1
|
Santamarina-Fernández R, Fuentes-Valverde V, Silva-Rodríguez A, García P, Moscoso M, Bou G. Pseudomonas aeruginosa Vaccine Development: Lessons, Challenges, and Future Innovations. Int J Mol Sci 2025; 26:2012. [PMID: 40076637 PMCID: PMC11900337 DOI: 10.3390/ijms26052012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with a multidrug-resistant profile that has become a critical threat to global public health. It is one of the main causes of severe nosocomial infections, including ventilator-associated pneumonia, chronic infections in patients with cystic fibrosis, and bloodstream infections in immunosuppressed individuals. Development of vaccines against P. aeruginosa is a major challenge owing to the high capacity of this bacterium to form biofilms, its wide arsenal of virulence factors (including secretion systems, lipopolysaccharides, and outer membrane proteins), and its ability to evade the host immune system. This review provides a comprehensive historical overview of vaccine development efforts targeting this pathogen, ranging from early attempts in the 1970s to recent advancements, including vaccines based on novel proteins and emerging technologies such as nanoparticles and synthetic conjugates. Despite numerous promising preclinical developments, very few candidates have progressed to clinical trials, and none have achieved final approval. This panorama highlights the significant scientific efforts undertaken and the inherent complexity of successfully developing an effective vaccine against P. aeruginosa.
Collapse
Affiliation(s)
- Rebeca Santamarina-Fernández
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
| | - Víctor Fuentes-Valverde
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Área de Medicamentos Biológicos, Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), 28022 Madrid, Spain
| | - Alis Silva-Rodríguez
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
| | - Patricia García
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miriam Moscoso
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Germán Bou
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Universidad de A Coruña, 15006 A Coruña, Spain
| |
Collapse
|
2
|
Zhang Y, Wang X, Liang Y, Zhang L, Fan J, Yang Y. A Semisynthetic Oligomannuronic Acid-Based Glycoconjugate Vaccine against Pseudomonas aeruginosa. ACS CENTRAL SCIENCE 2024; 10:1515-1523. [PMID: 39220693 PMCID: PMC11363335 DOI: 10.1021/acscentsci.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and has become increasingly resistant to multiple antibiotics. However, development of novel classes of antibacterial agents against multidrug-resistant P. aeruginosa is extremely difficult. Herein we develop a semisynthetic oligomannuronic acid-based glycoconjugate vaccine that confers broad protection against infections of both mucoid and nonmucoid strains of P. aeruginosa. The well-defined glycoconjugate vaccine formulated with Freund's adjuvant (FA) employing a highly conserved antigen elicited a strong and specific immune response and protected mice against both mucoid and nonmucoid strains of P. aeruginosa. The resulting antibodies recognized different strains of P. aeruginosa and mediated the opsonic killing of the bacteria at varied levels depending on the amount of alginate expressed on the surface of the strains. Vaccination with the glycoconjugate vaccine plus FA significantly promoted the pulmonary and blood clearance of the mucoid PAC1 strain of P. aeruginosa and considerably improved the survival rates of mice against the nonmucoid PAO1 strain of P. aeruginosa. Thus, the semisynthetic glycoconjugate is a promising vaccine that may provide broad protection against both types of P. aeruginosa.
Collapse
Affiliation(s)
- Yiyue Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaotong Wang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Youling Liang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liangliang Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiahao Fan
- Engineering
Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Engineering
Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Balducci E, Papi F, Capialbi DE, Del Bino L. Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int J Mol Sci 2023; 24:ijms24044030. [PMID: 36835442 PMCID: PMC9965654 DOI: 10.3390/ijms24044030] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides.
Collapse
Affiliation(s)
| | | | - Daniela Eloisa Capialbi
- GSK, 53100 Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
4
|
Zhang L, Zhang Y, Hua Q, Xu T, Liu J, Zhu Y, Yang Y. Promoter-Controlled Synthesis and Antigenic Evaluation of Mannuronic Acid Alginate Glycans of Pseudomonas aeruginosa. Org Lett 2022; 24:8381-8386. [DOI: 10.1021/acs.orglett.2c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liangliang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yiyue Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qingting Hua
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tong Xu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Junru Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yirong Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
López-Siles M, Corral-Lugo A, McConnell MJ. Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol Rev 2021; 45:fuaa054. [PMID: 33289833 DOI: 10.1093/femsre/fuaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is a major threat to global public health. Vaccination is an effective approach for preventing bacterial infections, however it has not been successfully applied to infections caused by some of the most problematic multidrug resistant pathogens. In this review, the potential for vaccines to contribute to reducing the burden of disease of infections caused by multidrug resistant Gram negative bacteria is presented. Technical, logistical and societal hurdles that have limited successful vaccine development for these infections in the past are identified, and recent advances that can contribute to overcoming these challenges are assessed. A synthesis of vaccine technologies that have been employed in the development of vaccines for key multidrug resistant Gram negative bacteria is included, and emerging technologies that may contribute to future successes are discussed. Finally, a comprehensive review of vaccine development efforts over the last 40 years for three of the most worrisome multidrug resistant Gram negative pathogens, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa is presented, with a focus on recent and ongoing studies. Finally, future directions for the vaccine development field are highlighted.
Collapse
Affiliation(s)
- Mireia López-Siles
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andrés Corral-Lugo
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
6
|
Azimi S, Safari Zanjani L. Immunization against Pseudomonas aeruginosa using Alg-PLGA nano-vaccine. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:476-482. [PMID: 34094029 PMCID: PMC8143718 DOI: 10.22038/ijbms.2021.52217.11813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Pseudomonas aeruginosa is the bacterium that causes of pulmonary infection among chronically hospitalized patients. Alginate is a common surface antigen of P. aeruginosa with a constant structure that which makes it an appropriate target for vaccines. In this study, P. aeruginosa alginate was conjugated with to PLGA nanoparticles, and its immunogenicity was characterized as a vaccine. MATERIALS AND METHODS Alginate was isolated from a mucoid strain of P. aeruginosa and conjugated with to PLGA with˝ N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride ˝= ˝EDAC˝ and N-Hydroxysuccinimide (NHS). Chemical characterization of prepared nano-vaccine was performed using FTIR Spectroscopy, Zetasizer, and Atomic Force Microscopy (AFM). The immunogenicity of this nano-vaccine was evaluated through intramuscular injection into BALB/c mice. Four groups of mice were subjected to the injection of alginate-PLGA, and two weeks after the last administration step, opsonophagocytosis assay, IgG detection, challenge, and cytokine determination via ELISA were carried out. RESULTS Alginate-PLGA conjugation was corroborated by FTIR, Zetasizer, and AFM. The ELISA consequence showed that alginate was prospering in the instigation of the humoral immunity.The immunogenicity enhanced against the alginate-PLGA. Remarkably diminished bacterial titer in the spleen of the immunized mice posterior to challenge with PAO1 strain in comparison with the alginate alone and control groups. CONCLUSION The bacterial burden in the spleen significantly decreased after the challenge (P<0.05). The opsonic activity was significantly increased in the alginate- PLGA group (P<0.05).
