1
|
Scholl A, Li B, Dennis J, De S. A comprehensive method on black-legged tick larvae and nymph feeding on mice to study Lyme disease transmission and acquisition. Front Microbiol 2025; 16:1527821. [PMID: 39980687 PMCID: PMC11841383 DOI: 10.3389/fmicb.2025.1527821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Tick-borne diseases are a growing public health concern in the United States, with cases rising steadily each year. Lyme borreliosis, or Lyme disease, remains the most prevalent, affecting approximately 476,000 individuals annually. Human-driven changes in climate and ecosystems have expanded the habitat of pathogen-carrying ticks, facilitating the spread of these infections. Additionally, increased instances of tick-borne diseases transmission through human tissues have been reported. Despite ongoing efforts to manage these infections, their incidence continues to rise. To develop effective control measures against these diseases and prevent the transmission of tick-borne infections through human and animal tissues, it is very important to develop detection assays and understand the transmission mechanisms of tick-borne infections. In this study, we provide detailed descriptions and visual references for larval and nymphal tick feeding on mice, focusing on the transmission and acquisition of Borrelia burgdorferi (sensu stricto). These methodologies can be applied to study other tick-borne diseases, tick vectorial capacity, and tick biology, aiding in the development of detection strategies to combat these infections.
Collapse
Affiliation(s)
- Aaron Scholl
- Tumor Vaccines and Biotechnology Branch, Division of Cellular Therapy 2, Office of Cellular Therapy and Human Tissue, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Bingjie Li
- Tumor Vaccines and Biotechnology Branch, Division of Cellular Therapy 2, Office of Cellular Therapy and Human Tissue, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - John Dennis
- Division of Veterinary Services, Office of Management, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Sandip De
- Tumor Vaccines and Biotechnology Branch, Division of Cellular Therapy 2, Office of Cellular Therapy and Human Tissue, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
2
|
McCausland JW, Kloos ZA, Irnov I, Sonnert ND, Zhou J, Putnick R, Mueller EA, Steere AC, Palm NW, Grimes CL, Jacobs-Wagner C. Bacterial and host enzymes modulate the inflammatory response produced by the peptidoglycan of the Lyme disease agent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631998. [PMID: 39829805 PMCID: PMC11741416 DOI: 10.1101/2025.01.08.631998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The spirochete Borrelia burgdorferi causes Lyme disease. In some patients, an excessive, dysregulated proinflammatory immune response can develop in joints leading to persistent arthritis. In such patients, persistence of antigenic B. burgdorferi peptidoglycan (PGBb) fragments within joint tissues may contribute to the immunopathogenesis, even after appropriate antibiotic treatment. In live B. burgdorferi cells, the outer membrane shields the polymeric PGBb sacculus from exposure to the immune system. However, unlike most diderm bacteria, B. burgdorferi releases PGBb turnover products into its environment due to the absence of recycling activity. In this study, we identified the released PGBb fragments using a mass spectrometry-based approach. By characterizing the l,d-carboxypeptidase activity of B. burgdorferi protein BB0605 (renamed DacA), we found that PGBb turnover largely occurs at sites of PGBb synthesis. In parallel, we demonstrated that the lytic transglycosylase activity associated with BB0259 (renamed MltS) releases PGBb fragments with 1,6-anhydro bond on their N-acetylmuramyl residues. Stimulation of human cell lines with various synthetic PGBb fragments revealed that 1,6-anhydromuramyl-containing PGBb fragments are poor inducers of a NOD2-dependent immune response relative to their hydrated counterparts. We also showed that the activity of the human N-acetylmuramyl-l-alanine amidase PGLYRP2, which reduces the immunogenicity of PGBb material, is low in joint (synovial) fluids relative to serum. Altogether, our findings suggest that MltS activity helps B. burgdorferi evade PG-based immune detection by NOD2 during growth despite shedding PGBb fragments and that PGBb-induced immunopathology likely results from host sensing of PGBb material from dead (lysed) spirochetes. Additionally, our results suggest the possibility that natural variation in PGLYRP2 activity may contribute to differences in susceptibility to PG-induced inflammation across tissues and individuals.
Collapse
Affiliation(s)
- Joshua W McCausland
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Zachary A Kloos
- Microbiology Program, Yale University, West Haven, Connecticut, USA
| | - Irnov Irnov
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Nicole D Sonnert
- Microbiology Program, Yale University, West Haven, Connecticut, USA
- Department of Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - Junhui Zhou
- Department of Chemistry and Biochemistry, University of Delaware, Neward, DE
| | - Rachel Putnick
- Department of Chemistry and Biochemistry, University of Delaware, Neward, DE
| | - Elizabeth A Mueller
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Alan C Steere
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah W Palm
- Department of Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Neward, DE
| | - Christine Jacobs-Wagner
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Lewis J, Lloyd VK, Robichaud GA. Development, Optimization, and Validation of a Quantitative PCR Assay for Borrelia burgdorferi Detection in Tick, Wildlife, and Human Samples. Pathogens 2024; 13:1034. [PMID: 39770294 PMCID: PMC11679815 DOI: 10.3390/pathogens13121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
Tick-borne pathogens are growing in importance for human and veterinary research worldwide. We developed, optimized, and validated a reliable quantitative PCR (qPCR; real-time PCR) assay to assess Borrelia burgdorferi infection by targeting two B. burgdorferi genes, ospA and flaB. When assessing previously tested tick samples, its performance surpassed the nested PCR in efficiency, sensitivity, and specificity. Since the detection of Borrelia is more difficult in mammalian samples, the qPCR assay was also assessed using wildlife tissues. For wildlife samples, the sensitivity and specificity of ospA primers, with the incorporation of a pre-amplification step, was equivalent or superior to the nested PCR. For human samples, no primer set was successful with human tissue without culture, but we detected Borrelia with ospA and flaB primers in 50% of the Lyme culture samples, corresponding to 60% of the participants with a Lyme disease diagnosis or suspicion. The specificity of amplification was confirmed by Sanger sequencing. The healthy participant culture samples were negative. This PCR-based direct detection assay performs well for the detection of Borrelia in different biological samples. Advancements in detection methods lead to a better surveillance of Borrelia in vectors and hosts, and, ultimately, enhance human and animal health.
Collapse
Affiliation(s)
- Julie Lewis
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
4
|
Bourgeois JS, Hu LT. Hitchhiker's Guide to Borrelia burgdorferi. J Bacteriol 2024; 206:e0011624. [PMID: 39140751 PMCID: PMC11411949 DOI: 10.1128/jb.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.
Collapse
Affiliation(s)
- Jeffrey S. Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Lemieux JE, Huang W, Hill N, Cerar T, Freimark L, Hernandez S, Luban M, Maraspin V, Bogovič P, Ogrinc K, Ruzič-Sabljič E, Lapierre P, Lasek-Nesselquist E, Singh N, Iyer R, Liveris D, Reed KD, Leong JM, Branda JA, Steere AC, Wormser GP, Strle F, Sabeti PC, Schwartz I, Strle K. Whole genome sequencing of human Borrelia burgdorferi isolates reveals linked blocks of accessory genome elements located on plasmids and associated with human dissemination. PLoS Pathog 2023; 19:e1011243. [PMID: 37651316 PMCID: PMC10470944 DOI: 10.1371/journal.ppat.1011243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 09/02/2023] Open
Abstract
Lyme disease is the most common vector-borne disease in North America and Europe. The clinical manifestations of Lyme disease vary based on the genospecies of the infecting Borrelia burgdorferi spirochete, but the microbial genetic elements underlying these associations are not known. Here, we report the whole genome sequence (WGS) and analysis of 299 B. burgdorferi (Bb) isolates derived from patients in the Eastern and Midwestern US and Central Europe. We develop a WGS-based classification of Bb isolates, confirm and extend the findings of previous single- and multi-locus typing systems, define the plasmid profiles of human-infectious Bb isolates, annotate the core and strain-variable surface lipoproteome, and identify loci associated with disseminated infection. A core genome consisting of ~900 open reading frames and a core set of plasmids consisting of lp17, lp25, lp36, lp28-3, lp28-4, lp54, and cp26 are found in nearly all isolates. Strain-variable (accessory) plasmids and genes correlate strongly with phylogeny. Using genetic association study methods, we identify an accessory genome signature associated with dissemination in humans and define the individual plasmids and genes that make up this signature. Strains within the RST1/WGS A subgroup, particularly a subset marked by the OspC type A genotype, have increased rates of dissemination in humans. OspC type A strains possess a unique set of strongly linked genetic elements including the presence of lp56 and lp28-1 plasmids and a cluster of genes that may contribute to their enhanced virulence compared to other genotypes. These features of OspC type A strains reflect a broader paradigm across Bb isolates, in which near-clonal genotypes are defined by strain-specific clusters of linked genetic elements, particularly those encoding surface-exposed lipoproteins. These clusters of genes are maintained by strain-specific patterns of plasmid occupancy and are associated with the probability of invasive infection.
