1
|
Hardy KD, Dickenson NE. Phosphomimetic Tyrosine Mutations in Spa47 Inhibit Type Three Secretion ATPase Activity and Shigella Virulence Phenotype. Pathogens 2022; 11:pathogens11020202. [PMID: 35215145 PMCID: PMC8876561 DOI: 10.3390/pathogens11020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
Shigella is a highly infectious human pathogen responsible for 269 million infections and 200,000 deaths per year. Shigella virulence is absolutely reliant on the injection of effector proteins into the host cell cytoplasm via its type three secretion system (T3SS). The protein Spa47 is a T3SS ATPase whose activity is essential for the proper function of the Shigella T3SS needle-like apparatus through which effectors are secreted. A phosphoproteomics study recently found several Shigella T3SS proteins, including Spa47, to be tyrosine phosphorylated, suggesting a means of regulating Spa47 enzymatic activity, T3SS function, and overall Shigella virulence. The work presented here employs phosphomimetic mutations in Spa47 to probe the effects of phosphorylation at these targeted tyrosines through in vitro radiometric ATPase assays and circular dichroism as well as in vivo characterization of T3SS secretion activity, erythrocyte hemolysis, and cellular invasion. Results presented here demonstrate a direct correlation between Spa47 tyrosine phosphorylation state, Spa47 ATPase activity, T3SS function, and Shigella virulence. Together, these findings provide a strong foundation that leads the way to uncovering the specific pathway(s) that Shigella employ to mitigate wasteful ATP hydrolysis and effector protein secretion when not required as well as T3SS activation in preparation for host infection and immune evasion.
Collapse
|
2
|
Dey S, Chakravarty A, Guha Biswas P, De Guzman RN. The type III secretion system needle, tip, and translocon. Protein Sci 2019; 28:1582-1593. [PMID: 31301256 DOI: 10.1002/pro.3682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/06/2022]
Abstract
Many Gram-negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon.
Collapse
Affiliation(s)
- Supratim Dey
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | | | | | | |
Collapse
|
3
|
Klein JA, Dave BM, Raphenya AR, McArthur AG, Knodler LA. Functional relatedness in the Inv/Mxi-Spa type III secretion system family. Mol Microbiol 2017; 103:973-991. [PMID: 27997726 DOI: 10.1111/mmi.13602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 01/06/2023]
Abstract
Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi-Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane-integral pore, and the hydrophilic 'tip complex' translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food-borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi-Spa family. We used invasion-deficient S. Typhimurium mutants as surrogates for expression of translocator orthologs identified from an extensive phylogenetic analysis, and type III effector translocation and host cell invasion as a readout for complementation efficiency, and identified several Inv/Mxi-Spa orthologs that can functionally substitute for the S. Typhimurium chaperone and translocator proteins. Functional complementation correlates with amino acid sequence identity between orthologs, but varies considerably between the four proteins. This is the first in-depth survey of the functional interchangeability of Inv/Mxi-Spa T3SS proteins acting directly at the host-pathogen interface.
Collapse
Affiliation(s)
- Jessica A Klein
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Biren M Dave
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Amogelang R Raphenya
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Leigh A Knodler
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
4
|
Adam PR, Dickenson NE, Greenwood JC, Picking WL, Picking WD. Influence of oligomerization state on the structural properties of invasion plasmid antigen B from Shigella flexneri in the presence and absence of phospholipid membranes. Proteins 2014; 82:3013-22. [PMID: 25103195 DOI: 10.1002/prot.24662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/14/2014] [Accepted: 08/03/2014] [Indexed: 11/10/2022]
Abstract
Shigella flexneri causes bacillary dysentery, an important cause of mortality among children in the developing world. Shigella secretes effector proteins via its type III secretion system (T3SS) to promote bacterial uptake into human colonic epithelial cells. The T3SS basal body spans the bacterial cell envelope anchoring a surface-exposed needle. A pentamer of invasion plasmid antigen D lies at the nascent needle tip and invasion plasmid antigen B (IpaB) is recruited into the needle tip complex on exposure to bile salts. From here, IpaB forms a translocon pore in the host cell membrane. Although the mechanism by which IpaB inserts into the membrane is unknown, it was recently shown that recombinant IpaB can exist as either a monomer or tetramer. Both of these forms of IpaB associate with membranes, however, only the tetramer forms pores in liposomes. To reveal differences between these membrane-binding events, Cys mutations were introduced throughout IpaB, allowing site-specific fluorescence labeling. Fluorescence quenching was used to determine the influence of oligomerization and/or membrane association on the accessibility of different IpaB regions to small solutes. The data show that the hydrophobic region of tetrameric IpaB is more accessible to solvent relative to the monomer. The hydrophobic region appears to promote membrane interaction for both forms of IpaB, however, more of the hydrophobic region is protected from solvent for the tetramer after membrane association. Limited proteolysis demonstrated that changes in IpaB's oligomeric state may determine the manner by which it associates with phospholipid membranes and the subsequent outcome of this association.