Collapse
Affiliation(s)
| | - Leila Safari Zanjani
- Department of Cellular and Molecular Biology, Zanjan Branch, Payame Noor of Zanjan, Zanjan, Iran
| |
Collapse
|
7
|
Afshari H, Maleki M, Hakimian M, Tanha RA, Salouti M. Immunogenicity evaluating of the SLNs-alginate conjugate against Pseudomonas aeruginosa. J Immunol Methods 2021; 488:112938. [PMID: 33259781 DOI: 10.1016/j.jim.2020.112938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 01/18/2023]
Abstract
P. aeruginosa is of particular importance due to its numerous pathogens and the spread of its multidrug-resistant strains around the world. Hence there is a need to develop an effective vaccine to prevent the diseases with P. aeruginosa. The aim of present study was to evaluate the immunogenicity of alginate (Alg) antigen in conjugation with SLN as a candidate for nanovaccine against P. aeruginosa in mouse model. Alginate is a weak immunogen, but the immune responses produced by alginate are effective in killing Pseudomonas bacteria. To increase the immunogenicity of alginate, SLN was used that is useful in drug delivery and can boost prolonged effectiveness. The results of ELISA and opsonophagocytosis tests showed that Alg-SLN conjugate has a better ability to stimulate the immune system to produce more immunoglobulins with better performance compared to alginate antigen alone. The challenge test also demonstrated that the Alg-SLN treated mice showed a higher level of immunity than the mice treated with pure alginate against infections caused by P. aeruginosa. Overally the findings showed the efficacy of new prepared vaccine to induce immunogenicity, and therefore it can be considered as a candidate for a strong vaccine against P. aeruginosa.
Collapse
Affiliation(s)
- Hossein Afshari
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Masoud Maleki
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mozhdeh Hakimian
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Roghaye Ahmadlou Tanha
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mojtaba Salouti
- Nanobiotechnology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| |
Collapse
|
8
|
Razook BR, Al-ani AN., Mahmood MM. Hematological Picture of Rabbits Immunized with Pseudomonas aeruginosa. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i(e0).1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The current study was established to find out the role of immunization of Pseudomonas aeruginosa-whole sonicated antigen in adult white fur domestic rabbits. To achieve this goal, fifteen rabbits were allocated into 3 groups, the first group was immunized with P. aeruginosa–whole sonicated antigen and challenged with viable pathogenic P. aeruginosa; the second group (control negative) was treated with phosphate buffer saline and the third group was injected with viable pathogenic P. aeruginosa (control positive). The results demonstrated increasing levels of the measured parameters blood picture (total WBCs, lymphocytes, and granulocytes, RBCs and hemoglobin concentrations) in the first group compared with control negative group (T test was used). In contrast, a sharp fall was noted in total thrombocytes (platelets) count in the first group compared with control negative group. It can be concluded that immunization with P. aeruginosa– whole sonicated antigen may consider as a potent reproducible effective immunogen model for experimental immunological studies in rabbits.
Collapse
|
9
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|
10
|
Summer K, Browne J, Liu L, Benkendorff K. Molluscan Compounds Provide Drug Leads for the Treatment and Prevention of Respiratory Disease. Mar Drugs 2020; 18:md18110570. [PMID: 33228163 PMCID: PMC7699502 DOI: 10.3390/md18110570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Respiratory diseases place an immense burden on global health and there is a compelling need for the discovery of new compounds for therapeutic development. Here, we identify research priorities by critically reviewing pre-clinical and clinical studies using extracts and compounds derived from molluscs, as well as traditional molluscan medicines, used in the treatment of respiratory diseases. We reviewed 97 biomedical articles demonstrating the anti-inflammatory, antimicrobial, anticancer, and immunomodulatory properties of >320 molluscan extracts/compounds with direct relevance to respiratory disease, in addition to others with promising bioactivities yet to be tested in the respiratory context. Of pertinent interest are compounds demonstrating biofilm inhibition/disruption and antiviral activity, as well as synergism with approved antimicrobial and chemotherapeutic agents. At least 100 traditional medicines, incorporating over 300 different mollusc species, have been used to treat respiratory-related illness in cultures worldwide for thousands of years. These medicines provide useful clues for the discovery of bioactive components that likely underpin their continued use. There is particular incentive for investigations into anti-inflammatory compounds, given the extensive application of molluscan traditional medicines for symptoms of inflammation, and shells, which are the principal molluscan product used in these preparations. Overall, there is a need to target research toward specific respiratory disease-related hypotheses, purify bioactive compounds and elucidate their chemical structures, and develop an evidence base for the integration of quality-controlled traditional medicines.
Collapse
Affiliation(s)
- Kate Summer
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, GPO Box 157, Lismore, NSW 2480, Australia;
| | - Jessica Browne
- School of Health and Human Sciences, Southern Cross University, Terminal Drive, Bilinga, QLD 4225, Australia;
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, GPO Box 157, Lismore, NSW 2480, Australia;
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
- Correspondence: ; Tel.: +61-429-520-589
| |
Collapse
|
11
|
Thomsen K, Christophersen L, Lerche CJ, Holmgaard DB, Calum H, Høiby N, Moser C. Azithromycin potentiates avian IgY effect against Pseudomonas aeruginosa in a murine pulmonary infection model. Int J Antimicrob Agents 2020; 57:106213. [PMID: 33256950 DOI: 10.1016/j.ijantimicag.2020.106213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 01/25/2023]
Abstract
Cystic fibrosis (CF) patients are at risk of acquiring chronic Pseudomonas aeruginosa lung infections. The biofilm mode of growth of P. aeruginosa induces tolerance to antibiotics and the host response; accordingly, treatment failure occurs. Supplemental azithromycin has proven beneficial in CF owing to potential immunomodulatory mechanisms. Clinical studies have demonstrated a reduction in exacerbations in CF patients by avian IgY anti-Pseudomonas immunotherapy. We hypothesise that azithromycin pre-treatment could potentiate the observed anti-Pseudomonas effect of IgY opsonisation in vivo. Evaluation of phagocytic cell capacity was performed using in vitro exposure of azithromycin pre-treated human polymorphonuclear neutrophils to IgY opsonised P. aeruginosa PAO3. A murine lung infection model using nasal planktonic P. aeruginosa inoculation and successive evaluation 24 h post-infection was used to determine lung bacteriology and subsequent pulmonary inflammation. Combined azithromycin treatment and IgY opsonisation significantly increased bacterial killing compared with the two single-treated groups and controls. In vivo, significantly increased bacterial pulmonary elimination was revealed by combining azithromycin and IgY. A reduction in the inflammatory markers mobiliser granulocyte colony-stimulating factor (G-CSF), macrophage inflammatory protein 2 (MIP-2) and interleukin 1 beta (IL-1β) paralleled this effect. Combination of azithromycin and anti-Pseudomonas IgY potentiated the killing and pulmonary elimination of P. aeruginosa in vitro and in vivo. The augmented effect of combinatory treatment with azithromycin and IgY constitutes a potential clinical application for improving anti-Pseudomonas strategies.
Collapse
Affiliation(s)
- Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Henrik Harpestrengsvej 4A, 2100-DK Copenhagen, Denmark.
| | - Lars Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Henrik Harpestrengsvej 4A, 2100-DK Copenhagen, Denmark
| | - Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Henrik Harpestrengsvej 4A, 2100-DK Copenhagen, Denmark
| | | | - Henrik Calum
- Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Henrik Harpestrengsvej 4A, 2100-DK Copenhagen, Denmark; Institute of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Henrik Harpestrengsvej 4A, 2100-DK Copenhagen, Denmark
| |
Collapse
|
12
|
Afshari H, Maleki M, Salouti M. Immunological effects of two new nanovaccines against Brucella based on OPS and LPS antigens conjugated with PLGA nanoparticles. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Torres JP, Senejani AG, Gaur G, Oldakowski M, Murali K, Sapi E. Ex Vivo Murine Skin Model for B. burgdorferi Biofilm. Antibiotics (Basel) 2020; 9:E528. [PMID: 32824942 PMCID: PMC7558507 DOI: 10.3390/antibiotics9090528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has been recently shown to form biofilm structures in vitro and in vivo. Biofilms are tightly clustered microbes characterized as resistant aggregations that allow bacteria to withstand harsh environmental conditions, including the administration of antibiotics. Novel antibiotic combinations have recently been identified for B. burgdorferi in vitro, however, due to prohibiting costs, those agents have not been tested in an environment that can mimic the host tissue. Therefore, researchers cannot evaluate their true effectiveness against B. burgdorferi, especially its biofilm form. A skin ex vivo model system could be ideal for these types of experiments due to its cost effectiveness, reproducibility, and ability to investigate host-microbial interactions. Therefore, the main goal of this study was the establishment of a novel ex vivo murine skin biopsy model for B. burgdorferi biofilm research. Murine skin biopsies were inoculated with B. burgdorferi at various concentrations and cultured in different culture media. Two weeks post-infection, murine skin biopsies were analyzed utilizing immunohistochemical (IHC), reverse transcription PCR (RT-PCR), and various microscopy methods to determine B. burgdorferi presence and forms adopted as well as whether it remained live in the skin tissue explants. Our results showed that murine skin biopsies inoculated with 1 × 107 cells of B. burgdorferi and cultured in BSK-H + 6% rabbit serum media for two weeks yielded not just significant amounts of live B. burgdorferi spirochetes but biofilm forms as well. IHC combined with confocal and atomic force microscopy techniques identified specific biofilm markers and spatial distribution of B. burgdorferi aggregates in the infected skin tissues, confirming that they are indeed biofilms. In the future, this ex vivo skin model can be used to study development and antibiotic susceptibility of B. burgdorferi biofilms in efforts to treat Lyme disease effectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva Sapi
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (J.P.T.); (A.G.S.); (G.G.); (M.O.); (K.M.)