Collapse
Affiliation(s)
- Jacob E. Lemieux
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Weihua Huang
- New York Medical College, Valhalla, New York, United States of America
- East Carolina University, Greenville, North Carolina, United States of America
| | - Nathan Hill
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Tjasa Cerar
- University of Ljubljana, Ljubljana, Slovenia
| | - Lisa Freimark
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sergio Hernandez
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Matteo Luban
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Vera Maraspin
- University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- University Medical Center Ljubljana, Ljubljana, Slovenia
| | | | | | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Erica Lasek-Nesselquist
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Navjot Singh
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Radha Iyer
- New York Medical College, Valhalla, New York, United States of America
| | - Dionysios Liveris
- New York Medical College, Valhalla, New York, United States of America
| | - Kurt D. Reed
- University of Wisconsin, Madison, Wisconsin, United States of America
| | - John M. Leong
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - John A. Branda
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Allen C. Steere
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary P. Wormser
- New York Medical College, Valhalla, New York, United States of America
| | - Franc Strle
- University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Pardis C. Sabeti
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard University, Cambridge, Massachusetts, United States of America
- Harvard T.H.Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Ira Schwartz
- New York Medical College, Valhalla, New York, United States of America
| | - Klemen Strle
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Flynn CD, Sandomierski M, Kim K, Lewis J, Lloyd V, Ignaszak A. Electrochemical Detection of Borrelia burgdorferi Using a Biomimetic Flow Cell System. ACS MEASUREMENT SCIENCE AU 2023; 3:208-216. [PMID: 37360035 PMCID: PMC10288608 DOI: 10.1021/acsmeasuresciau.3c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/28/2023]
Abstract
Lyme disease, caused by infection with pathogenic Borrelia bacteria, has emerged as a pervasive illness throughout North America and many other regions of the world in recent years, owing in part to climate-mediated habitat expansion of the tick vectors. Standard diagnostic testing has remained largely unchanged over the past several decades and is indirect, relying on detection of antibodies against the Borrelia pathogen, rather than detection of the pathogen itself. The development of new rapid, point-of-care tests for Lyme disease that directly detects the pathogen could drastically improve patient health by enabling faster and more frequent testing that could better inform patient treatment. Here, we describe a proof-of-concept electrochemical sensing approach to the detection of the Lyme disease-causing bacteria, which utilizes a biomimetic electrode to interact with the Borrelia bacteria that induce impedance alterations. In addition, the catch-bond mechanism between bacterial BBK32 protein and human fibronectin protein, which exhibits improved bond strength with increased tensile force, is tested within an electrochemical injection flow-cell to achieve Borrelia detection under shear stress.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3G8, Canada
- Department
of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Mariusz Sandomierski
- Department
of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Kelly Kim
- Department
of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Julie Lewis
- Department
of Biology, Mount Allison University, Sackville, NB E4L 1E2, Canada
| | - Vett Lloyd
- Department
of Biology, Mount Allison University, Sackville, NB E4L 1E2, Canada
| | - Anna Ignaszak
- Department
of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
7
|
Mukherjee PG, Liveris D, Hanincova K, Iyer R, Wormser GP, Huang W, Schwartz I. Borrelia burgdorferi Outer Surface Protein C Is Not the Sole Determinant of Dissemination in Mammals. Infect Immun 2023; 91:e0045622. [PMID: 36880751 PMCID: PMC10112133 DOI: 10.1128/iai.00456-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Lyme disease in the United States is most often caused by Borrelia burgdorferi sensu stricto. After a tick bite, the patient may develop erythema migrans at that site. If hematogenous dissemination occurs, the patient may then develop neurologic manifestations, carditis, or arthritis. Host-pathogen interactions include factors that contribute to hematogenous dissemination to other body sites. Outer surface protein C (OspC), a surface-exposed lipoprotein of B. burgdorferi, is essential during the early stages of mammalian infection. There is a high degree of genetic variation at the ospC locus, and certain ospC types are more frequently associated with hematogenous dissemination in patients, suggesting that OspC may be a major contributing factor to the clinical outcome of B. burgdorferi infection. In order to evaluate the role of OspC in B. burgdorferi dissemination, ospC was exchanged between B. burgdorferi isolates with different capacities to disseminate in laboratory mice, and these strains were then tested for their ability to disseminate in mice. The results indicated that the ability of B. burgdorferi to disseminate in mammalian hosts does not depend on OspC alone. The complete genome sequences of two closely related strains of B. burgdorferi with differing dissemination phenotypes were determined, but a specific genetic locus that could explain the differences in the phenotypes could not be definitively identified. The animal studies performed clearly demonstrated that OspC is not the sole determinant of dissemination. Future studies of the type described here with additional borrelial strains will hopefully clarify the genetic elements associated with hematogenous dissemination.
Collapse
Affiliation(s)
- Priyanka G. Mukherjee
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Dionysios Liveris
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Klára Hanincova
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Radha Iyer
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Gary P. Wormser
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Weihua Huang
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Ira Schwartz
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
8
|
Lemieux JE, Huang W, Hill N, Cerar T, Freimark L, Hernandez S, Luban M, Maraspin V, Bogovic P, Ogrinc K, Ruzic-Sabljic E, Lapierre P, Lasek-Nesselquist E, Singh N, Iyer R, Liveris D, Reed KD, Leong JM, Branda JA, Steere AC, Wormser GP, Strle F, Sabeti PC, Schwartz I, Strle K. Whole genome sequencing of Borrelia burgdorferi isolates reveals linked clusters of plasmid-borne accessory genome elements associated with virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530159. [PMID: 36909473 PMCID: PMC10002713 DOI: 10.1101/2023.02.26.530159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Lyme disease is the most common vector-borne disease in North America and Europe. The clinical manifestations of Lyme disease vary based on the genospecies of the infecting Borrelia burgdorferi spirochete, but the microbial genetic elements underlying these associations are not known. Here, we report the whole genome sequence (WGS) and analysis of 299 patient-derived B. burgdorferi sensu stricto ( Bbss ) isolates from patients in the Eastern and Midwestern US and Central Europe. We develop a WGS-based classification of Bbss isolates, confirm and extend the findings of previous single- and multi-locus typing systems, define the plasmid profiles of human-infectious Bbss isolates, annotate the core and strain-variable surface lipoproteome, and identify loci associated with disseminated infection. A core genome consisting of ∼800 open reading frames and a core set of plasmids consisting of lp17, lp25, lp36, lp28-3, lp28-4, lp54, and cp26 are found in nearly all isolates. Strain-variable (accessory) plasmids and genes correlate strongly with phylogeny. Using genetic association study methods, we identify an accessory genome signature associated with dissemination and define the individual plasmids and genes that make up this signature. Strains within the RST1/WGS A subgroup, particularly a subset marked by the OspC type A genotype, are associated with increased rates of dissemination. OspC type A strains possess a unique constellation of strongly linked genetic changes including the presence of lp56 and lp28-1 plasmids and a cluster of genes that may contribute to their enhanced virulence compared to other genotypes. The patterns of OspC type A strains typify a broader paradigm across Bbss isolates, in which genetic structure is defined by correlated groups of strain-variable genes located predominantly on plasmids, particularly for expression of surface-exposed lipoproteins. These clusters of genes are inherited in blocks through strain-specific patterns of plasmid occupancy and are associated with the probability of invasive infection.
Collapse
Affiliation(s)
- Jacob E Lemieux
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| | - Weihua Huang
- New York Medical College
- East Carolina University
| | - Nathan Hill
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| | | | | | | | - Matteo Luban
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| | | | | | | | | | | | | | | | | | | | | | - John M Leong
- Tufts University, Department of Molecular Biology and Microbiology
| | - John A Branda
- Massachusetts General Hospital, Harvard Medical School
| | | | | | | | - Pardis C Sabeti
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
- Harvard University
- Harvard T.H.Chan School of Public Health
| | | | - Klemen Strle
- Massachusetts General Hospital, Harvard Medical School
- Wadsworth Center
| |
Collapse
|
9
|
Cleveland DW, Anderson CC, Brissette CA. Borrelia miyamotoi: A Comprehensive Review. Pathogens 2023; 12:267. [PMID: 36839539 PMCID: PMC9967256 DOI: 10.3390/pathogens12020267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Borrelia miyamotoi is an emerging tick-borne pathogen in the Northern Hemisphere and is the causative agent of Borrelia miyamotoi disease (BMD). Borrelia miyamotoi is vectored by the same hard-bodied ticks as Lyme disease Borrelia, yet phylogenetically groups with relapsing fever Borrelia, and thus, has been uniquely labeled a hard tick-borne relapsing fever Borrelia. Burgeoning research has uncovered new aspects of B. miyamotoi in human patients, nature, and the lab. Of particular interest are novel findings on disease pathology, prevalence, diagnostic methods, ecological maintenance, transmission, and genetic characteristics. Herein, we review recent literature on B. miyamotoi, discuss how findings adapt to current Borrelia doctrines, and briefly consider what remains unknown about B. miyamotoi.