Collapse
Affiliation(s)
- Philip R Adam
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078
| | | | | | | | | |
Collapse
|
5
|
Dickenson NE, Arizmendi O, Patil MK, Toth RT, Middaugh CR, Picking WD, Picking WL. N-terminus of IpaB provides a potential anchor to the Shigella type III secretion system tip complex protein IpaD. Biochemistry 2013; 52:8790-9. [PMID: 24236510 DOI: 10.1021/bi400755f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The type III secretion system (T3SS) is an essential virulence factor for Shigella flexneri , providing a conduit through which host-altering effectors are injected directly into a host cell to promote uptake. The type III secretion apparatus (T3SA) is composed of a basal body, external needle, and regulatory tip complex. The nascent needle is a polymer of MxiH capped by a pentamer of invasion plasmid antigen D (IpaD). Exposure to bile salts (e.g., deoxycholate) causes a conformational change in IpaD and promotes recruitment of IpaB to the needle tip. It has been proposed that IpaB senses contact with host cell membranes, recruiting IpaC and inducing full secretion of T3SS effectors. Although the steps of T3SA maturation and their external triggers have been identified, details of specific protein interactions and mechanisms have remained difficult to study because of the hydrophobic nature of the IpaB and IpaC translocator proteins. Here, we explored the ability for a series of soluble N-terminal IpaB peptides to interact with IpaD. We found that DOC is required for the interaction and that a region of IpaB between residues 11-27 is required for maximum binding, which was confirmed in vivo. Furthermore, intramolecular FRET measurements indicated that movement of the IpaD distal domain away from the protein core accompanied the binding of IpaB11-226. Together, these new findings provide important new insight into the interactions and potential mechanisms that define the maturation of the Shigella T3SA needle tip complex and provide a foundation for further studies probing T3SS activation.
Collapse
Affiliation(s)
- Nicholas E Dickenson
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| | | | | | | | | | | | | |
Collapse
|
6
|
Tomalka AG, Stopford CM, Lee PC, Rietsch A. A translocator-specific export signal establishes the translocator-effector secretion hierarchy that is important for type III secretion system function. Mol Microbiol 2012; 86:1464-81. [PMID: 23121689 DOI: 10.1111/mmi.12069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
Abstract
Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the Pseudomonas aeruginosa translocator protein PopD as a model to identify its export signals. The N-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells.
Collapse
Affiliation(s)
- Amanda G Tomalka
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
7
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
8
|
Impact of the N-terminal secretor domain on YopD translocator function in Yersinia pseudotuberculosis type III secretion. J Bacteriol 2011; 193:6683-700. [PMID: 21965570 DOI: 10.1128/jb.00210-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type III secretion systems (T3SSs) secrete needle components, pore-forming translocators, and the translocated effectors. In part, effector recognition by a T3SS involves their N-terminal amino acids and their 5' mRNA. To investigate whether similar molecular constraints influence translocator secretion, we scrutinized this region within YopD from Yersinia pseudotuberculosis. Mutations in the 5' end of yopD that resulted in specific disruption of the mRNA sequence did not affect YopD secretion. On the other hand, a few mutations affecting the protein sequence reduced secretion. Translational reporter fusions identified the first five codons as a minimal N-terminal secretion signal and also indicated that the YopD N terminus might be important for yopD translation control. Hybrid proteins in which the N terminus of YopD was exchanged with the equivalent region of the YopE effector or the YopB translocator were also constructed. While the in vitro secretion profile was unaltered, these modified bacteria were all compromised with respect to T3SS activity in the presence of immune cells. Thus, the YopD N terminus does harbor a secretion signal that may also incorporate mechanisms of yopD translation control. This signal tolerates a high degree of variation while still maintaining secretion competence suggestive of inherent structural peculiarities that make it distinct from secretion signals of other T3SS substrates.
Collapse
|
9
|
Matteï PJ, Faudry E, Job V, Izoré T, Attree I, Dessen A. Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 2010; 278:414-26. [PMID: 21182592 DOI: 10.1111/j.1742-4658.2010.07974.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative species to initiate infection. Toxins secreted through the system are synthesized in the bacterial cytoplasm and utilize the T3SS to pass through both bacterial membranes and the periplasm, thus being introduced directly into the eukaryotic cytoplasm. A key element of the T3SS of all bacterial pathogens is the translocon, which comprises a pore that is inserted into the membrane of the target cell, allowing toxin injection. Three macromolecular partners associate to form the translocon: two are hydrophobic and one is hydrophilic, and the latter also associates with the T3SS needle. In this review, we discuss recent advances on the biochemical and structural characterization of the proteins involved in translocon formation, as well as their participation in the modification of intracellular signalling pathways upon infection. Models of translocon assembly and regulation are also discussed.
Collapse
Affiliation(s)
- Pierre-Jean Matteï
- Bacterial Pathogenesis Group, Institut de Biologie Structurale, UMR 5075 (CNRS/CEA/UJF), Grenoble, France
| | | | | | | | | | | |
Collapse
|
10
|
Lokareddy RK, Lunelli M, Eilers B, Wolter V, Kolbe M. Combination of two separate binding domains defines stoichiometry between type III secretion system chaperone IpgC and translocator protein IpaB. J Biol Chem 2010; 285:39965-75. [PMID: 20937829 DOI: 10.1074/jbc.m110.135616] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Type III secretion systems (TTSSs) utilized by enteropathogenic bacteria require the presence of small, acidic virulence-associated chaperones for effective host cell infection. We adopted a combination of biochemical and cellular techniques to define the chaperone binding domains (CBDs) in the translocators IpaB and IpaC associated with the chaperone IpgC from Shigella flexneri. We identified a novel CBD in IpaB and furthermore precisely mapped the boundaries of the CBDs in both translocator proteins. In IpaC a single binding domain associates with IpgC. In IpaB, we show that the binding of the newly characterized CBD is essential in maintaining the ternary arrangement of chaperone-translocator complex. This hitherto unknown function is reflected in the co-crystal structure as well, with an IpgC dimer bound to an IpaB fragment comprising both CBDs. Moreover, in the absence of this novel CBD the IpaB/IpgC complex aggregates. This dual-recognition of a domain in the protein by the chaperone in facilitating the correct chaperone-substrate organization describes a new function for the TTSS associated chaperone-substrate complexes.