| |
Collapse
|
14
|
Cooperativity between Stenotrophomonas maltophilia and Pseudomonas aeruginosa during Polymicrobial Airway Infections. Infect Immun 2020; 88:IAI.00855-19. [PMID: 31932329 DOI: 10.1128/iai.00855-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/23/2019] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative bacterium found ubiquitously in the environment that has historically been regarded as nonpathogenic. S. maltophilia is increasingly observed in patient sputa in cystic fibrosis (CF), and while existing epidemiology indicates that patients with S. maltophilia have poorer diagnoses, its clinical significance remains unclear. Moreover, as multidrug resistance is common among S. maltophilia isolates, treatment options for these infections may be limited. Here, we investigated the pathogenicity of S. maltophilia alone and during polymicrobial infection with Pseudomonas aeruginosa Colonization, persistence, and virulence of S. maltophilia were assessed in experimental respiratory infections of mice. The results of this study indicate that S. maltophilia transiently colonizes the lung accompanied by significant weight loss and immune cell infiltration and the expression of early inflammatory markers, including interleukin 6 (IL-6), IL-1α, and tumor necrosis factor alpha (TNF-α). Importantly, polymicrobial infection with P. aeruginosa elicited significantly higher S. maltophilia counts in bronchoalveolar lavages and lung tissue homogenates. This increase in bacterial load was directly correlated with the density of the P. aeruginosa population and required viable P. aeruginosa bacteria. Microscopic analysis of biofilms formed in vitro revealed that S. maltophilia formed well-integrated biofilms with P. aeruginosa, and these organisms colocalize in the lung during dual-species infection. Based on these results, we conclude that active cellular processes by P. aeruginosa afford a significant benefit to S. maltophilia during polymicrobial infections. Furthermore, these results indicate that S. maltophilia may have clinical significance in respiratory infections.
Collapse
|
15
|
Geddes-McAlister J, Kugadas A, Gadjeva M. Tasked with a Challenging Objective: Why Do Neutrophils Fail to Battle Pseudomonas aeruginosa Biofilms. Pathogens 2019; 8:pathogens8040283. [PMID: 31817091 PMCID: PMC6963930 DOI: 10.3390/pathogens8040283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 01/28/2023] Open
Abstract
Multidrug-resistant (MDR) bacterial infections are a leading cause of mortality, affecting approximately 250,000 people in Canada and over 2 million people in the United States, annually. The lack of efficacy of antibiotic-based treatments is often caused by inability of the drug to penetrate bacterial biofilms in sufficient concentrations, posing a major therapeutic challenge. Here, we review the most recent information about the architecture of Pseudomonas aeruginosa biofilms in vivo and describe how advances in imaging and mass spectroscopy analysis bring about novel therapeutic options and challenge existing dogmas.
Collapse
Affiliation(s)
| | - Abirami Kugadas
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Mihaela Gadjeva
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +1-617-525-2268; Fax: +1-617-525-2510
| |
Collapse
|
16
|
Pereira SB, Sousa A, Santos M, Araújo M, Serôdio F, Granja P, Tamagnini P. Strategies to Obtain Designer Polymers Based on Cyanobacterial Extracellular Polymeric Substances (EPS). Int J Mol Sci 2019; 20:E5693. [PMID: 31739392 PMCID: PMC6888056 DOI: 10.3390/ijms20225693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Biopolymers derived from polysaccharides are a sustainable and environmentally friendly alternative to the synthetic counterparts available in the market. Due to their distinctive properties, the cyanobacterial extracellular polymeric substances (EPS), mainly composed of heteropolysaccharides, emerge as a valid alternative to address several biotechnological and biomedical challenges. Nevertheless, biotechnological/biomedical applications based on cyanobacterial EPS have only recently started to emerge. For the successful exploitation of cyanobacterial EPS, it is important to strategically design the polymers, either by genetic engineering of the producing strains or by chemical modification of the polymers. This requires a better understanding of the EPS biosynthetic pathways and their relationship with central metabolism, as well as to exploit the available polymer functionalization chemistries. Considering all this, we provide an overview of the characteristics and biological activities of cyanobacterial EPS, discuss the challenges and opportunities to improve the amount and/or characteristics of the polymers, and report the most relevant advances on the use of cyanobacterial EPS as scaffolds, coatings, and vehicles for drug delivery.