Collapse
Affiliation(s)
| | | | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
10
|
The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitol Res 2022; 121:781-803. [PMID: 35122516 PMCID: PMC8816687 DOI: 10.1007/s00436-022-07445-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Beside mosquitoes, ticks are well-known vectors of different human pathogens. In the Northern Hemisphere, Lyme borreliosis (Eurasia, LB) or Lyme disease (North America, LD) is the most commonly occurring vector-borne infectious disease caused by bacteria of the genus Borrelia which are transmitted by hard ticks of the genus Ixodes. The reported incidence of LB in Europe is about 22.6 cases per 100,000 inhabitants annually with a broad range depending on the geographical area analyzed. However, the epidemiological data are largely incomplete, because LB is not notifiable in all European countries. Furthermore, not only differ reporting procedures between countries, there is also variation in case definitions and diagnostic procedures. Lyme borreliosis is caused by several species of the Borrelia (B.) burgdorferi sensu lato (s.l.) complex which are maintained in complex networks including ixodid ticks and different reservoir hosts. Vector and host influence each other and are affected by multiple factors including climate that have a major impact on their habitats and ecology. To classify factors that influence the risk of transmission of B. burgdorferi s.l. to their different vertebrate hosts as well as to humans, we briefly summarize the current knowledge about the pathogens including their astonishing ability to overcome various host immune responses, regarding the main vector in Europe Ixodes ricinus, and the disease caused by borreliae. The research shows, that a higher standardization of case definition, diagnostic procedures, and standardized, long-term surveillance systems across Europe is necessary to improve clinical and epidemiological data.
Collapse
|
11
|
Replogle AJ, Sexton C, Young J, Kingry LC, Schriefer ME, Dolan M, Johnson TL, Connally NP, Padgett KA, Petersen JM. Isolation of Borrelia miyamotoi and other Borreliae using a modified BSK medium. Sci Rep 2021; 11:1926. [PMID: 33479281 PMCID: PMC7820315 DOI: 10.1038/s41598-021-81252-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/16/2020] [Indexed: 12/28/2022] Open
Abstract
Borrelia spirochetes are the causative agents of Lyme borreliosis (LB) and relapsing fever (RF). Despite the steady rise in infections and the identification of new species causing human illness over the last decade, isolation of borreliae in culture has become increasingly rare. A modified Barbour-Stoenner-Kelly (BSK) media formulation, BSK-R, was developed for isolation of the emerging RF pathogen, Borrelia miyamotoi. BSK-R is a diluted BSK-II derivative supplemented with Lebovitz’s L-15, mouse and fetal calf serum. Decreasing the concentration of CMRL 1066 and other components was essential for growth of North American B. miyamotoi. Sixteen B. miyamotoi isolates, originating from Ixodes scapularis ticks, rodent and human blood collected in the eastern and upper midwestern United States, were isolated and propagated to densities > 108 spirochetes/mL. Growth of five other RF and ten different LB borreliae readily occurred in BSK-R. Additionally, primary culture recovery of 20 isolates of Borrelia hermsii, Borrelia turicatae, Borrelia burgdorferi and Borrelia mayonii was achieved in BSK-R using whole blood from infected patients. These data indicate this broadly encompassing borreliae media can aid in in vitro culture recovery of RF and LB spirochetes, including the direct isolation of new and emerging human pathogens.
Collapse
Affiliation(s)
- Adam J Replogle
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Christopher Sexton
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - John Young
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Luke C Kingry
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Martin E Schriefer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Marc Dolan
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Tammi L Johnson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA.,Texas A&M AgriLife Research, Uvalde, TX, 78801, USA
| | - Neeta P Connally
- Department of Biological and Environmental Sciences, Western Connecticut State University, Danbury, CT, 06810, USA
| | - Kerry A Padgett
- California Department of Public Health, Infectious Diseases Branch/Vector-Borne Disease Section, Marina Bay Parkway, Richmond, CA, 94804, USA
| | - Jeannine M Petersen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA.
| |
Collapse
|
12
|
Udziela S, Biesiada G, Osiewicz M, Michalak M, Stażyk K, Garlicki A, Czepiel J. Musculoskeletal manifestations of Lyme borreliosis - a review. Arch Med Sci 2020; 18:726-731. [PMID: 35591816 PMCID: PMC9102650 DOI: 10.5114/aoms.2020.96458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/23/2020] [Indexed: 12/03/2022] Open
Abstract
Lyme borreliosis (LB) is a zoonotic disease caused by Gram-negative bacteria Borrelia burgdorferi sensu lato. The majority of reported cases of LB originate in the northern hemisphere, mostly in the US and Europe. One of the typical manifestations of LB are musculoskeletal symptoms; they may appear in any of the three LB stages. The diagnosis is based on clinical manifestations and confirmed by serological tests. One course of antibiotic therapy is sufficient for LB to dissipate in most cases, although for some patients, the symptoms subside gradually even after completion of therapy. Patients who have been demonstrated to have specific antibodies but are symptomless should not be treated. In instances where the advised treatment proved to be unsuccessful, patients should be referred to rheumatologist for additional diagnostics. The goal of this review is to update physicians on current scientific knowledge on musculoskeletal manifestations of LB.
Collapse
Affiliation(s)
| | - Grażyna Biesiada
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Osiewicz
- Department of Integrated Dentistry, Dental Institute, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Mateusz Michalak
- Students’ Scientific Society Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Stażyk
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Aleksander Garlicki
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Czepiel
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
13
|
Caimano MJ. Generation of Mammalian Host-Adapted Borrelia burgdorferi by Cultivation in Peritoneal Dialysis Membrane Chamber Implantation in Rats. Methods Mol Biol 2018; 1690:35-45. [PMID: 29032534 DOI: 10.1007/978-1-4939-7383-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The transmission, survival, and virulence of Borrelia burgdorferi depend upon the spirochete's ability to modulate its transcriptome as it cycles between its arthropod vector and reservoir host. This complex adaptive process is collectively referred to as "host-adaptation." The paucibacillary nature of borrelial infections precludes the detailed analysis of host adaptation within infected mammalian tissues. To circumvent this limitation, we (J Clin Invest 101:2240-2250, 1998) developed a model system whereby spirochetes are cultivated within dialysis membrane chambers (DMCs) surgically implanted within the peritoneal cavity of a rat. Spirochetes within DMCs are exposed to many, if not all, of the environmental signals and physiological cues required for mammalian host adaptation but are protected from clearance by the host's immune system.
Collapse
Affiliation(s)
- Melissa J Caimano
- Department of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, 06030-3715, USA.
- Department of Pediatrics, UConn Health, 263 Farmington Ave., Farmington, CT, 06030-3715, USA.
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Ave., Farmington, CT, 06030-3715, USA.
| |
Collapse
|
14
|
The Accuracy of Diagnostic Tests for Lyme Disease in Humans, A Systematic Review and Meta-Analysis of North American Research. PLoS One 2016; 11:e0168613. [PMID: 28002488 PMCID: PMC5176185 DOI: 10.1371/journal.pone.0168613] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/02/2016] [Indexed: 12/03/2022] Open
Abstract
There has been an increasing incidence of Lyme disease (LD) in Canada and the United States corresponding to the expanding range of the Ixodes tick vector and Lyme disease agent (Borrelia burgdorferi sensu stricto). There are many diagnostic tests for LD available in North America, all of which have some performance issues, and physicians are concerned about the appropriate use and interpretation of these tests. The objective of this systematic review is to summarize the North American evidence on the accuracy of diagnostic tests and test regimes at various stages of LD. Included in the review are 48 studies on diagnostic tests used in North America published since 1995. Thirteen studies examined a two-tier serological test protocol vs. clinical diagnosis, 24 studies examined single assays vs. clinical diagnosis, 9 studies examined single immunoblot vs. clinical diagnosis, 7 studies compared culture or PCR direct detection methods vs. clinical diagnosis, 22 studies compared two or more tests with each other and 8 studies compared a two-tiered serological test protocol to another test. Recent studies examining the sensitivity and specificity of various test protocols noted that the Immunetics® C6 B. burgdorferi ELISA™ and the two tier approach have superior specificity compared to proposed replacements, and the CDC recommended western blot algorithm has equivalent or superior specificity over other proposed test algorithms. There is a dramatic increase in test sensitivity with progression of B. burgdorferi infection from early to late LD. Direct detection methods, culture and PCR of tissue or blood samples were not as sensitive or timely compared to serological testing. It was also noted that there are a large number of both commercial (n = 42) and in-house developed tests used by private laboratories which have not been evaluated in the primary literature.