Collapse
Affiliation(s)
- Ravi Kumar Lokareddy
- Department of Cellular Microbiology, Max-Planck-Institute for Infection Biology, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
11
|
French CT, Panina EM, Yeh SH, Griffith N, Arambula DG, Miller JF. The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol 2009; 11:1735-49. [PMID: 19650828 PMCID: PMC2788067 DOI: 10.1111/j.1462-5822.2009.01361.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 11/30/2022]
Abstract
The Bordetella type III secretion system (T3SS) effector protein BteA is necessary and sufficient for rapid cytotoxicity in a wide range of mammalian cells. We show that BteA is highly conserved and functionally interchangeable between Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis. The identification of BteA sequences required for cytotoxicity allowed the construction of non-cytotoxic mutants for localization studies. BteA derivatives were targeted to lipid rafts and showed clear colocalization with cortical actin, ezrin and the lipid raft marker GM1. We hypothesized that BteA associates with the cytoplasmic face of lipid rafts to locally modulate host cell responses to Bordetella attachment. B. bronchiseptica adhered to host cells almost exclusively to GM1-enriched lipid raft microdomains and BteA colocalized to these same sites following T3SS-mediated translocation. Disruption of lipid rafts with methyl-beta-cyclodextrin protected cells from T3SS-induced cytotoxicity. Localization to lipid rafts was mediated by a 130-amino-acid lipid raft targeting domain at the N-terminus of BteA, and homologous domains were identified in virulence factors from other bacterial species. Lipid raft targeting sequences from a T3SS effector (Plu4750) and an RTX-type toxin (Plu3217) from Photorhabdus luminescens directed fusion proteins to lipid rafts in a manner identical to the N-terminus of BteA.
Collapse
Affiliation(s)
- Christopher T French
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of MedicineLos Angeles, CA 90095, USA
| | - Ekaterina M Panina
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of MedicineLos Angeles, CA 90095, USA
| | - Sylvia H Yeh
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of MedicineLos Angeles, CA 90095, USA
| | - Natasha Griffith
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of MedicineLos Angeles, CA 90095, USA
| | - Diego G Arambula
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of MedicineLos Angeles, CA 90095, USA
| | - Jeff F Miller
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of MedicineLos Angeles, CA 90095, USA
- the Molecular Biology Institute, University of CaliforniaLos Angeles, CA 90095, USA
- the California Nanosystems Institute, University of CaliforniaLos Angeles, CA 90095, USA
| |
Collapse
|
12
|
Tan YW, Yu HB, Sivaraman J, Leung KY, Mok YK. Mapping of the chaperone AcrH binding regions of translocators AopB and AopD and characterization of oligomeric and metastable AcrH-AopB-AopD complexes in the type III secretion system of Aeromonas hydrophila. Protein Sci 2009; 18:1724-34. [PMID: 19530229 DOI: 10.1002/pro.187] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the type III secretion system (T3SS) of Aeromonas hydrophila, AcrH acts as a chaperone for translocators AopB and AopD. AcrH forms a stable 1:1 monomeric complex with AopD, whereas the 1:1 AcrH-AopB complex exists mainly as a metastable oligomeric form and only in minor amounts as a stable monomeric form. Limited protease digestion shows that these complexes contain highly exposed regions, thus allowing mapping of intact functional chaperone binding regions of AopB and AopD. AopD uses the transmembrane domain (DF1, residues 16-147) and the C-terminal amphipathic helical domain (DF2, residues 242-296) whereas AopB uses a discrete region containing the transmembrane domain and the putative N-terminal coiled coil domain (BF1, residues 33-264). Oligomerization of the AcrH-AopB complex is mainly through the C-terminal coiled coil domain of AopB, which is dispensable for chaperone binding. The three proteins, AcrH, AopB, and AopD, can be coexpressed to form an oligomeric and metastable complex. These three proteins are also oligomerized mainly through the C-terminal domain of AopB. Formation of such an oligomeric and metastable complex may be important for the proper formation of translocon of correct topology and stoichiometry on the host membrane.