Collapse
Affiliation(s)
- Sara B. Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aureliana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Marina Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Filipa Serôdio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
17
|
Mirzaei B, Mousavi SF, Babaei R, Bahonar S, Siadat SD, Shafiee Ardestani M, Shahrooei M, Van Eldere J. Synthesis of conjugated PIA–rSesC and immunological evaluation against biofilm-forming Staphylococcus epidermidis. J Med Microbiol 2019; 68:791-802. [DOI: 10.1099/jmm.0.000910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Bahman Mirzaei
- Department of Microbiology, Microbial Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Iran
| | - Seyed Fazlollah Mousavi
- Department of Microbiology, Microbial Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reyhane Babaei
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Iran
| | - Sara Bahonar
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Iran
| | - Seyed Davar Siadat
- Mycobacteriology and Pulmonary Research Department, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Shahrooei
- Laboratory of Medical Microbiology, Department of Medical Diagnostic Sciences, KU Leuven, UZ Gasthuisberg, Herestraat 49 CDG 8th floor, B-3000 Leuven, Belgium
| | - John Van Eldere
- Laboratory of Medical Microbiology, Department of Medical Diagnostic Sciences, KU Leuven, UZ Gasthuisberg, Herestraat 49 CDG 8th floor, B-3000 Leuven, Belgium
| |
Collapse
|
18
|
Naito Y, Hamaoka S, Kinoshita M, Kainuma A, Shimizu M, Katoh H, Moriyama K, Ishii KJ, Sawa T. The protective effects of nasal PcrV-CpG oligonucleotide vaccination against Pseudomonas aeruginosa pneumonia. Microbiol Immunol 2019; 62:774-785. [PMID: 30378708 DOI: 10.1111/1348-0421.12658] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/13/2018] [Accepted: 10/27/2018] [Indexed: 01/15/2023]
Abstract
An effective vaccine against Pseudomonas aeruginosa would be hugely beneficial to people who are susceptible to the serious infections it can cause. Vaccination against PcrV of the P. aeruginosa type III secretion system is a potential prophylactic strategy for improving the incidence and prognosis of P. aeruginosa pneumonia. Here, the effect of nasal PcrV adjuvanted with CpG oligodeoxynucleotide (CpG) was compared with a nasal PcrV/aluminum hydroxide gel (alum) vaccine. Seven groups of mice were vaccinated intranasally with one of the following: 1, PcrV-CpG; 2, PcrV-alum; 3, PcrV alone; 4, CpG alone; 5, alum alone; 6 and 7, saline control. Fifty days after the first immunization, anti-PcrV IgG, IgA and IgG isotype titers were measured; significant increases in these titers were detected only in the PcrV-CpG vaccinated mice. The vaccinated mice were then intratracheally infected with a lethal dose of P. aeruginosa and their body temperatures and survival monitored for 24 hr, edema, bacteria, myeloperoxidase activity and lung histology also being evaluated at 24 hr post-infection. It was found that 73% of the PcrV-CpG-vaccinated mice survived, whereas fewer than 30% of the mice vaccinated with PcrV-alum or adjuvant alone survived. Lung edema and other inflammation-related variables were less severe in the PcrV-CpG group. The significant increase in PcrV-specific IgA titers detected following PcrV-CpG vaccination is probably a component of the disease protection mechanism. Overall, our data show that intranasal PcrV-CpG vaccination has potential efficacy for clinical application against P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Yoshifumi Naito
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Saeko Hamaoka
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Mao Kinoshita
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Atsushi Kainuma
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Masaru Shimizu
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Hideya Katoh
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Kiyoshi Moriyama
- Department of Anesthesiology, School of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi, Saito, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| |
Collapse
|
19
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
20
|
Alikhani Z, Salouti M, Ardestani MS. Synthesis and immunological evaluation of a nanovaccine based on PLGA nanoparticles and alginate antigen against infections caused by
Pseudomonas aeruginosa. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aabfac] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
|
22
|
Mauch RM, Jensen PØ, Moser C, Levy CE, Høiby N. Mechanisms of humoral immune response against Pseudomonas aeruginosa biofilm infection in cystic fibrosis. J Cyst Fibros 2017; 17:143-152. [PMID: 29033275 DOI: 10.1016/j.jcf.2017.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
Abstract
P. aeruginosa chronic lung infection is the major cause of morbidity and mortality in patients with cystic fibrosis (CF), and is characterized by a biofilm mode of growth, increased levels of specific IgG antibodies and immune complex formation. However, despite being designed to combat this infection, such elevated humoral response is not associated with clinical improvement, pointing to a lack of anti-pseudomonas effectiveness. The mode of action of specific antibodies, as well as their structural features, and even the background involving B-cell production, stimulation and differentiation into antibody-producing cells in the CF airways are poorly understood. Thus, the aim of this review is to discuss studies that have addressed the intrinsic features of the humoral immune response and provide new insights regarding its insufficiency in the CF context.
Collapse
Affiliation(s)
- Renan Marrichi Mauch
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas, Brazil
| | - Peter Østrup Jensen
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet (Copenhagen University Hospital), Denmark
| | - Carlos Emilio Levy
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas, Brazil; Laboratory of Microbiology, Division of Clinical Pathology, Hospital de Clínicas (Campinas University Hospital), Brazil
| | - Niels Høiby
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet (Copenhagen University Hospital), Denmark.
| |
Collapse
|
23
|
Faezi S, Bahrmand AR, Mahdavi M, Siadat SD, Sardari S, Nikokar I, Khanaki K, Mirzajani E, Goudarzi G. Preparation of Pseudomonas aeruginosa alginate-flagellin immunoconjugate. Biologicals 2017; 47:11-17. [DOI: 10.1016/j.biologicals.2017.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022] Open
|
24
|
Scoffield JA, Duan D, Zhu F, Wu H. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation. PLoS Pathog 2017; 13:e1006300. [PMID: 28448633 PMCID: PMC5407764 DOI: 10.1371/journal.ppat.1006300] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/16/2017] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa causes devastating chronic pulmonary infections in cystic fibrosis (CF) patients. Although the CF airway is inhabited by diverse species of microorganisms interlaced within a biofilm, many studies focus on the sole contribution of P. aeruginosa pathogenesis in CF morbidity. More recently, oral commensal streptococci have been identified as cohabitants of the CF lung, but few studies have explored the role these bacteria play within the CF biofilm. We examined the interaction between P. aeruginosa and oral commensal streptococci within a dual species biofilm. Here we report that the CF P. aeruginosa isolate, FRD1, enhances biofilm formation and colonization of Drosophila melanogaster by the oral commensal Streptococcus parasanguinis. Moreover, production of the P. aeruginosa exopolysaccharide, alginate, is required for the promotion of S. parasanguinis biofilm formation and colonization. However, P. aeruginosa is not promoted in the dual species biofilm. Furthermore, we show that the streptococcal adhesin, BapA1, mediates alginate-dependent enhancement of the S. parasanguinis biofilm in vitro, and BapA1 along with another adhesin, Fap1, are required for the in vivo colonization of S. parasanguinis in the presence of FRD1. Taken together, our study highlights a new association between streptococcal adhesins and P. aeruginosa alginate, and reveals a mechanism by which S. parasanguinis potentially colonizes the CF lung and interferes with the pathogenesis of P. aeruginosa.
Collapse
Affiliation(s)
- Jessica A. Scoffield
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dingyu Duan
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- State Key Laboratory of Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Zhu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hui Wu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
25
|
Amini V, Kazemian H, Yamchi JK, Feyisa SG, Aslani S, Shavalipour A, Houri H, Hoorijani M, Halaji M, Heidari H. Evaluation of the Immunogenicity of Diphtheria Toxoid Conjugated to Salmonella Typhimurium-Derived OPS in a Mouse Model: A Potential Vaccine Candidate Against Salmonellosis. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e34135. [PMID: 27660722 PMCID: PMC5027132 DOI: 10.5812/ircmj.34135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/30/2015] [Accepted: 01/12/2016] [Indexed: 11/23/2022]
Abstract
Background Salmonella enterica serovar Typhimurium (S. Typhimurium) causes gastroenteritis in humans and paratyphoid disease in some animals. Given the emergence of antibiotic resistance, vaccines are more effective than chemotherapy in disease control. Objectives The aim of this experimental study was to evaluate the immunogenicity of diphtheria toxoid (DT) conjugated with S. Typhimurium -derived OPS (O side chain isolation) in mice to determine its potential as a vaccine candidate against salmonellosis. Materials and Methods Lipopolysaccharide (LPS) was extracted from the bacterial strain. After isolation of the O side chain of LPS, detoxification, and conjugation of the detoxified OPS samples with DT, pyrogenicity, toxicity, and sterility tests were performed. To vaccination, four groups of female Balb/c mice were used in an immunization test. Antibody responses were measured by the ELISA method. Challenging processes were performed to analyze the efficacy of the OPS-DT compound. Results Two weeks after the first vaccination dose, there was no significant difference in the antibody titers of the OPS and OPS-DT groups. However, after the second and third doses, the antibody titers of the OPS-DT group increased significantly compared with those of the control groups (P < 0.001). The induction of anti-OPS antibodies was as follows: OPS-DT>OPS. The most anti-OPS IgG antibody was IgG1. Challenging procedure showed successful protective characteristics in clinical examinations. Conclusions The results indicated that DT increased anti-OPS antibodies against the OPS-DT compound. The antibody response to OPS-DT was greater than that to OPS alone. We conclude that OPS-DT is an appropriate and acceptable vaccine candidate against salmonellosis.