Collapse
|
15
|
Stone BL, Brissette CA. Laboratory Cultivation and Maintenance of Borrelia miyamotoi. ACTA ACUST UNITED AC 2016; 42:12F.1.1-12F.1.6. [PMID: 27517334 DOI: 10.1002/cpmc.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Borrelia miyamotoi is a relapsing fever tick-borne pathogen found in Ixodes spp. (hard) ticks. In vitro culturing has proven difficult despite initial reports of cultures maintained in Barbour-Stoenner-Kelly-II (BSK-II) medium. The ability to culture in vitro opens many avenues for investigating the genetics and physiology of bacterial species. This unit describes methods for the maintenance and cultivation of B. miyamotoi in liquid medium. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Brandee L Stone
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Catherine A Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
16
|
Borrelia burgdorferi induces a type I interferon response during early stages of disseminated infection in mice. BMC Microbiol 2016; 16:29. [PMID: 26957120 PMCID: PMC4784397 DOI: 10.1186/s12866-016-0644-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/25/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Lyme borrelia genotypes differ in their capacity to cause disseminated disease. Gene array analysis was employed to profile the host transcriptome induced by Borrelia burgdorferi strains with different capacities for causing disseminated disease in the blood of C3H/HeJ mice during early infection. RESULTS B. burgdorferi B515, a clinical isolate that causes disseminated infection in mice, differentially regulated 236 transcripts (P < 0.05 by ANOVA, with fold change of at least 2). The 216 significantly induced transcripts included interferon (IFN)-responsive genes and genes involved in immunity and inflammation. In contrast, B. burgdorferi B331, a clinical isolate that causes transient skin infection but does not disseminate in C3H/HeJ mice, stimulated changes in only a few genes (1 induced, 4 repressed). Transcriptional regulation of type I IFN and IFN-related genes was measured by quantitative RT-PCR in mouse skin biopsies collected from the site of infection 24 h after inoculation with B. burgdorferi. The mean values for transcripts of Ifnb, Cxcl10, Gbp1, Ifit1, Ifit3, Irf7, Mx1, and Stat2 were found to be significantly increased in B. burgdorferi strain B515-infected mice relative to the control group. In contrast, transcription of these genes was not significantly changed in response to B. burgdorferi strain B331 or B31-4, a mutant that is unable to disseminate. CONCLUSIONS These results establish a positive association between the disseminating capacity of B. burgdorferi and early type I IFN induction in a murine model of Lyme disease.
Collapse
|
17
|
Mason LM, Herkes EA, Krupna-Gaylord MA, Oei A, Poll TVD, Wormser GP, Schwartz I, Petzke MM, Hovius JW. Borrelia burgdorferi clinical isolates induce human innate immune responses that are not dependent on genotype. Immunobiology 2015; 220:1141-50. [DOI: 10.1016/j.imbio.2015.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022]
|
18
|
Love AC, Schwartz I, Petzke MM. Induction of indoleamine 2,3-dioxygenase by Borrelia burgdorferi in human immune cells correlates with pathogenic potential. J Leukoc Biol 2015; 97:379-90. [PMID: 25420916 PMCID: PMC4304421 DOI: 10.1189/jlb.4a0714-339r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/16/2014] [Accepted: 10/07/2014] [Indexed: 12/16/2022] Open
Abstract
Borrelia burgdorferi, the bacterial agent of Lyme disease, induces the production of type I IFNs by human DCs through TLR7 and TLR9 signaling. This type I IFN response occurs in a genotype-dependent manner, with significantly higher levels of IFN-α elicited by B. burgdorferi strains that have a greater capacity for causing disseminated infection. A B. burgdorferi strain that was previously shown to induce IFN-α was found to elicit significantly higher levels of IDO1 protein and its downstream metabolite, kynurenine, compared with a B. burgdorferi mutant that lacks a single linear plasmid (lp36); this mutant is unable to induce IFN-α and is severely attenuated for infectivity in mice. Production of IDO by mDC and pDC populations, present within human PBMCs, was concomitant with increased expression of the DC maturation markers, CD83 and CCR7. The defects in IDO production and expression of CD83 and CCR7 could be restored by complementation of the mutant with lp36. Maximal IDO production in response to the wild-type strain was dependent on contributions by both type I IFN and IFN-γ, the type II IFN. Induction of IDO was mediated by the same TLR7-dependent recognition of B. burgdorferi RNA that contributes to the production of type I IFNs by human DCs. The ability of IFN-α-inducing B. burgdorferi strains to stimulate production of IDO and kynurenines may be a mechanism that is used by the pathogen to promote localized immunosuppression and facilitate hematogenous dissemination.
Collapse
Affiliation(s)
- Andrea C Love
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Mary M Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
19
|
Iyer R, Caimano MJ, Luthra A, Axline D, Corona A, Iacobas DA, Radolf JD, Schwartz I. Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host adaptation. Mol Microbiol 2014; 95:509-38. [PMID: 25425211 DOI: 10.1111/mmi.12882] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/31/2022]
Abstract
Borrelia burgdorferi, the agent of Lyme disease, is maintained in nature within an enzootic cycle involving a mammalian reservoir and an Ixodes sp. tick vector. The transmission, survival and pathogenic potential of B. burgdorferi depend on the bacterium's ability to modulate its transcriptome as it transits between vector and reservoir host. Herein, we employed an amplification-microarray approach to define the B. burgdorferi transcriptomes in fed larvae, fed nymphs and in mammalian host-adapted organisms cultivated in dialysis membrane chambers. The results show clearly that spirochetes exhibit unique expression profiles during each tick stage and during cultivation within the mammal; importantly, none of these profiles resembles that exhibited by in vitro grown organisms. Profound shifts in transcript levels were observed for genes encoding known or predicted lipoproteins as well as proteins involved in nutrient uptake, carbon utilization and lipid synthesis. Stage-specific expression patterns of chemotaxis-associated genes also were noted, suggesting that the composition and interactivities of the chemotaxis machinery components vary considerably in the feeding tick and mammal. The results as a whole make clear that environmental sensing by B. burgdorferi directly or indirectly drives an extensive and tightly integrated modulation of cell envelope constituents, chemotaxis/motility machinery, intermediary metabolism and cellular physiology. These findings provide the necessary transcriptional framework for delineating B. burgdorferi regulatory pathways throughout the enzootic cycle as well as defining the contribution(s) of individual genes to spirochete survival in nature and virulence in humans.
Collapse
Affiliation(s)
- Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Margos G, Stockmeier S, Hizo-Teufel C, Hepner S, Fish D, Dautel H, Sing A, Dzaferovic E, Rieger M, Jungnick S, Binder K, Straubinger RK, Fingerle V. Long-term in vitro cultivation of Borrelia miyamotoi. Ticks Tick Borne Dis 2014; 6:181-4. [PMID: 25561082 DOI: 10.1016/j.ttbdis.2014.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
Borrelia are fastidious bacteria some of which are difficult to grow in vitro. Here, we report a method for successful continuous in vitro cultivation of the emerging pathogen Borrelia miyamotoi. The type and quantity of serum as well as the atmosphere were critical for successful in vitro cultivation. Optimal growth was achieved using 50% pooled human serum and an atmosphere of 6% CO2.
Collapse
Affiliation(s)
- Gabriele Margos
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany; German National Reference Centre for Borrelia, Oberschleissheim, Germany.
| | - Sylvia Stockmeier
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany; German National Reference Centre for Borrelia, Oberschleissheim, Germany
| | - Cecilia Hizo-Teufel
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany; German National Reference Centre for Borrelia, Oberschleissheim, Germany
| | - Sabrina Hepner
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
| | - Durland Fish
- Yale School of Public Health, New Haven, CT, USA
| | | | - Andreas Sing
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Eldina Dzaferovic
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
| | - Melissa Rieger
- German National Reference Centre for Borrelia, Oberschleissheim, Germany; Ludwig-Maximilians-University, Munich, Germany
| | - Sabrina Jungnick
- German National Reference Centre for Borrelia, Oberschleissheim, Germany; Ludwig-Maximilians-University, Munich, Germany
| | - Katrin Binder
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
| | | | - Volker Fingerle
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany; German National Reference Centre for Borrelia, Oberschleissheim, Germany
| |
Collapse
|
21
|
Krupna-Gaylord MA, Liveris D, Love AC, Wormser GP, Schwartz I, Petzke MM. Induction of type I and type III interferons by Borrelia burgdorferi correlates with pathogenesis and requires linear plasmid 36. PLoS One 2014; 9:e100174. [PMID: 24945497 PMCID: PMC4063763 DOI: 10.1371/journal.pone.0100174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 05/23/2014] [Indexed: 12/28/2022] Open
Abstract
The capacity for Borrelia burgdorferi to cause disseminated infection in humans or mice is associated with the genotype of the infecting strain. The cytokine profiles elicited by B. burgdorferi clinical isolates of different genotype (ribosomal spacer type) groups were assessed in a human PBMC co-incubation model. RST1 isolates, which are more frequently associated with disseminated Lyme disease in humans and mice, induced significantly higher levels of IFN-α and IFN-λ1/IL29 relative to RST3 isolates, which are less frequently associated with disseminated infection. No differences in the protein concentrations of IFN-γ, IL-1β, IL-6, IL-8, IL-10 or TNF-α were observed between isolates of differing genotype. The ability of B. burgdorferi to induce type I and type III IFNs was completely dependent on the presence of linear plasmid (lp) 36. An lp36-deficient B. burgdorferi mutant adhered to, and was internalized by, PBMCs and specific dendritic cell (DC) subsets less efficiently than its isogenic B31 parent strain. The association defect with mDC1s and pDCs could be restored by complementation of the mutant with the complete lp36. The RST1 clinical isolates studied were found to contain a 2.5-kB region, located in the distal one-third of lp36, which was not present in any of the RST3 isolates tested. This divergent region of lp36 may encode one or more factors required for optimal spirochetal recognition and the production of type I and type III IFNs by human DCs, thus suggesting a potential role for DCs in the pathogenesis of B. burgdorferi infection.