Collapse
Affiliation(s)
- Yih Wan Tan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
13
|
Wang B, Mo ZL, Mao YX, Zou YX, Xiao P, Li J, Yang JY, Ye XH, Leung KY, Zhang PJ. Investigation of EscA as a chaperone for the Edwardsiella tarda type III secretion system putative translocon component EseC. MICROBIOLOGY-SGM 2009; 155:1260-1271. [PMID: 19332827 DOI: 10.1099/mic.0.021865-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Edwardsiella tarda is an important Gram-negative enteric pathogen affecting both animals and humans. It possesses a type III secretion system (T3SS) essential for pathogenesis. EseB, EseC and EseD have been shown to form a translocon complex after secretion, while EscC functions as a T3SS chaperone for EseB and EseD. In this paper we identify EscA, a protein required for accumulation and proper secretion of another translocon component, EseC. The escA gene is located upstream of eseC and the EscA protein has the characteristics of T3SS chaperones. Cell fractionation experiments indicated that EscA is located in the cytoplasm and on the cytoplasmic membrane. Mutation with in-frame deletion of escA greatly decreased the secretion of EseC, while complementation of escA restored the wild-type secretion phenotype. The stabilization and accumulation of EseC in the cytoplasm were also affected in the absence of EscA. Mutation of escA did not affect the transcription of eseC but reduced the accumulation level of EseC as measured by using an EseC-LacZ fusion protein in Ed. tarda. Co-purification and co-immunoprecipitation studies demonstrated a specific interaction between EscA and EseC. Further analysis showed that residues 31-137 of EseC are required for EseC-EscA interaction. Mutation of EseC residues 31-137 reduced the secretion and accumulation of EseC in Ed. tarda. Finally, infection experiments showed that mutations of EscA and residues 31-137 of EseC increased the LD(50) by approximately 10-fold in blue gourami fish. These results indicated that EscA functions as a specific chaperone for EseC and contributes to the virulence of Ed. tarda.
Collapse
Affiliation(s)
- Bo Wang
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China.,Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Zhao Lan Mo
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | | | - Yu Xia Zou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Peng Xiao
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China.,Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Jie Li
- Ocean University of China, Qingdao 266003, PR China
| | - Jia Yin Yang
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China.,Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xu Hong Ye
- Ocean University of China, Qingdao 266003, PR China
| | - Ka Yin Leung
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543 Singapore
| | - Pei Jun Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
14
|
Liposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction. Infect Immun 2009; 77:2754-61. [PMID: 19433542 DOI: 10.1128/iai.00190-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri contact with enterocytes induces a burst of protein secretion via its type III secretion apparatus (TTSA) as an initial step in cellular invasion. We have previously reported that IpaD is positioned at the TTSA needle tip (M. Espina et al., Infect. Immuno. 74:4391-4400, 2006). From this position, IpaD senses small molecules in the environment to control the presentation of IpaB to the needle tip. This step occurs without type III secretion induction or IpaC recruitment to the S. flexneri surface. IpaC is then transported to the S. flexneri surface when target cell lipids are added, and this event presumably mimics host cell contact. Unlike IpaB mobilization, IpaC surface presentation is closely linked to secretion induction. This study demonstrates that sphingomyelin and cholesterol are key players in type III secretion induction and that they appear to interact with IpaB to elicit IpaC presentation at the TTSA needle tip. Furthermore, IpaB localization at the needle tip prior to membrane contact provides the optimal set of conditions for host cell invasion. Thus, the S. flexneri type III secretion system can be induced in a stepwise manner, with the first step being the stable association of IpaD with the needle tip, the second step being the sensing of small molecules by IpaD to mobilize IpaB to the tip, and the third step being the interaction of lipids with IpaB to induce IpaC localization at the needle tip concomitant with translocon insertion into the host membrane and type III secretion induction.
Collapse
|
15
|
Terry CM, Picking WL, Birket SE, Flentie K, Hoffman BM, Barker JR, Picking WD. The C-terminus of IpaC is required for effector activities related to Shigella invasion of host cells. Microb Pathog 2008; 45:282-9. [PMID: 18656530 PMCID: PMC2581421 DOI: 10.1016/j.micpath.2008.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 06/17/2008] [Accepted: 06/26/2008] [Indexed: 11/15/2022]
Abstract
Invasion plasmid antigen C (IpaC) is secreted by the Shigella flexneri type III secretion system (TTSS) as an essential trigger of epithelial cell invasion. At the molecular level, IpaC possesses a distinct functional organization. The IpaC C-terminal region between amino acids 319 and 345 is predicted to form a coiled-coil structure. Such alpha-helical motifs appear to be a recurring structural theme among TTSS components. Together with IpaB, this IpaC region is also required for the formation of translocon pores in target cell membranes. In contrast, mutations within the C-terminal tail of IpaC (defined by residues 345-363) have no effect on contact hemolysis (a putative measure of translocon pore formation), but they can contribute significantly to IpaC's ability to trigger S. flexneri entry into cultured cells. Here we describe the molecular dissection of the IpaC C-terminus and how changes in this region affect selected virulence-related activities. IpaC invasion function requires its immediate C-terminus and this general region may be involved in its ability to trigger actin nucleation. In contrast, IpaC could not be shown to interact directly with Cdc42, a host GTPase closely tied to Shigella invasion.