Collapse
Affiliation(s)
- Vahid Amini
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, IR Iran
| | - Hossein Kazemian
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Jalil Kardan Yamchi
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Seifu Gizaw Feyisa
- Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran, IR Iran
| | - Saeed Aslani
- Department of Immunology, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Aref Shavalipour
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Hamidreza Houri
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mohammadneshvan Hoorijani
- Department of Microbiology, Kurdistan Science and Research Branch, Islamic Azad University, Sanandaj, IR Iran
| | - Mehrdad Halaji
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Hamid Heidari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding Author: Hamid Heidari, Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Zand st., Shiraz, IR Iran. Tel: +98-9386312941, E-mail:
| |
Collapse
|
26
|
Anti- Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model. J Cyst Fibros 2016; 15:171-8. [DOI: 10.1016/j.jcf.2015.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/01/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
|
27
|
Chatterjee M, Anju C, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol 2016; 306:48-58. [DOI: 10.1016/j.ijmm.2015.11.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 01/05/2023] Open
|
28
|
Farjah A, Owlia P, Siadat SD, Mousavi SF, Ardestani MS, Mohammadpour HK. Immunological evaluation of an alginate-based conjugate as a vaccine candidate againstPseudomonas aeruginosa. APMIS 2014; 123:175-83. [DOI: 10.1111/apm.12337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/30/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Farjah
- Department of Biology; Shahed University; Tehran Iran
- Department of Microbiology; Microbial research center; Pasteur Institute of Iran; Tehran Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center; Shahed University; Tehran Iran
| | - Seyed Davar Siadat
- Department of Microbiology; Microbial research center; Pasteur Institute of Iran; Tehran Iran
| | - Seyed Fazlollah Mousavi
- Department of Microbiology; Microbial research center; Pasteur Institute of Iran; Tehran Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy; Faculty of pharmacy; Tehran University of Medical Science; Tehran Iran
| | | |
Collapse
|
29
|
Farjah A, Owlia P, Siadat SD, Mousavi SF, Shafieeardestani M. Conjugation of alginate to a synthetic peptide containing T- and B-cell epitopes as an induction for protective immunity against Pseudomonas aeruginosa. J Biotechnol 2014; 192 Pt A:240-7. [DOI: 10.1016/j.jbiotec.2014.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/14/2014] [Accepted: 10/20/2014] [Indexed: 11/26/2022]
|
30
|
Mao Z, Ye J, Li M, Xu H, Chen J. Vaccination efficiency of surface antigens and killed whole cell of Pseudomonas putida in large yellow croaker (Pseudosciaena crocea). FISH & SHELLFISH IMMUNOLOGY 2013; 35:375-381. [PMID: 23659996 DOI: 10.1016/j.fsi.2013.04.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/18/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
Large yellow croaker (Pseudosciaena crocea), a major marine fish aquacultured in the southeastern coastal region of China, has become endangered by the pathogen Pseudomonas putida in recent years. P. putida infections occur in low water temperatures when fish reduce food intake, thus oral antibiotic administration is not practical. Therefore, vaccination may be the only method to prevent the infection. In the present study, main surface antigens of P. putida, including lipopolysaccharide (LPS), outer membrane proteins (OMP), extracellular biofilm polysaccharide (EPS), and formalin-killed cell (FKC) bacterin, were prepared and the fish vaccinated. On post-immunization day 28, serum antibody titers, phagocytic responses of leukocytes, and lysozyme activities of the fish were evaluated. The efficiency of vaccination was tested by artificial challenge via intraperitoneal injection of live bacteria on post-immunization day 28 and 35, respectively. The results showed that although significant humoral and innate immune responses were elicited in all vaccination groups, the challenge produced similar poor protection in both tests, with a relative percent survival (RPS) of 0-40%. Although the EPS group showed a complete lack of protection, LPS reached the highest RPS value (40%), suggesting that LPS may be involved in protection immunity against the pathogen. Further analysis of the ultra-structures of tissues from infected fish via TEM revealed macrophage survival and intracellular replication ability of the pathogen. New strategies for development might put more emphasis on efficient clearance of intracellular bacteria. The present study is the first to report vaccination against the fish pathogen P. putida and the first investigation of intracellular survival of this pathogen in host macrophages.
Collapse
Affiliation(s)
- Zhijuan Mao
- Biological and Environmental College, Zhejiang Wanli University, No. 8, South Qianhu Road, Ningbo 315100, China.
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Calix JJ, Saad JS, Brady AM, Nahm MH. Structural characterization of Streptococcus pneumoniae serotype 9A capsule polysaccharide reveals role of glycosyl 6-O-acetyltransferase wcjE in serotype 9V capsule biosynthesis and immunogenicity. J Biol Chem 2012; 287:13996-4003. [PMID: 22367197 DOI: 10.1074/jbc.m112.346924] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The putative capsule O-acetyltransferase gene wcjE is highly conserved across various Streptococcus pneumoniae serotypes, but the role of the gene in capsule biosynthesis and bacterial fitness remains largely unclear. Isolates expressing pneumococcal serotype 9A arise from precursors expressing wcjE-associated serotype 9V through loss-of-function mutation to wcjE. To define the biosynthetic role of 9V wcjE, we characterized the structure and serological properties of serotype 9V and 9A capsule polysaccharide (PS). NMR data revealed that both 9V and 9A PS are composed of an identical pentasaccharide repeat unit, as reported previously. However, in sharp contrast to previous studies on 9A PS being devoid of any O-acetylation, we identified O-acetylation of α-glucuronic acid and α-glucose in 9A PS. In addition, 9V PS also contained -CH(2) O-acetylation of β-N-acetylmannosamine, a modification that disappeared following in vitro recombinatorial deletion of wcjE. We also show that serotyping sera and monoclonal antibodies specific for 9V and 9A bound capsule PS in an O-acetate-dependent manner. Furthermore, IgG and to a lesser extent IgM from human donors immunized with serotype 9V PS displayed stronger binding to 9V compared with 9A PS. We conclude that serotype 9V wcjE mediates 6-O-acetylation of β-N-acetylmannosamine. This PS modification can be selectively targeted by antibodies in immunized individuals, identifying a potential selective advantage for wcjE inactivation and serotype 9A emergence.
Collapse
Affiliation(s)
- Juan J Calix
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
33
|
Theilacker C, Kropec A, Hammer F, Sava I, Wobser D, Sakinc T, Codée JDC, Hogendorf WFJ, van der Marel GA, Huebner J. Protection against Staphylococcus aureus by antibody to the polyglycerolphosphate backbone of heterologous lipoteichoic acid. J Infect Dis 2012; 205:1076-85. [PMID: 22362863 DOI: 10.1093/infdis/jis022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type 1 lipoteichoic acid (LTA) is present in many clinically important gram-positive bacteria, including enterococci, streptococci, and staphylococci, and antibodies against LTA have been shown to opsonize nonencapsulated Enterococcus faecalis strains. In the present study, we show that antibodies against E. faecalis LTA also bind to type 1 LTA from other gram-positive species and opsonized Staphylocccus epidermidis and Staphylcoccus aureus strains as well as group B streptococci. Inhibition studies using teichoic acid oligomers indicated that cross-reactive opsonic antibodies bind to the teichoic acid backbone. Passive immunization with rabbit antibodies against E. faecalis LTA promoted the clearance of bacteremia by E. faecalis and S. epidermidis in mice. Furthermore, passive protection also reduced mortality in a murine S. aureus peritonitis model. The effectiveness of rabbit antibody against LTA suggests that this conserved bacterial structure could function as a single vaccine antigen that targets multiple gram-positive pathogens.
