis . Both streptococci are well encapsulated, some capsular types are more virulent than others, and they can cause severe meningitis and septicemia. For both pathogens, the CPS is considered the major virulence factor. Finally, these two streptococci are the sole Gram-positive bacteria possessing sialic acid in their capsules. GBS type III is a leading cause of neonatal invasive infections. Streptococcus suis type 2 is an important swine and emerging zoonotic pathogen in humans. We recently characterized the S. suis type 2 CPS. It shares common structural elements with GBS, but sialic acid is α2,6-linked to galactose rather than α2,3-linked. Differential sialic acid expression by pathogens might result in modulation of immune cell activation and, consequently, may affect the immuno-pathogenesis of these bacterial infections. Here, we review and compare the interactions of these two sialylated encapsulated bacteria with dendritic cells, known as the most potent antigen-presenting cells linking innate and adaptive immunity. We further address differences between dendritic cells and professional phagocytes, such as macrophages and neutrophils, in their interplay with these encapsulated pathogens. Elucidation of the molecular and cellular basis of the impact of CPS composition on bacterial interactions with immune cells is critical for mechanistic understanding of anti-CPS responses. Knowledge generated will help to advance the development of novel, more effective anti-CPS vaccines and improved immunotherapies.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
50
|
Abstract
Zoonotic infections caused by Streptococcus spp. have been neglected in spite of the fact that frequency and severity of outbreaks increased dramatically in recent years. This may be due to non-identification since respective species are often not considered in human medical diagnostic procedures. On the other hand, an expanding human population concomitant with an increasing demand for food and the increased number of companion animals favour conditions for host species adaptation of animal streptococci. This review aims to give an overview on streptococcal zoonoses with focus on epidemiology and pathogenicity of four major zoonotic species, Streptococcus canis, Streptococcus equi sub. zooepidemicus, Streptococcus iniae and Streptococcus suis.
Collapse
|