Collapse
Affiliation(s)
- Michelle A. Krupna-Gaylord
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Dionysios Liveris
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Andrea C. Love
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Gary P. Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Mary M. Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Borrelia burgdorferi RNA induces type I and III interferons via Toll-like receptor 7 and contributes to production of NF-κB-dependent cytokines. Infect Immun 2014; 82:2405-16. [PMID: 24664510 DOI: 10.1128/iai.01617-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi elicits a potent cytokine response through activation of multiple signaling receptors on innate immune cells. Spirochetal lipoproteins initiate expression of NF-κB-dependent cytokines primarily via TLR2, whereas type I interferon (IFN) production is induced through the endosomal receptors TLR7 and TLR9 in human dendritic cells and TLR8 in monocytes. We demonstrate that DNA and RNA are the B. burgdorferi components that initiate a type I IFN response by human peripheral blood mononuclear cells (PBMCs). IFN-α protein and transcripts for IRF7, MX1, and OAS1 were induced by endosomal delivery of B. burgdorferi DNA, RNA, or whole-cell lysate, but not by lysate that had been treated with DNase and RNase. Induction of IFN-α and IFN-λ1, a type III IFN, by B. burgdorferi RNA or live spirochetes required TLR7-dependent signaling and correlated with significantly enhanced transcription and expression of IRF7 but not IRF3. Induction of type I and type III IFNs by B. burgdorferi RNA could be completely abrogated by a TLR7 inhibitor, IRS661. In addition to type I and type III IFNs, B. burgdorferi RNA contributed to the production of the NF-κB-dependent cytokines, IFN-γ, interleukin-10 (IL-10), IL-1β, IL-6, and tumor necrosis factor alpha (TNF-α), by human PBMCs. Collectively, these data indicate that TLR7-dependent recognition of RNA is pivotal for IFN-α and IFN-λ1 production by human PBMCs, and that RNA-initiated signaling contributes to full potentiation of the cytokine response generated during B. burgdorferi infection.
Collapse
|
23
|
Ružić-Sabljić E, Maraspin V, Cimperman J, Strle F, Lotrič-Furlan S, Stupica D, Cerar T. Comparison of isolation rate of Borrelia burgdorferi sensu lato in two different culture media, MKP and BSK-H. Clin Microbiol Infect 2013; 20:636-41. [PMID: 24237688 DOI: 10.1111/1469-0691.12457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 11/28/2022]
Abstract
The aim of the study was to evaluate two culture media for Borrelia burgdorferi sensu lato isolation from a 5 × 2 × 2 mm skin biopsy that was dissected into two pieces and inoculated into modified Kelly-Pettenkofer (MKP) and Barbour-Stoenner-Kelly-H (BSK-H) medium. Samples were incubated at 33°C for up to 9 weeks. Borrelia species was determined by MluI-restriction of whole genome or by MseI-restriction of PCR product. We determined the proportion of isolation rate, 'slow-growers', contaminated specimens and Borrelia species in the two media. In each of the two media 235 skin specimens were cultivated. We found 90/470 (19.1%) contaminated cultures (BSK-H 67/235, 28.5%; MKP 23/235, 9.8%; p <0.0001). Borrelia growth was ascertained in 59/235 (25.1%) BSK-H and 102/235 (43.4%) MKP cultures (p <0.0001); the corresponding values for non-contaminated cultures were 59/168 (35.1%) and 102/212 (48.1%); (p 0.003). Fourteen specimens were positive only in BSK-H, 57 solely in MKP, and 43 in both culture media. Slow growth was present in 8/59 (13.6%) BSK-H and in 4/98 (4.1%) MKP positive cultures (p 0.019). Borrelia afzelii was identified in 44/51 (86.3%) BSK-H and in 88/98 (89.8%) MKP culture-positive samples; the corresponding findings for Boreelia garinii and B. burgdorferi sensu stricto were 6/51 (11.8%) and 9/98 (9.2%), and 1/51 (1.9%) and 1/98 (1.0%), for BSK-H and MKP, respectively. Comparison of MKP and BSK-H medium for Borrelia culturing from skin specimens of European patients with erythema migrans revealed the advantage of MKP over BSK-H.
Collapse
Affiliation(s)
- E Ružić-Sabljić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
24
|
Hanincova K, Mukherjee P, Ogden NH, Margos G, Wormser GP, Reed KD, Meece JK, Vandermause MF, Schwartz I. Multilocus sequence typing of Borrelia burgdorferi suggests existence of lineages with differential pathogenic properties in humans. PLoS One 2013; 8:e73066. [PMID: 24069170 PMCID: PMC3775742 DOI: 10.1371/journal.pone.0073066] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
The clinical manifestations of Lyme disease, caused by Borrelia burgdorferi, vary considerably in different patients, possibly due to infection by strains with varying pathogenicity. Both rRNA intergenic spacer and ospC typing methods have proven to be useful tools for categorizing B. burgdorferi strains that vary in their tendency to disseminate in humans. Neither method, however, is suitable for inferring intraspecific relationships among strains that are important for understanding the evolution of pathogenicity and the geographic spread of disease. In this study, multilocus sequence typing (MLST) was employed to investigate the population structure of B. burgdorferi recovered from human Lyme disease patients. A total of 146 clinical isolates from patients in New York and Wisconsin were divided into 53 sequence types (STs). A goeBURST analysis, that also included previously published STs from the northeastern and upper Midwestern US and adjoining areas of Canada, identified 11 major and 3 minor clonal complexes, as well as 14 singletons. The data revealed that patients from New York and Wisconsin were infected with two distinct, but genetically and phylogenetically closely related, populations of B. burgdorferi. Importantly, the data suggest the existence of B. burgdorferi lineages with differential capabilities for dissemination in humans. Interestingly, the data also indicate that MLST is better able to predict the outcome of localized or disseminated infection than is ospC typing.
Collapse
Affiliation(s)
- Klara Hanincova
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| | - Priyanka Mukherjee
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Nicholas H. Ogden
- Zoonoses Division, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Gabriele Margos
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich and National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Gary P. Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Kurt D. Reed
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jennifer K. Meece
- Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America
| | - Mary F. Vandermause
- Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| |
Collapse
|
25
|
Genome sequence of Borrelia afzelii Strain HLJ01, isolated from a patient in China. J Bacteriol 2013; 194:7014-5. [PMID: 23209254 DOI: 10.1128/jb.01863-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the genome sequence of Borrelia afzelii strain HLJ01, isolated from a patient with Lyme disease in China. It is the first report of the whole genome of a B. burgdorferi sensu lato isolate from a human in China.
Collapse
|
26
|
Abstract
We announce the draft genome sequence of Borrelia garinii strain NMJW1, isolated from Ixodes persulcatus in northeastern China. The 902,789-bp linear chromosome (28.4% GC content) contains 813 open reading frames, 33 tRNAs, and 4 complete rRNAs.