Collapse
Affiliation(s)
- Christian Theilacker
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sharma A, Krause A, Worgall S. Recent developments for Pseudomonas vaccines. HUMAN VACCINES 2011; 7:999-1011. [PMID: 21941090 DOI: 10.4161/hv.7.10.16369] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections with Pseudomonas aeruginosa are a major health problem for immune-compromised patients and individuals with cystic fibrosis. A vaccine against: P. aeruginosa has long been sought after, but is so far not available. Several vaccine candidates have been assessed in experimental animals and humans, which include sub-cellular fractions, capsule components, purified and recombinant proteins. Unique characteristics of the host and the pathogen have complicated the vaccine development. This review summarizes the current state of vaccine development for this ubiquitous pathogen, in particular to provide mucosal immunity against infections of the respiratory tract in susceptible individuals with cystic fibrosis.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | | | |
Collapse
|
35
|
Calix JJ, Oliver MB, Sherwood LK, Beall BW, Hollingshead SK, Nahm MH. Streptococcus pneumoniae serotype 9A isolates contain diverse mutations to wcjE that result in variable expression of serotype 9V-specific epitope. J Infect Dis 2011; 204:1585-95. [PMID: 21908730 DOI: 10.1093/infdis/jir593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a significant pathogen capable of expressing protective and antigenically diverse capsules. To better understand the molecular basis of capsular antigenic diversity, we investigated the hypothetical serological role of wcjE, which encodes a capsule O-acetyltransferase, in the vaccine-targeted serotype 9V and related serotype 9A. METHODS We inactivated wcjE by recombination in a serotype 9V strain and determined wcjE sequences of 11 serotype 9A clinical isolates. We determined the antigenic phenotypes of these pneumococcal strains with serogroup 9-specific antibodies and flow cytometry. RESULTS Inactivation of wcjE in a serotype 9V strain resulted in expression of the 9A phenotype. Each serotype 9A clinical isolate contained a distinct mutation to wcjE. Flow cytometry showed that some 9A isolates (herein named 9Aα) expressed trace amounts of 9V-specific epitopes whereas others (named 9Aβ) did not express any. Recombination with 9Aα wcjE alleles into a 9Aβ strain conferred partial expression of 9V-specific epitopes. CONCLUSIONS Each serotype 9A strain independently arose from a serotype 9V strain. Furthermore, clinical isolates identified as 9A can contain mutations to wcjE that are either partially functional or completely nonfunctional, demonstrating a previously unidentified antigenic heterogeneity of serotype 9A isolates.
Collapse
Affiliation(s)
- Juan J Calix
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
36
|
Elucidation of structural and antigenic properties of pneumococcal serotype 11A, 11B, 11C, and 11F polysaccharide capsules. J Bacteriol 2011; 193:5271-8. [PMID: 21803987 DOI: 10.1128/jb.05034-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the emerging impact of serogroup 11 serotypes in Streptococcus pneumoniae epidemiology, the structures of serogroup 11 capsule types have not been fully elucidated, particularly the locations of O-acetyl substitutions. Here, we report the complete structures of the serotype 11B, 11C, and 11F polysaccharides and a revision to the serotype 11A capsular polysaccharide using nuclear magnetic resonance (NMR). All structures shared a linear, tetrasaccharide backbone with a pendant phosphopolyalcohol. Three of four saccharides are conserved in all serotypes. The individual serotype capsules differed in the identity of one saccharide, the pendant phosphopolyalcohol, and the O-acetylation pattern. Though the assigned locations of O-acetate substitutions in this study differed from those of previous reports, our findings were corroborated with strong correlations to serology and genetics. We examined the binding of serotyping sera to serogroup 11 polysaccharides by using flow cytometry and an inhibition-type enzyme-linked immunosorbent assay (ELISA) and found that de-O-acetylation of capsular polysaccharides by mild hydrolysis decreases its immunoreactivity, supporting the crucial role of O-acetylation in the antigenicity of these polysaccharides. Due to strong correlations between polysaccharide structures and capsule biosynthesis genes, we were able to assign target substrates for the O-acetyltransferases encoded by wcwC, wcwR, wcwT, and wcjE. We identified antigenic determinants for serogroup 11 serotyping sera and highlight the idea that conventional serotyping methods are not capable of recognizing all putative variants of S. pneumoniae serogroup 11.
Collapse
|
37
|
Efficacy of a conjugate vaccine containing polymannuronic acid and flagellin against experimental Pseudomonas aeruginosa lung infection in mice. Infect Immun 2011; 79:3455-64. [PMID: 21628521 DOI: 10.1128/iai.00157-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vaccines that could effectively prevent Pseudomonas aeruginosa pulmonary infections in the settings of cystic fibrosis (CF) and nosocomial pneumonia could be exceedingly useful, but to date no effective immunotherapy targeting this pathogen has been successfully developed for routine use in humans. Evaluations using animals and limited human trials of vaccines and their associated immune effectors against different P. aeruginosa antigens have suggested that antibody to the conserved surface polysaccharide alginate, as well as the flagellar proteins, often give high levels of protection. However, alginate itself does not elicit protective antibody in humans, and flagellar vaccines containing the two predominant serotypes of this antigen may not provide sufficient coverage against variant flagellar types. To evaluate if combining these antigens in a conjugate vaccine would be potentially efficacious, we conjugated polymannuronic acid (PMA), containing the blocks of mannuronic acid conserved in all P. aeruginosa alginates, to type a flagellin (FLA) and evaluated immunogenicity, opsonic killing activity, and passive protective efficacy in mice. The PMA-FLA conjugate was highly immunogenic in mice and rabbits and elicited opsonic antibodies against mucoid but not nonmucoid P. aeruginosa, but nonetheless rabbit antibody to PMA-FLA showed evidence of protective efficacy against both types of this organism in a mouse lung infection model. Importantly, the PMA-FLA conjugate vaccine did not elicit antibodies that neutralized the Toll-like receptor 5 (TLR5)-activating activity of flagellin, an important part of innate immunity to flagellated microbial pathogens. Conjugation of PMA to FLA appears to be a promising path for developing a broadly protective vaccine against P. aeruginosa.
Collapse
|
38
|
Serodiversity of opsonic antibodies against Enterococcus faecalis--glycans of the cell wall revisited. PLoS One 2011; 6:e17839. [PMID: 21437253 PMCID: PMC3060912 DOI: 10.1371/journal.pone.0017839] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/15/2011] [Indexed: 11/19/2022] Open
Abstract
In a typing system based on opsonic antibodies against carbohydrate antigens of the cell envelope, 60% of Enterococcus faecalis strains can be assigned to one of four serotypes (CPS-A to CPS-D). The structural basis for enterococcal serotypes, however, is still incompletely understood. Here we demonstrate that antibodies raised against lipoteichoic acid (LTA) from a CPS-A strain are opsonic to both CPS-A and CPS-B strains. LTA-specific antibodies also bind to LTA of CPS-C and CPS-D strains, but fail to opsonize them. From CPS-C and CPS-D strains resistant to opsonization by anti-LTA, we purified a novel diheteroglycan with a repeating unit of →6)-β-Galf-(1→3)- β-D-Glcp-(1→ with O-acetylation in position 5 and lactic acid substitution at position 3 of the Galf residue. The purified diheteroglycan, but not LTA absorbed opsonic antibodies from whole cell antiserum against E. faecalis type 2 (a CPS-C strain) and type 5 (CPS-D). Rabbit antiserum raised against purified diheteroglycan opsonized CPS-C and CPS-D strains and passive protection with diheteroglycan-specific antiserum reduced bacterial counts by 1.4-3.4 logs in mice infected with E. faecalis strains of the CPS-C and CPS-D serotype. Diheteroglycan-specific opsonic antibodies were absorbed by whole bacterial cells of E. faecalis FA2-2 (CPS-C) but not by its isogenic acapsular cpsI-mutant and on native PAGE purified diheteroglycan co-migrated with the gene product of the cps-locus, suggesting that it is synthesized by this locus. In summary, two polysaccharide antigens, LTA and a novel diheteroglycan, are targets of opsonic antibodies against typeable E. faecalis strains. These cell-wall associated polymers are promising candidates for active and passive vaccination and add to our armamentarium to fight this important nosocomial pathogen.