Collapse
Affiliation(s)
- Christina M Terry
- Department of Molecular Biosciences, University of Kansas, Haworth Hall Room 8047, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Stensrud KF, Adam PR, La Mar CD, Olive AJ, Lushington GH, Sudharsan R, Shelton NL, Givens RS, Picking WL, Picking WD. Deoxycholate interacts with IpaD of Shigella flexneri in inducing the recruitment of IpaB to the type III secretion apparatus needle tip. J Biol Chem 2008; 283:18646-54. [PMID: 18450744 DOI: 10.1074/jbc.m802799200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Type III secretion (TTS) is an essential virulence function for Shigella flexneri that delivers effector proteins that are responsible for bacterial invasion of intestinal epithelial cells. The Shigella TTS apparatus (TTSA) consists of a basal body that spans the bacterial inner and outer membranes and a needle exposed at the pathogen surface. At the distal end of the needle is a "tip complex" composed of invasion plasmid antigen D (IpaD). IpaD not only regulates TTS, but is required for the recruitment and stable association of the translocator protein IpaB at the TTSA needle tip in the presence of deoxycholate or other bile salts. This phenomenon is not accompanied by induction of TTS or the recruitment of IpaC to the Shigella surface. We now show that IpaD specifically binds fluorescein-labeled deoxycholate and, based on energy transfer measurements and docking simulations, this interaction appears to occur where the N-terminal domain of IpaD meets its central coiled-coil, a region that may also be involved in needle-tip interactions. TTS is initiated as a series of distinct steps and that small molecules present in the bacterial milieu are capable of inducing the first step of TSS through interactions with the needle tip protein IpaD. Furthermore, the amino acids proposed to be important for deoxycholate binding by IpaD appear to have significant roles in regulating tip complex composition and pathogen entry into host cells.
Collapse
Affiliation(s)
- Kenneth F Stensrud
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 414] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
18
|
Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella. EMBO J 2008; 27:447-57. [PMID: 18188151 DOI: 10.1038/sj.emboj.7601976] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 12/04/2007] [Indexed: 11/09/2022] Open
Abstract
Type III secretion (T3S) systems are largely used by pathogenic gram-negative bacteria to inject multiple effectors into eukaryotic cells. Upon cell contact, these bacterial microinjection devices insert two T3S substrates into host cell membranes, forming a so-called 'translocon' that is required for targeting of type III effectors in the cell cytosol. Here, we show that secretion of the translocon component IpaC of invasive Shigella occurs at the level of one bacterial pole during cell invasion. Using IpaC fusions with green fluorescent protein variants (IpaCi), we show that the IpaC cytoplasmic pool localizes at an old or new bacterial pole, where secretion occurs upon T3S activation. Deletions in ipaC identified domains implicated in polar localization. Only polar IpaCi derivatives inhibited T3S, while IpaCi fusions with diffuse cytoplasmic localization had no detectable effect on T3S. Moreover, the deletions that abolished polar localization led to secretion defects when introduced in ipaC. These results indicate that cytoplasmic polar localization directs secretion of IpaC at the pole of Shigella, and may represent a mandatory step for T3S.
Collapse
|
19
|
Zhang L, Wang Y, Olive AJ, Smith ND, Picking WD, De Guzman RN, Picking WL. Identification of the MxiH needle protein residues responsible for anchoring invasion plasmid antigen D to the type III secretion needle tip. J Biol Chem 2007; 282:32144-51. [PMID: 17827155 DOI: 10.1074/jbc.m703403200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The pathogenesis of Shigella flexneri requires a functional type III secretion apparatus to serve as a conduit for injecting host-altering effector proteins into the membrane and cytoplasm of the targeted cell. The type III secretion apparatus is composed of a basal body and an exposed needle that is an extended polymer of MxiH with a 2.0-nm inner channel. Invasion plasmid antigen D (IpaD) resides at the tip of the needle to control type III secretion. The atomic structures of MxiH and IpaD have been solved. MxiH (8.3 kDa) is a helix-turn-helix, whereas IpaD (36.6 kDa) has a dumbbell shape with two globular domains flanking a central coiled-coil that stabilizes the protein. These structures alone, however, have not been sufficient to produce a workable in silico model by which IpaD docks at the needle tip. Thus, the work presented here provides an initial step in understanding this important protein-protein interaction. We have identified key MxiH residues located in its PSNP loop and the contiguous surface that uniquely contribute to the formation of the IpaD-needle interface as determined by NMR chemical shift mapping. Mutation of Asn-43, Leu-47, and Tyr-50 residues severely affects the stable maintenance of IpaD at the Shigella surface and thus compromises the invasive phenotype of S. flexneri. Other residues could be mutated to give rise to intermediate phenotypes, suggesting they have a role in tip complex stabilization while not being essential for tip complex formation. Initial in vitro fluorescence polarization studies confirmed that specific amino acid changes adversely affect the MxiH-IpaD interaction. Meanwhile, none of the mutations appeared to have a negative effect on the MxiH-MxiH interactions required for efficient needle assembly.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Faudry E, Job V, Dessen A, Attree I, Forge V. Type III secretion system translocator has a molten globule conformation both in its free and chaperone-bound forms. FEBS J 2007; 274:3601-3610. [PMID: 17578515 DOI: 10.1111/j.1742-4658.2007.05893.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type III secretion systems of Gram-negative pathogenic bacteria allow the injection of effector proteins into the cytosol of host eukaryotic cells. Crossing of the eukaryotic plasma membrane is facilitated by a translocon, an oligomeric structure made up of two bacterial proteins inserted into the host membrane during infection. In Pseudomonas aeruginosa, a major human opportunistic pathogen, these proteins are PopB and PopD. Their interactions with their common chaperone PcrH in the cytosol of the bacteria are essential for the proper function of the injection system. The interaction region between PopD and PcrH was identified using limited proteolysis, revealing that the putative PopD transmembrane fragment is buried within the PopD/PcrH complex. In addition, structural features of PopD and PcrH, either individually or within the binary complex, were characterized using spectroscopic methods and 1D NMR. Whereas PcrH possesses the characteristics of a folded protein, PopD is in a molten globule state either alone or in the PopD/PcrH complex. The molten globule state is known to enable the membrane insertion of translocation/pore-forming domains of bacterial toxins. Therefore, within the bacterial cytoplasm, PopD is preserved in a state that is favorable to secretion and insertion into cell membranes.