Collapse
|
27
|
Pappas CJ, Iyer R, Petzke MM, Caimano MJ, Radolf JD, Schwartz I. Borrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzootic cycle. PLoS Pathog 2011; 7:e1002102. [PMID: 21750672 PMCID: PMC3131272 DOI: 10.1371/journal.ppat.1002102] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/18/2011] [Indexed: 12/02/2022] Open
Abstract
Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a vector-borne pathogen that cycles between a mammalian host and tick vector. This complex life cycle requires that the spirochete modulate its gene expression program to facilitate growth and maintenance in these diverse milieus. B. burgdorferi contains an operon that is predicted to encode proteins that would mediate the uptake and conversion of glycerol to dihydroxyacetone phosphate. Previous studies indicated that expression of the operon is elevated at 23°C and is repressed in the presence of the alternative sigma factor RpoS, suggesting that glycerol utilization may play an important role during the tick phase. This possibility was further explored in the current study by expression analysis and mutagenesis of glpD, a gene predicted to encode glycerol 3-phosphate dehydrogenase. Transcript levels for glpD were significantly lower in mouse joints relative to their levels in ticks. Expression of GlpD protein was repressed in an RpoS-dependent manner during growth of spirochetes within dialysis membrane chambers implanted in rat peritoneal cavities. In medium supplemented with glycerol as the principal carbohydrate, wild-type B. burgdorferi grew to a significantly higher cell density than glpD mutant spirochetes during growth in vitro at 25°C. glpD mutant spirochetes were fully infectious in mice by either needle or tick inoculation. In contrast, glpD mutants grew to significantly lower densities than wild-type B. burgdorferi in nymphal ticks and displayed a replication defect in feeding nymphs. The findings suggest that B. burgdorferi undergoes a switch in carbohydrate utilization during the mammal to tick transition. Further, the results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness. Borrelia burgdorferi is the vector-borne pathogen that causes Lyme disease. It has a complex life cycle that involves growth in a tick vector and a mammalian host — two diverse environments that present B. burgdorferi with alternative carbohydrate sources for support of growth. Previous studies suggested that glycerol may be an important nutrient in the tick vector. Here we show that genes predicted to be involved in glycerol metabolism have significantly elevated expression during all tick stages. Repression of expression in the mammalian host is dependent on the alternative sigma factor, RpoS. A mutant that cannot convert glycerol into dihydroxyacetone phosphate to support glycolysis was able to infect mice. In contrast, the mutant was present at significantly lower levels in nymphal ticks, its replication was delayed during nymphal feeding and longer feeding times were required for transmission from nymph to mouse. The results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness.
Collapse
Affiliation(s)
- Christopher J. Pappas
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Mary M. Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Sapi E, Kaur N, Anyanwu S, Luecke DF, Datar A, Patel S, Rossi M, Stricker RB. Evaluation of in-vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect Drug Resist 2011; 4:97-113. [PMID: 21753890 PMCID: PMC3132871 DOI: 10.2147/idr.s19201] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Lyme disease is a tick-borne illness caused by the spirochete Borrelia burgdorferi. Although antibiotic therapy is usually effective early in the disease, relapse may occur when administration of antibiotics is discontinued. Studies have suggested that resistance and recurrence of Lyme disease might be due to formation of different morphological forms of B. burgdorferi, namely round bodies (cysts) and biofilm-like colonies. Better understanding of the effect of antibiotics on all morphological forms of B. burgdorferi is therefore crucial to provide effective therapy for Lyme disease. METHODS Three morphological forms of B. burgdorferi (spirochetes, round bodies, and biofilm-like colonies) were generated using novel culture methods. Minimum inhibitory concentration and minimum bactericidal concentration of five antimicrobial agents (doxycycline, amoxicillin, tigecycline, metronidazole, and tinidazole) against spirochetal forms of B. burgdorferi were evaluated using the standard published microdilution technique. The susceptibility of spirochetal and round body forms to the antibiotics was then tested using fluorescent microscopy (BacLight™ viability staining) and dark field microscopy (direct cell counting), and these results were compared with the microdilution technique. Qualitative and quantitative effects of the antibiotics against biofilm-like colonies were assessed using fluorescent microscopy and dark field microscopy, respectively. RESULTS Doxycycline reduced spirochetal structures ∼90% but increased the number of round body forms about twofold. Amoxicillin reduced spirochetal forms by ∼85%-90% and round body forms by ∼68%, while treatment with metronidazole led to reduction of spirochetal structures by ∼90% and round body forms by ∼80%. Tigecycline and tinidazole treatment reduced both spirochetal and round body forms by ∼80%-90%. When quantitative effects on biofilm-like colonies were evaluated, the five antibiotics reduced formation of these colonies by only 30%-55%. In terms of qualitative effects, only tinidazole reduced viable organisms by ∼90%. Following treatment with the other antibiotics, viable organisms were detected in 70%-85% of the biofilm-like colonies. CONCLUSION Antibiotics have varying effects on the different morphological forms of B. burgdorferi. Persistence of viable organisms in round body forms and biofilm-like colonies may explain treatment failure and persistent symptoms following antibiotic therapy of Lyme disease.
Collapse
Affiliation(s)
- Eva Sapi
- Lyme Disease Research Group, Department of Biology and Environmental Sciences, University of New Haven, New Haven, CT, USA
| | - Navroop Kaur
- Lyme Disease Research Group, Department of Biology and Environmental Sciences, University of New Haven, New Haven, CT, USA
| | - Samuel Anyanwu
- Lyme Disease Research Group, Department of Biology and Environmental Sciences, University of New Haven, New Haven, CT, USA
| | - David F Luecke
- Lyme Disease Research Group, Department of Biology and Environmental Sciences, University of New Haven, New Haven, CT, USA
| | - Akshita Datar
- Lyme Disease Research Group, Department of Biology and Environmental Sciences, University of New Haven, New Haven, CT, USA
| | - Seema Patel
- Lyme Disease Research Group, Department of Biology and Environmental Sciences, University of New Haven, New Haven, CT, USA
| | - Michael Rossi
- Lyme Disease Research Group, Department of Biology and Environmental Sciences, University of New Haven, New Haven, CT, USA
| | | |
Collapse
|
29
|
Banik S, Terekhova D, Iyer R, Pappas CJ, Caimano MJ, Radolf JD, Schwartz I. BB0844, an RpoS-regulated protein, is dispensable for Borrelia burgdorferi infectivity and maintenance in the mouse-tick infectious cycle. Infect Immun 2011; 79:1208-17. [PMID: 21173312 PMCID: PMC3067486 DOI: 10.1128/iai.01156-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 12/29/2022] Open
Abstract
The genome of Borrelia burgdorferi, the causative agent of Lyme disease, is comprised of a large linear chromosome and numerous smaller linear and circular plasmids. B. burgdorferi exhibits substantial genomic variation, and previous studies revealed genotype-specific variation at the right chromosomal telomere. A correlation has also been established between genotype and invasiveness. The correlation between chromosome length and genotype and between genotype and invasiveness suggested that a gene(s) at the right chromosome telomere may be required for virulence. Of particular interest was bb0844, an RpoS-regulated gene at the right telomere, the expression of which is induced when the spirochete undergoes adaptation to the mammalian host. The structure of the right chromosomal telomere was examined in 53 B. burgdorferi clinical isolates of various genotypes. Four distinct patterns were observed for bb0844: (i) chromosomal localization, (ii) plasmid localization, (iii) presence on both chromosome and plasmid, and (iv) complete absence. These patterns correlated with the B. burgdorferi genotype. On the basis of available sequence data, we propose a mechanism for the genomic rearrangements that accounts for the variability in bb0844 genomic localization. To further explore the role of BB0844 in the spirochete life cycle, a bb0844 deletion mutant was constructed by allelic exchange, and the viability of wild-type and bb0844 deletion mutants was examined in an experimental mouse-tick infection model. The bb0844 mutant was fully infectious in C3H/HeJ mice by either needle inoculation or tick transmission with B. burgdorferi-infected Ixodes scapularis larvae. Naïve larval ticks acquired both wild-type and mutant spirochetes with equal efficiency from B. burgdorferi-infected mice. The results demonstrate that BB0844 is not required for spirochete viability, pathogenicity, or maintenance in the tick vector or the mammalian host. At present, a defined role for BB0844 in B. burgdorferi cannot be ascertained.
Collapse
Affiliation(s)
- Sukalyani Banik
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, Departments of Medicine, Pediatrics, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Darya Terekhova
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, Departments of Medicine, Pediatrics, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, Departments of Medicine, Pediatrics, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Christopher J. Pappas
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, Departments of Medicine, Pediatrics, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Melissa J. Caimano
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, Departments of Medicine, Pediatrics, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Justin D. Radolf
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, Departments of Medicine, Pediatrics, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, Departments of Medicine, Pediatrics, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
30
|
Bugrysheva JV, Godfrey HP, Schwartz I, Cabello FC. Patterns and regulation of ribosomal RNA transcription in Borrelia burgdorferi. BMC Microbiol 2011; 11:17. [PMID: 21251259 PMCID: PMC3037291 DOI: 10.1186/1471-2180-11-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 01/20/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Borrelia burgdorferi contains one 16S and two tandem sets of 23S-5S ribosomal (r) RNA genes whose patterns of transcription and regulation are unknown but are likely to be critical for survival and persistence in its hosts. RESULTS RT-PCR of B. burgdorferi N40 and B31 revealed three rRNA region transcripts: 16S rRNA-alanine transfer RNA (tRNA Ala); tRNA Ile; and both sets of 23S-5S rRNA. At 34°C, there were no differences in growth rate or in accumulation of total protein, DNA and RNA in B31 cultured in Barbour-Stoenner-Kelly (BSK)-H whether rabbit serum was present or not. At 23°C, B31 grew more slowly in serum-containing BSK-H than at 34°C. DNA per cell was higher in cells in exponential as compared to stationary phase at either temperature; protein per cell was similar at both temperatures in both phases. Similar amounts of rRNA were produced in exponential phase at both temperatures, and rRNA was down-regulated in stationary phase at either temperature. Interestingly, a rel Bbu deletion mutant unable to generate (p)ppGpp did not down-regulate rRNA at transition to stationary phase in serum-containing BSK-H at 34°C, similar to the relaxed phenotype of E. coli relA mutants. CONCLUSIONS We conclude that rRNA transcription in B. burgdorferi is complex and regulated both by growth phase and by the stringent response but not by temperature-modulated growth rate.