Collapse
|
39
|
Mucosal vaccination with a multivalent, live-attenuated vaccine induces multifactorial immunity against Pseudomonas aeruginosa acute lung infection. Infect Immun 2010; 79:1289-99. [PMID: 21149583 DOI: 10.1128/iai.01139-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many animal studies investigating adaptive immune effectors important for protection against Pseudomonas aeruginosa have implicated opsonic antibody to the antigenically variable lipopolysaccharide (LPS) O antigens as a primary effector. However, active and passive vaccination of humans against these antigens has not shown clinical efficacy. We hypothesized that optimal immunity would require inducing multiple immune effectors targeting multiple bacterial antigens. Therefore, we evaluated a multivalent live-attenuated mucosal vaccination strategy in a murine model of acute P. aeruginosa pneumonia to assess the contributions to protective efficacy of various bacterial antigens and host immune effectors. Vaccines combining 3 or 4 attenuated strains having different LPS serogroups were associated with the highest protective efficacy compared to vaccines with fewer components. Levels of opsonophagocytic antibodies, which were directed not only to the LPS O antigens but also to the LPS core and surface proteins, correlated with protective immunity. The multivalent live-attenuated vaccines overcame prior problems involving immunologic interference in the development of O-antigen-specific antibody responses when closely related O antigens were combined in multivalent vaccines. Antibodies to the LPS core were associated with in vitro killing and in vivo protection against strains with O antigens not expressed by the vaccine strains, whereas antibodies to the LPS core and surface proteins augmented the contribution of O-antigen-specific antibodies elicited by vaccine strains containing a homologous O antigen. Local CD4 T cells in the lung also contributed to vaccine-based protection when opsonophagocytic antibodies to the challenge strain were absent. Thus, multivalent live-attenuated vaccines elicit multifactorial protective immunity to P. aeruginosa lung infections.
Collapse
|
40
|
Skurnik D, Merighi M, Grout M, Gadjeva M, Maira-Litran T, Ericsson M, Goldmann DA, Huang SS, Datta R, Lee JC, Pier GB. Animal and human antibodies to distinct Staphylococcus aureus antigens mutually neutralize opsonic killing and protection in mice. J Clin Invest 2010; 120:3220-33. [PMID: 20739753 DOI: 10.1172/jci42748] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 06/02/2010] [Indexed: 01/08/2023] Open
Abstract
New prophylactic approaches are needed to control infection with the Gram-positive bacterium Staphylococcus aureus, which is a major cause of nosocomial and community-acquired infections. To develop these, greater understanding of protective immunity against S. aureus infection is needed. Human immunity to extracellular Gram-positive bacterial pathogens is primarily mediated by opsonic killing (OPK) via antibodies specific for surface polysaccharides. S. aureus expresses two such antigens, capsular polysaccharide (CP) and poly-N-acetyl glucosamine (PNAG). Here, we have shown that immunization-induced polyclonal animal antisera and monoclonal antibodies specific for either CP or PNAG antigens have excellent in vitro OPK activity in human blood but that when mixed together they show potent interference in OPK activity. In addition, reductions in antibody binding to the bacterial surface, complement deposition, and passive protection were seen in two mouse models of S. aureus infection. Electron microscopy, isothermal calorimetry, and surface plasmon resonance indicated that antibodies to CP and PNAG bound together via an apparent idiotype-anti-idiotype interaction. This interaction was also found in sera from humans with S. aureus bacteremia. These findings suggest that the lack of effective immunity to S. aureus infections in humans could be due, in part, to interference in OPK when antibodies to CP and PNAG antigens are both present. This information could be used to better design S. aureus vaccine components.
Collapse
Affiliation(s)
- David Skurnik
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Pseudomonas aeruginosa is a serious pathogen in hospitalized, immunocompromised, and cystic fibrosis (CF) patients. P. aeruginosa is motile via a single polar flagellum made of polymerized flagellin proteins differentiated into two major serotypes: a and b. Antibodies to flagella delay onset of infection in CF patients, but whether immunity to polymeric flagella and that to monomeric flagellin are comparable has not been addressed, nor has the question of whether such antibodies might negatively impact Toll-like receptor 5 (TLR5) activation, an important component of innate immunity to P. aeruginosa. We compared immunization with flagella and that with flagellin for in vitro effects on motility, opsonic killing, and protective efficacy using a mouse pneumonia model. Antibodies to flagella were superior to antibodies to flagellin at inhibiting motility, promoting opsonic killing, and mediating protection against P. aeruginosa pneumonia in mice. Protection against the flagellar type strains PAK and PA01 was maximal, but it was only marginal against motile clinical isolates from flagellum-immunized CF patients who nonetheless became colonized with P. aeruginosa. Purified flagellin was a more potent activator of TLR5 than were flagella and also elicited higher TLR5-neutralizing antibodies than did immunization with flagella. Antibody to type a but not type b flagella or flagellin inhibited TLR5 activation by whole bacterial cells. Overall, intact flagella appear to be superior for generating immunity to P. aeruginosa, and flagellin monomers might induce antibodies capable of neutralizing innate immunity due to TLR5 activation, but solid immunity to P. aeruginosa based on flagellar antigens may require additional components beyond type a and type b proteins from prototype strains.
Collapse
|
42
|
Synthetic {beta}-(1->6)-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens. Infect Immun 2009; 78:764-72. [PMID: 19948836 DOI: 10.1128/iai.01093-09] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vaccines for pathogens usually target strain-specific surface antigens or toxins, and rarely is there broad antigenic specificity extending across multiple species. Protective antibodies for bacteria are usually specific for surface or capsular antigens. beta-(1-->6)-Poly-N-acetyl-d-glucosamine (PNAG) is a surface polysaccharide produced by many pathogens, including Staphylococcus aureus, Escherichia coli, Yersinia pestis, Bordetella pertussis, Acinetobacter baumannii, and others. Protective antibodies to PNAG are elicited when a deacetylated glycoform (deacetylated PNAG [dPNAG]; <30% acetate) is used in conjugate vaccines, whereas highly acetylated PNAG does not induce such antibodies. Chemical derivation of dPNAG from native PNAG is imprecise, so we synthesized both beta-(1-->6)-d-glucosamine (GlcNH(2)) and beta-(1-->6)-d-N-acetylglucosamine (GlcNAc) oligosaccharides with linkers on the reducing termini that could be activated to produce sulfhydryl groups for conjugation to bromoacetyl groups introduced onto carrier proteins. Synthetic 5-mer GlcNH(2) (5GlcNH(2)) or 9GlcNH(2) conjugated to tetanus toxoid (TT) elicited mouse antibodies that mediated opsonic killing of multiple S. aureus strains, while the antibodies that were produced in response to 5GlcNAc- or 9GlcNAc-TT did not mediate opsonic killing. Rabbit antibodies to 9GlcNH(2)-TT bound to PNAG and dPNAG antigens, mediated killing of S. aureus and E. coli, and protected against S. aureus skin abscesses and lethal E. coli peritonitis. Chemical synthesis of a series of oligoglucosamine ligands with defined differences in N acetylation allowed us to identify a conjugate vaccine formulation that generated protective immune responses to two of the most challenging bacterial pathogens. This vaccine could potentially be used to engender protective immunity to the broad range of pathogens that produce surface PNAG.
Collapse
|
43
|
Abstract
OBJECTIVE Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjunctive therapies. DATA SOURCE Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. DATA EXTRACTION AND SYNTHESIS P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus on much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjunctive therapies capable of improving outcomes. CONCLUSIONS Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections.