Collapse
Affiliation(s)
- Eric Faudry
- CEA Grenoble, DSV-iRTSV, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR5092 (CNRS, CEA, Université Joseph Fourier), Grenoble, France Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075 (CNRS, CEA, Université Joseph Fourier), Grenoble, France CEA Grenoble, DSV-iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR5249 (CNRS, CEA, Université Joseph Fourier), Grenoble, France
| | - Viviana Job
- CEA Grenoble, DSV-iRTSV, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR5092 (CNRS, CEA, Université Joseph Fourier), Grenoble, France Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075 (CNRS, CEA, Université Joseph Fourier), Grenoble, France CEA Grenoble, DSV-iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR5249 (CNRS, CEA, Université Joseph Fourier), Grenoble, France
| | - Andréa Dessen
- CEA Grenoble, DSV-iRTSV, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR5092 (CNRS, CEA, Université Joseph Fourier), Grenoble, France Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075 (CNRS, CEA, Université Joseph Fourier), Grenoble, France CEA Grenoble, DSV-iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR5249 (CNRS, CEA, Université Joseph Fourier), Grenoble, France
| | - Ina Attree
- CEA Grenoble, DSV-iRTSV, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR5092 (CNRS, CEA, Université Joseph Fourier), Grenoble, France Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075 (CNRS, CEA, Université Joseph Fourier), Grenoble, France CEA Grenoble, DSV-iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR5249 (CNRS, CEA, Université Joseph Fourier), Grenoble, France
| | - Vincent Forge
- CEA Grenoble, DSV-iRTSV, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR5092 (CNRS, CEA, Université Joseph Fourier), Grenoble, France Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075 (CNRS, CEA, Université Joseph Fourier), Grenoble, France CEA Grenoble, DSV-iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR5249 (CNRS, CEA, Université Joseph Fourier), Grenoble, France
| |
Collapse
|
21
|
Espina M, Ausar SF, Middaugh CR, Baxter MA, Picking WD, Picking WL. Conformational stability and differential structural analysis of LcrV, PcrV, BipD, and SipD from type III secretion systems. Protein Sci 2007; 16:704-14. [PMID: 17327391 PMCID: PMC2203334 DOI: 10.1110/ps.062645007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diverse Gram-negative bacteria use type III secretion systems (T3SS) to translocate effector proteins into the cytoplasm of eukaryotic cells. The type III secretion apparatus (T3SA) consists of a basal body spanning both bacterial membranes and an external needle. A sensor protein lies at the needle tip to detect environmental signals that trigger type III secretion. The Shigella flexneri T3SA needle tip protein, invasion plasmid antigen D (IpaD), possesses two independently folding domains in vitro. In this study, the solution behavior and thermal unfolding properties of IpaD's functional homologs SipD (Salmonella spp.), BipD (Burkholderia pseudomallei), LcrV (Yersinia spp.), and PcrV (Pseudomonas aeruginosa) were examined to identify common features within this protein family. CD and FTIR data indicate that all members within this group are alpha-helical with properties consistent with an intramolecular coiled-coil. SipD showed the most complex unfolding profile consisting of two thermal transitions, suggesting the presence of two independently folding domains. No evidence of multiple folding domains was seen, however, for BipD, LcrV, or PcrV. Thermal studies, including DSC, revealed significant destabilization of LcrV, PcrV, and BipD after N-terminal deletions. This contrasted with SipD and IpaD, which behaved like two-domain proteins. The results suggest that needle tip proteins share significant core structural similarity and thermal stability that may be the basis for their common function. Moreover, IpaD and SipD possess properties that distinguish them from the other tip proteins.
Collapse
Affiliation(s)
- Marianela Espina
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | |
Collapse
|
22
|
Brown NF, Szeto J, Jiang X, Coombes BK, Finlay BB, Brumell JH. Mutational analysis of Salmonella translocated effector members SifA and SopD2 reveals domains implicated in translocation, subcellular localization and function. MICROBIOLOGY-SGM 2006; 152:2323-2343. [PMID: 16849798 DOI: 10.1099/mic.0.28995-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen causing disease in several hosts. These bacteria use two distinct type III secretion systems that inject effector proteins into the host cell for invasion and to alter maturation of the Salmonella-containing vacuole. Members of the Salmonella translocated effector (STE) family contain a conserved N-terminal translocation signal of approximately 140 aa. In this study, the STE family member SifA was examined using deletion strategies. Small deletions (approx. 20 residues long) throughout SifA were sufficient to block its secretion and/or translocation into host cells. Transfection of HeLa cells with a GFP-SifA fusion was previously shown to be sufficient to induce formation of Sif-like tubules resembling structures present in Salmonella-infected cells. The present study showed that both N- and C-terminal domains of SifA are required for this phenotype. Furthermore, both domains could induce aggregation of Lamp1-positive compartments, provided they were coupled to the minimal C-terminal membrane-anchoring motif of SifA. Mutation or deletion of the conserved STE N-terminal WEK(I/M)xxFF translocation motif of SopD2 disrupted its association with Lamp1-positive compartments, implicating these residues in both effector translocation and subcellular localization. Interestingly, one GFP-SifA deletion mutant lacking residues 42-101, but retaining the WEK(I/M)xxFF motif, targeted the Golgi apparatus. In addition, short peptides containing the signature WEK(I/M)xxFF motif derived from the N-termini of Salmonella effectors SopD2, SseJ and SspH2 were sufficient to localize GFP to the Golgi. These studies suggest that Salmonella effectors contain multifunctional motifs or domains that regulate several effector traits, including protein secretion/translocation, localization and subversion of host cell systems. Conditions that perturb the tertiary structure of effectors can influence their localization in host cells by liberating cryptic intracellular targeting motifs.