Collapse
MESH Headings
- Animals
- Borrelia burgdorferi/genetics
- Borrelia burgdorferi/growth & development
- Culture Media
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genes, rRNA
- Molecular Sequence Data
- Polymerase Chain Reaction
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer, Ala/genetics
- Rabbits
- Transcription, Genetic
Collapse
Affiliation(s)
- Julia V Bugrysheva
- Department of Microbiology and Immunology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | - Henry P Godfrey
- Department of Pathology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | - Ira Schwartz
- Department of Microbiology and Immunology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | - Felipe C Cabello
- Department of Microbiology and Immunology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
31
|
Petzke MM, Brooks A, Krupna MA, Mordue D, Schwartz I. Recognition of Borrelia burgdorferi, the Lyme disease spirochete, by TLR7 and TLR9 induces a type I IFN response by human immune cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:5279-92. [PMID: 19794067 DOI: 10.4049/jimmunol.0901390] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Borrelia burgdorferi is the spirochetal agent of Lyme disease, a multisystemic disorder characterized by inflammation. Using global transcriptional profiling, we characterized the response of human PBMCs exposed to B. burgdorferi in an ex vivo coculture system. The expression profiles induced by B. burgdorferi were marked by the intense up-regulation of IFN-responsive transcripts and transcripts involved in the JAK/STAT signaling pathway. Transcript levels of IFN-alpha, IFN-beta, and IRF7, and protein concentrations of IFN-alpha, were significantly elevated relative to those in unstimulated PBMCs. The induction of IFN-alpha was completely dependent upon phagocytosis of B. burgdorferi. Addition of a soluble type I IFN receptor, B18R, did not abolish the induction of IFN-inducible genes, indicating that B. burgdorferi directly elicits enhanced expression of these genes independently of type I IFN feedback signaling. Inhibitors of either TLR7 or TLR9 significantly reduced B. burgdorferi-stimulated IFN-alpha protein expression and transcription of IFN-induced genes. Simultaneous inhibition of both TLR7 and TLR9 completely abrogated IFN-alpha induction. The IFN-alpha-producing populations in PBMCs were identified as plasmacytoid dendritic and CD14(+)CD11c(+) cells. These results reveal a TLR7/9-dependent signaling pathway used by human PBMCs to initiate a type I IFN response to the extracellular bacterium B. burgdorferi.
Collapse
Affiliation(s)
- Mary M Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
32
|
Krupka M, Raska M, Belakova J, Horynova M, Novotny R, Weigl E. Biological aspects of Lyme disease spirochetes: unique bacteria of the Borrelia burgdorferi species group. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 151:175-86. [PMID: 18345249 DOI: 10.5507/bp.2007.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Borrelia burgdorferi sensu lato is a group of at least twelve closely related species some of which are responsible for Lyme disease, the most frequent zoonosis in Europe and the USA. Many of the biological features of Borrelia are unique in prokaryotes and very interesting not only from the medical viewpoint but also from the view of molecular biology. METHODS Relevant recent articles were searched using PubMed and Google search tools. RESULTS AND CONCLUSION This is a review of the biological, genetic and physiological features of the spirochete species group, Borrelia burgdorferi sensu lato. In spite of a lot of recent articles focused on B. burgdorferi sensu lato, many features of Borrelia biology remain obscure. It is one of the main reasons for persisting problems with prevention, diagnosis and therapy of Lyme disease. The aim of the review is to summarize ongoing current knowledge into a lucid and comprehensible form.
Collapse
Affiliation(s)
- Michal Krupka
- Department of Immunology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
33
|
Ouyang Z, Blevins JS, Norgard MV. Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi. MICROBIOLOGY-SGM 2008; 154:2641-2658. [PMID: 18757798 DOI: 10.1099/mic.0.2008/019992-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The RpoN-RpoS alternative sigma factor pathway is essential for key adaptive responses by Borrelia burgdorferi, particularly those involved in the infection of a mammalian host. A putative response regulator, Rrp2, is ostensibly required for activation of the RpoN-dependent transcription of rpoS. However, questions remain regarding the extent to which the three major constituents of this pathway (Rrp2, RpoN and RpoS) act interdependently. To assess the functional interplay between Rrp2, RpoN and RpoS, we employed microarray analyses to compare gene expression levels in rrp2, rpoN and rpoS mutants of parental strain 297. We identified 98 genes that were similarly regulated by Rrp2, RpoN and RpoS, and an additional 47 genes were determined to be likely regulated by this pathway. The substantial overlap between genes regulated by RpoS and RpoN provides compelling evidence that these two alternative sigma factors form a congruous pathway and that RpoN regulates B. burgdorferi gene expression through RpoS. Although several known B. burgdorferi virulence determinants were regulated by the RpoN-RpoS pathway, a defined function has yet to be ascribed to most of the genes substantially regulated by Rrp2, RpoN and RpoS.
Collapse
Affiliation(s)
- Zhiming Ouyang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jon S Blevins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael V Norgard
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
34
|
Zückert WR. Laboratory maintenance of Borrelia burgdorferi. CURRENT PROTOCOLS IN MICROBIOLOGY 2008; Chapter 12:Unit 12C.1. [PMID: 18770608 DOI: 10.1002/9780471729259.mc12c01s4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This unit describes the propagation of Borrelia burgdorferi as well as other "cultivable" Borrelia species in Barbour-Stoenner-Kelly-II (BSK-II) medium. It supplies a detailed recipe for BSK-II, as well as protocols for standard liquid culture, the generation of frozen Borrelia stocks, and the plating of B. burgdorferi cells in solid BSK-II medium.
Collapse
|
35
|
Hanincová K, Liveris D, Sandigursky S, Wormser GP, Schwartz I. Borrelia burgdorferi sensu stricto is clonal in patients with early Lyme borreliosis. Appl Environ Microbiol 2008; 74:5008-14. [PMID: 18539816 PMCID: PMC2519259 DOI: 10.1128/aem.00479-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/24/2008] [Indexed: 11/20/2022] Open
Abstract
Lyme borreliosis, the most commonly reported vector-borne disease in North America, is caused by the spirochete Borrelia burgdorferi. Given the extensive genetic polymorphism of B. burgdorferi, elucidation of the population genetic structure of the bacterium in clinical samples may be relevant for understanding disease pathogenesis and may have applicability for the development of diagnostic tests and vaccine preparations. In this investigation, the genetic polymorphism of the 16S-23S rRNA (rrs-rrlA) intergenic spacer and ospC was investigated at the sequence level in 127 clinical isolates obtained from patients with early Lyme borreliosis evaluated in suburban New York City. Sixteen distinct rrs-rrlA and 16 distinct ospC alleles were identified, representing virtually all of the genotypes previously found in questing Ixodes scapularis nymphs in this region. In addition, a new ospC group was identified in a single patient. The strong linkage observed between the chromosome-located rrs-rrlA and plasmid-borne ospC genes suggests a clonal structure of B. burgdorferi in these isolates, despite evidence of recombination at ospC.
Collapse
Affiliation(s)
- Klára Hanincová
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
36
|
Borrelia burgdorferi surface-localized proteins expressed during persistent murine infection are conserved among diverse Borrelia spp. Infect Immun 2008; 76:2498-511. [PMID: 18390998 DOI: 10.1128/iai.01583-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in the United States, regulates numerous genes encoding lipoproteins on linear plasmid 54 in response to environmental cues. We analyzed a subset of these genes/proteins that were historically categorized as paralogous gene family 54 (BBA64, BBA65, BBA66, BBA68, BBA69, BBA70, BBA71, and BBA73) and found that the expression of several genes was influenced by the sigma(N)-sigma(S) regulatory cascade at the level of transcription and protein synthesis. Moreover, we established in this and a previous study that BBA65, BBA66, BBA69, BBA71, and BBA73 are temporally expressed during persistent infection of immunocompetent mice, as determined by quantitative real time-PCR of ear tissue, by enzyme-linked immunosorbent assay, and by immunoblotting. Correspondingly, BBA65, BBA66, BBA71, and BBA73 proteins were detectable in infectious B. burgdorferi B31 isolates but undetectable in noninfectious isolates. BBA65, BBA66, BBA71, and BBA73 proteins were also found to partition into the Triton X-114 detergent phase and were sensitive to protease treatment of intact cells, indicating that they are membrane associated and surface localized. Lastly, Southern blotting and PCR with specific gene primer/probes for BBA64, BBA65, BBA66, BBA71, and BBA73 suggest that many of these genes are conserved among the B. burgdorferi sensu lato isolates and the relapsing-fever Borrelia species. Together, the data presented suggest that these genes may play a part in Borrelia infection and/or pathogenicity that could extend beyond the sensu lato group.