Collapse
|
44
|
Foschiatti M, Cescutti P, Tossi A, Rizzo R. Inhibition of cathelicidin activity by bacterial exopolysaccharides. Mol Microbiol 2009; 72:1137-46. [PMID: 19400793 DOI: 10.1111/j.1365-2958.2009.06707.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of bacterial exopolysaccharides, produced by opportunistic lung pathogens, with antimicrobial peptides of the innate primate immune system was investigated. The exopolysaccharides were produced by Pseudomonas aeruginosa, Inquilinus limosus and clinical isolates of the Burkholderia cepacia complex, bacteria that are all involved in lung infections of cystic fibrosis patients. The effects of the biological activities of three orthologous cathelicidins from Homo sapiens sapiens, Pongo pygmaeus (orangutan) and Presbitys obscurus (dusky leaf monkey) were examined. Inhibition of the antimicrobial activity of peptides was assessed using minimum inhibitory concentration assays on a reference Escherichia coli strain in the presence and absence of exopolysaccharides, whereas complex formation between peptides and exopolysaccharides was investigated by means of circular dichroism, fluorescence spectroscopy and atomic force microscopy. Biological assays revealed that the higher the negative charge of exopolysaccharides the stronger was their inhibiting effect. Spectroscopic studies indicated the formation of molecular complexes of varying stability between peptides and exopolysaccharides, explaining the inhibition. Atomic force microscopy provided a direct visualization of the molecular complexes. A model is proposed where peptides with an alpha-helical conformation interact with exopolysaccharides through electrostatic and other non-covalent interactions.
Collapse
|
45
|
Prophylactic and therapeutic efficacy of a fully human immunoglobulin G1 monoclonal antibody to Pseudomonas aeruginosa alginate in murine keratitis infection. Infect Immun 2008; 76:4720-5. [PMID: 18644881 DOI: 10.1128/iai.00496-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of ulcerative keratitis due to Pseudomonas aeruginosa is difficult, time-consuming, and uncomfortable owing to the need for the frequent application of antibiotic drops to the infected corneal surface. We examined here whether a fully human immunoglobulin G1 monoclonal antibody (MAb) specific to the conserved alginate surface polysaccharide of P. aeruginosa could mediate protective immunity against typically nonmucoid strains isolated from human cases of keratitis. MAb F429 effectively opsonized alginate-positive, but not alginate-negative, nonmucoid strains in conjunction with phagocytes and complement. Prophylactic administration of MAb F429 18 h prior to infection with two clinical isolates significantly reduced bacterial levels in the eye and the associated corneal pathology. Along similar lines, systemic intraperitoneal injection, as well as topical application of the MAb onto the infected eye, starting 8 h postinfection in both experimental protocols resulted in significant reductions in bacteria in the eye, as well as minimizing pathological damage to the cornea. These findings indicate that MAb F429 could be useful as an additional therapeutic component for the treatment of P. aeruginosa keratitis.
Collapse
|
46
|
Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends Mol Med 2008; 14:120-33. [PMID: 18262467 DOI: 10.1016/j.molmed.2008.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 01/24/2023]
Abstract
Defective expression or function of the cystic fibrosis transmembrane conductance regulator (CFTR) underlies the hypersusceptibility of cystic fibrosis (CF) patients to chronic airway infections, particularly with Pseudomonas aeruginosa. CFTR is involved in the specific recognition of P. aeruginosa, thereby contributing to effective innate immunity and proper hydration of the airway surface layer (ASL). In CF, the airway epithelium fails to initiate an appropriate innate immune response, allowing the microbe to bind to mucus plugs that are then not properly cleared because of the dehydrated ASL. Recent studies have identified numerous CFTR-dependent factors that are recruited to the epithelial plasma membrane in response to infection and that are needed for bacterial clearance, a process that is defective in CF patients hypersusceptible to infection with this organism.
Collapse
|
47
|
Vaccines and immunotherapy against Pseudomonas aeruginosa. Vaccine 2008; 26:1011-24. [PMID: 18242792 DOI: 10.1016/j.vaccine.2007.12.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/28/2007] [Accepted: 12/05/2007] [Indexed: 11/21/2022]
|
48
|
|
49
|
Pier G. Application of vaccine technology to prevention of Pseudomonas aeruginosa infections. Expert Rev Vaccines 2007; 4:645-56. [PMID: 16221066 DOI: 10.1586/14760584.4.5.645] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Development of an effective vaccine against the multiple presentations of Pseudomonas aeruginosa infection, including nosocomial pneumonia, bloodstream infections, chronic lung infections in cystic fibrosis patients and potentially sight-threatening keratitis in users of contact lenses, is a high priority. As with vaccine development for any pathogen, key information about the most effective immunologic effectors of immunity and target antigens needs to be established. For P. aeruginosa, although there is a role for cell-mediated immunity in animals following active vaccination, the bulk of the data indicate that opsonically-active antibodies provide the most effective mediators of acquired immunity. Major target antigens include the lipopolysaccharide O-polysaccharides, cell-surface alginate, flagella, components of the Type III secretion apparatus and outer membrane proteins with a potentially additive effect achieved by including immune effectors to toxins and proteases. A variety of active vaccination approaches have the potential for efficacy such as vaccination with purified or recombinant antigens incorporating multiple epitopes, conjugate vaccines incorporating proteins and carbohydrate antigens, and live attenuated vaccines, including heterologous antigen delivery systems expressing immunogenic P. aeruginosa antigens. A diverse range of passive immunotherapeutic approaches are also candidates for effective immunity, with a variety of human monoclonal antibodies described over the years with good preclinical efficacy and some early Phase I and II studies in humans. Finding an effective active and/or passive vaccination strategy for P. aeruginosa infections could be realized in the next 5 to 10 years, but will require that advances are made in the understanding of antigen expression and immune effectors that work in different human tissues and clinical settings, and also require a means to validate that clinical outcomes achieved in Phase III trials represent meaningful advances in management and treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Gerald Pier
- Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Theilacker C, Kaczynski Z, Kropec A, Fabretti F, Sange T, Holst O, Huebner J. Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect Immun 2006; 74:5703-12. [PMID: 16988246 PMCID: PMC1594888 DOI: 10.1128/iai.00570-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A teichoic acid (TA)-like polysaccharide in Enterococcus faecalis has previously been shown to induce opsonic antibodies that protect against bacteremia after active and passive immunization. Here we present new data providing a corrected structure of the antigen and the epitope against which the opsonic antibodies are directed. Capsular polysaccharide isolated from E. faecalis strain 12030 by enzymatic digestion of peptidoglycan and chromatography (enzyme-TA) was compared with lipoteichoic acid (LTA) extracted using butanol and purified by hydrophobic-interaction chromatography (BuOH-LTA). Structural determinations were carried out by chemical analysis and nuclear magnetic resonance spectroscopy. Antibody specificity was assessed by enzyme-linked immunosorbent assay and the opsonophagocytosis assay. After alanine ester hydrolysis, there was structural identity between enzyme-TA and BuOH-LTA of the TA-parts of the two molecules. The basic enterococcal LTA structure was confirmed: 1,3-poly(glycerol phosphate) nonstoichiometrically substituted at position C-2 of the glycerol residues with d-Ala and kojibiose. We also detected a novel substituent at position C-2, [D-Ala-->6]-alpha-D-Glcp-(1-->2-[D-Ala-->6]-alpha-D-Glcp-1-->). Antiserum raised against enzyme-TA bound equally well to BuOH-LTA and dealanylated BuOH-LTA as to the originally described enzyme-TA antigen. BuOH-LTA was a potent inhibitor of opsonophagocytic killing by the antiserum to enzyme-TA. Immunization with antibiotic-killed whole bacterial cells did not induce a significant proportion of antibodies directed against alanylated epitopes on the TA, and opsonic activity was inhibited completely by both alanylated and dealanylated BuOH-LTA. In summary, the E. faecalis strain 12030 enzyme-TA is structurally and immunologically identical to dealanylated LTA. Opsonic antibodies to E. faecalis 12030 are directed predominantly to nonalanylated epitopes on the LTA molecule.
Collapse
Affiliation(s)
- Christian Theilacker
- Division of Infectious Disease, Department of Medicine, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|