Collapse
Affiliation(s)
- Nat F Brown
- Michael Smith Laboratories and Departments of Biochemistry and Molecular Biology, Microbiology, and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jason Szeto
- Infection, Immunity, Injury, and Repair Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Xiuju Jiang
- Infection, Immunity, Injury, and Repair Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - B Brett Finlay
- Michael Smith Laboratories and Departments of Biochemistry and Molecular Biology, Microbiology, and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - John H Brumell
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Infection, Immunity, Injury, and Repair Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
23
|
Johnson S, Roversi P, Espina M, Deane JE, Birket S, Picking WD, Blocker A, Picking WL, Lea SM. Expression, limited proteolysis and preliminary crystallographic analysis of IpaD, a component of the Shigella flexneri type III secretion system. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:865-8. [PMID: 16946465 PMCID: PMC1894744 DOI: 10.1107/s1744309106027047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/12/2006] [Indexed: 01/22/2023]
Abstract
IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2(1)2(1)2(1), with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 A, and data were collected to 2.9 A resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 A resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 A, beta = 107.9 degrees . An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit.
Collapse
Affiliation(s)
- Steven Johnson
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, England
- Sir William Dunn School of Pathology, University of Oxford, England
| | - Pietro Roversi
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, England
| | | | - Janet E. Deane
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, England
| | - Susan Birket
- Department of Molecular Biosciences, University of Kansas, USA
| | | | - Ariel Blocker
- Sir William Dunn School of Pathology, University of Oxford, England
| | | | - Susan M. Lea
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, England
- Sir William Dunn School of Pathology, University of Oxford, England
| |
Collapse
|
24
|
Picking WL, Nishioka H, Hearn PD, Baxter MA, Harrington AT, Blocker A, Picking WD. IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect Immun 2005; 73:1432-40. [PMID: 15731041 PMCID: PMC1064949 DOI: 10.1128/iai.73.3.1432-1440.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Shigella flexneri causes human dysentery after invading the cells of the colonic epithelium. The best-studied effectors of Shigella entry into colonocytes are the invasion plasmid antigens IpaC and IpaB. These proteins are exported via a type III secretion system (TTSS) to form a pore in the host membrane that may allow the translocation of other effectors into the host cytoplasm. TTSS-mediated secretion of IpaD is also required for translocation pore formation, bacterial invasion, and virulence, but the mechanistic role of this protein is unclear. IpaD is also known to be involved in controlling Ipa protein secretion, but here it is shown that this activity can be separated from its requirement for cellular invasion. Amino acids 40 to 120 of IpaD are not essential for IpaD-dependent invasion; however, deletions in this region still lead to constitutive IpaB/IpaC secretion. Meanwhile, a central deletion causes only a partial loss of control of Ipa secretion but completely eliminates IpaD's invasion function, indicating that IpaD's role in invasion is not a direct outcome of its ability to control Ipa secretion. As shigellae expressing ipaD N-terminal deletion mutations have reduced contact-mediated hemolysis activity and are less efficient at introducing IpaB and IpaC into erythrocyte membranes, it is possible that IpaD is responsible for insertion of IpaB/IpaC pores into target cell membranes. While efficient insertion of IpaB/IpaC pores is needed for optimal invasion efficiency, it may be especially important for Ipa-dependent membrane disruption and thus for efficient vacuolar escape and intercellular spread.
Collapse
Affiliation(s)
- Wendy L Picking
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Berring E, Brancato S, Grant K, Schaper E, Kadavil S, Smagin H, Hatic SO, Picking W, Serfis AB. Destabilization of phospholipid model membranes by YplA, a phospholipase A2 secreted by Yersinia enterocolitica. Chem Phys Lipids 2005; 131:135-49. [PMID: 15351266 DOI: 10.1016/j.chemphyslip.2004.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 04/21/2004] [Accepted: 04/22/2004] [Indexed: 11/27/2022]
Abstract
Yersinia enterocolitica produces a virulence-associated phospholipase A(2) (YplA) that is secreted via its flagellar type-III secretion apparatus. When the N-terminal 59 amino acids of YplA are removed (giving YplA(S)), it retains phospholipase activity; however, it is altered with respect to the apparent kinetics of hydrolysis using fluorescent phospholipid substrates in micellar form. To explore the physical properties of YplA more carefully, Langmuir phospholipid monolayers were used to study the association of YplA with biological membranes. YPlA and YplA(S) both associate with Langmuir monolayers, but YplA(S) appears to interact better at low initial lipid densities while YplA interacts better at higher densities. This may indicate that the N-terminus of YplA has a role in mediating its initial interaction with compact cellular membranes, which is consistent with spectroscopic observations that fluorescein-labeled YplA may interact more readily with the nonpolar region of liposomes than does YplA(S).
Collapse
Affiliation(s)
- Erin Berring
- Department of Chemistry, Saint Louis University, Monsanto Hall 125, 3501 Laclede Avenue, St. Louis, MO 63103-2010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Type III protein secretion mechanism in mammalian and plant pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:181-206. [PMID: 15546666 DOI: 10.1016/j.bbamcr.2004.03.011] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 03/26/2004] [Accepted: 03/26/2004] [Indexed: 01/12/2023]
Abstract
The type III protein secretion system (TTSS) is a complex organelle in the envelope of many Gram-negative bacteria; it delivers potentially hundreds of structurally diverse bacterial virulence proteins into plant and animal cells to modulate host cellular functions. Recent studies have revealed several basic features of this secretion system, including assembly of needle/pilus-like secretion structures, formation of putative translocation pores in the host membrane, recognition of N-terminal/5' mRNA-based secretion signals, and requirement of small chaperone proteins for optimal delivery and/or expression of effector proteins. Although most of our knowledge about the TTSS is derived from studies of mammalian pathogenic bacteria, similar and unique features are learned from studies of plant pathogenic bacteria. Here, we summarize the most salient aspects of the TTSS, with special emphasis on recent findings.
Collapse
|
27
|
MacRae AF, Preiszner J, Ng S, Bolla RI. Expression of His-tagged Shigella IpaC in Arabidopsis. J Biotechnol 2004; 112:247-53. [PMID: 15313002 DOI: 10.1016/j.jbiotec.2004.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 04/14/2004] [Accepted: 04/14/2004] [Indexed: 11/22/2022]
Abstract
Although the expression of histidine (His)-tagged proteins in bacteria is routine, few His-tagged proteins have been expressed in plants, and no His-tagged proteins from bacterial pathogens have been expressed in plants, to our knowledge. Here, we demonstrate expression of the Shigella flexneri invasion plasmid antigen, IpaC, in Arabidopsis thaliana. S. flexneri is the causitive trigger for bacillary dysentery, and IpaC is essential for bacterial entry into epithelial cells. IpaC, attached to a 5' leader containing six tandem His codons, was cloned into a pBI121 vector. This clone was introduced into Agrobacterium tumefaciens and Arabidopsis plants were then transformed. T1 and T2 plant generations were obtained. Total plant proteins were extracted from T2 leaves; the Bradford assay was used to determine protein concentrations. A nickel-coated ELISA plate method, using both anti-His and anti-IpaC 1 degrees antibodies, was used to detect and quantify IpaC in transgenic Arabidopsis plants. Between 1.9 and 2.3 microg IpaC/mg total plant protein was obtained; this equals 0.2% of total protein, an amount comparable to other recombinant protein estimates in plants. Expressing His-tagged proteins from bacterial pathogens, in plants, is important because plant material could ultimately be fed or applied intranasally to animals that are "at risk" for infection by such bacterial pathogens, thus causing them to raise antibodies against the pathogens--functioning as a vaccine.
Collapse
Affiliation(s)
- Amy F MacRae
- Department of Biology, 128 Macelwane Hall, Saint Louis University, 3507 Laclede Avenue, Saint Louis, MO 63103, USA.
| | | | | | | |
Collapse
|
28
|
Jennison AV, Verma NK. Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 2004; 28:43-58. [PMID: 14975529 DOI: 10.1016/j.femsre.2003.07.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 07/25/2003] [Accepted: 07/30/2003] [Indexed: 02/08/2023] Open
Abstract
Shigella flexneri is a gram-negative bacterium which causes the most communicable of bacterial dysenteries, shigellosis. Shigellosis causes 1.1 million deaths and over 164 million cases each year, with the majority of cases occurring in the children of developing nations. The pathogenesis of S. flexneri is based on the bacteria's ability to invade and replicate within the colonic epithelium, which results in severe inflammation and epithelial destruction. The molecular mechanisms used by S. flexneri to cross the epithelial barrier, evade the host's immune response and enter epithelial cells have been studied extensively in both in vitro and in vivo models. Consequently, numerous virulence factors essential to bacterial invasion, intercellular spread and the induction of inflammation have been identified in S. flexneri. The inflammation produced by the host has been implicated in both the destruction of the colonic epithelium and in controlling and containing the Shigella infection. The host's humoral response to S. flexneri also appears to be important in protecting the host, whilst the role of the cellular immune response remains unclear. The host's immune response to shigellosis is serotype-specific and protective against reinfection by the same serotype, making vaccination a possibility. Since the 1940s vaccines for S. flexneri have been developed with little success, however, the growing understanding of S. flexneri's pathogenesis and the host's immune response is assisting in the generation of more refined vaccine strategies. Current research encompasses a variety of vaccine types, which despite disparity in their efficacy and safety in humans represent promising progress in S. flexneri vaccine development.
Collapse
Affiliation(s)
- Amy V Jennison
- Faculty of Science, School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|