Collapse
|
37
|
De Martino SJ. [Role of biological assays in the diagnosis of Lyme borreliosis presentations. What are the techniques and which are currently available?]. Med Mal Infect 2007; 37:496-506. [PMID: 17512148 DOI: 10.1016/j.medmal.2006.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 01/15/2006] [Indexed: 11/21/2022]
Abstract
The biological diagnosis of Borrelia burgdorferi sensu lato infection is usually made by antibody detection in patient sera. Thus, serological testing (Elisa, immunoblotting) is essential for a biological diagnosis. Specific antibody detection is usually done in serum and CSF of patients suspected of Lyme borreliosis. Laboratories must follow European recommendations to validate these assays in routine practice. Antibody detection lacks sensitivity in the early cutaneous phase of the infection. Therefore, serological testing is not recommended for the diagnosis of erythema migrans. The interpretation of serology must take into account the variability of Elisa sensitivity and specificity and the lack of standardization for Western-blotting in Europe. Besides these indirect diagnosis techniques, there is also direct detection of spirochetes by culture or by in vitro DNA amplification but these require adequate samples. These molecular tests must not be performed routinely, but only for specific clinical situations and in specialized laboratories only.
Collapse
Affiliation(s)
- S-J De Martino
- Laboratoire associé au CNR Borrelia, laboratoire de bactériologie, hôpitaux universitaires de Strasbourg, 3, rue Koeberlé, 67000 Strasbourg, France.
| |
Collapse
|
38
|
Scheckelhoff MR, Telford SR, Wesley M, Hu LT. Borrelia burgdorferi intercepts host hormonal signals to regulate expression of outer surface protein A. Proc Natl Acad Sci U S A 2007; 104:7247-52. [PMID: 17438273 PMCID: PMC1855410 DOI: 10.1073/pnas.0607263104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Indexed: 01/27/2023] Open
Abstract
The Borrelia burgdorferi infectious cycle requires that the organism adapt to vast differences in environmental conditions found in its tick and mammalian hosts. Previous studies have shown that B. burgdorferi accomplishes this accommodation in part by regulating expression of its surface proteins. Outer surface protein A (OspA) is a borrelial protein important in colonization of the tick midgut. OspA is up-regulated when the organism is in its tick host and down-regulated when it is in a mammalian host. However, little is known about how it is up-regulated again in a mammalian host in preparation for entry into a feeding tick. Here, we report that the host neuroendocrine stress hormones, epinephrine and norepinephrine, are specifically bound by B. burgdorferi and result in increased expression of OspA. This recognition is specific and blocked by competitive inhibitors of human adrenergic receptors. To determine whether recognition of catecholamines, which are likely to be present at the site of a tick bite, may play a role in preparing the organism for reentry into a tick from a mammalian host, we administered a beta-adrenergic blocker, propranolol, to infected mice. Propranolol significantly reduced uptake of B. burgdorferi by feeding ticks and decreased expression of OspA in B. burgdorferi recovered from ticks that fed on propranolol-treated mice. Our studies suggest that B. burgdorferi may co-opt host neuroendocrine signals to inform the organism of local changes that predict the presence of its next host and allow it to prepare for transition to a new environment.
Collapse
Affiliation(s)
- Mark R. Scheckelhoff
- *Division of Geographic Medicine and Infectious Diseases, Tupper Research Institute, Tufts–New England Medical Center, Boston, MA 02111; and
| | - Sam R. Telford
- Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536
| | - Mary Wesley
- *Division of Geographic Medicine and Infectious Diseases, Tupper Research Institute, Tufts–New England Medical Center, Boston, MA 02111; and
| | - Linden T. Hu
- *Division of Geographic Medicine and Infectious Diseases, Tupper Research Institute, Tufts–New England Medical Center, Boston, MA 02111; and
| |
Collapse
|
39
|
Mulay V, Caimano MJ, Liveris D, Desrosiers DC, Radolf JD, Schwartz I. Borrelia burgdorferi BBA74, a periplasmic protein associated with the outer membrane, lacks porin-like properties. J Bacteriol 2007; 189:2063-8. [PMID: 17189354 PMCID: PMC1855751 DOI: 10.1128/jb.01239-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 12/08/2006] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of Borrelia burgdorferi, the causative agent of Lyme disease, contains very few integral membrane proteins, in contrast to other gram-negative bacteria. BBA74, a Borrelia burgdorferi plasmid-encoded protein, was proposed to be an integral outer membrane protein with putative porin function and designated as a 28-kDa outer membrane-spanning porin (Oms28). In this study, the biophysical properties of BBA74 and its subcellular localization were investigated. BBA74 is posttranslationally modified by signal peptidase I cleavage to a mature 25-kDa protein. The secondary structure of BBA74 as determined by circular dichroism spectroscopy consists of at least 78% alpha-helix with little beta-sheet structure. BBA74 in intact B. burgdorferi cells was insensitive to proteinase K digestion, and indirect immunofluorescence microscopy showed that BBA74 was not exposed on the cell surface. Triton X-114 extraction of outer membrane vesicle preparations indicated that BBA74 is not an integral membrane protein. Taken together, the data indicate that BBA74 is a periplasmic, outer membrane-associated protein that lacks properties typically associated with porins.
Collapse
Affiliation(s)
- Vishwaroop Mulay
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
40
|
Nowalk AJ, Gilmore RD, Carroll JA. Serologic proteome analysis of Borrelia burgdorferi membrane-associated proteins. Infect Immun 2006; 74:3864-73. [PMID: 16790758 PMCID: PMC1489744 DOI: 10.1128/iai.00189-06] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease, a global health concern, is caused by infection with Borrelia burgdorferi, B. afzelii, or B. garinii. The spirochete responsible for the disease in the United States is B. burgdorferi and is spread by the bite of an infected Ixodes tick. We utilized multiple two-dimensional gel techniques combined with proteomics to reveal the full humoral immune response of mice and Lyme patients to membrane-associated proteins isolated from Borrelia burgdorferi. Our studies indicated that a subset of immunogenic membrane-associated proteins (some new and some previously identified) was recognized by mice experimentally infected with Borrelia burgdorferi either by low-dose needle inoculation or by tick infestation. Moreover, the majority of these immunogenic membrane-associated proteins were recognized by sera from patients diagnosed with early-disseminated Lyme disease. These included RevA, ErpA, ErpP, DbpA, BmpA, FtsZ, ErpB, LA7, OppA I, OppA II, OppA IV, FlhF, BBA64, BBA66, and BB0323. Some immunogens (i.e., BBI36/38) were more reactive with sera from mice than Lyme patients, while additional membrane proteins (i.e., FlaB, P66, LA7, and Hsp90) were recognized more strongly with sera from patients diagnosed with early-localized, early-disseminated, or late (chronic)-stage Lyme disease. We were able to examine the humoral response in Lyme patients in a temporal fashion and to identify the majority of immunoreactive proteins as the disease progresses from early to late stages. This serologic proteome analysis enabled the identification of novel membrane-associated proteins that may serve as new diagnostic markers and, more importantly, as second-generation vaccine candidates for protection against Lyme disease.
Collapse
Affiliation(s)
- Andrew J Nowalk
- Department of Molecular Genetics and Biochemistry, W1145 Biomedical Science Tower, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
41
|
Guerau-de-Arellano M, Alroy J, Bullard D, Huber BT. Aggravated Lyme carditis in CD11a-/- and CD11c-/- mice. Infect Immun 2005; 73:7637-43. [PMID: 16239568 PMCID: PMC1273870 DOI: 10.1128/iai.73.11.7637-7643.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD18 hypomorph mice expressing reduced levels of the common beta2 integrin chain develop aggravated Lyme carditis, compared to that developed by wild-type (WT) mice, upon infection with the spirochete Borrelia burgdorferi. The enhancement of Lyme carditis in these mice is characterized by increased macrophage infiltration, correlating with augmented expression of the monocyte/macrophage chemoattractant protein 1 (MCP-1). The lack of CD18 results in the deficiency of all beta2 integrins, i.e., CD11a/CD18 (LFA-1), CD11b/CD18 (Mac-1/CR3), CD11c/CD18 (p150,95/CR4), and CD11d/CD18. To determine the roles of the various beta2 integrins in controlling the development of aggravated Lyme carditis, disease induction was analyzed in CD11a-/-, CD11b-/-, and CD11c-/- mice. CD11a-/- and CD11c-/- mice, but not CD11b-/- mice, developed aggravated Lyme carditis after exposure to B. burgdorferi. Similarly to CD18 hypomorph mice, CD11c-/- mice expressed higher levels of MCP-1, compared to both WT and CD11a-/- mice, as determined by in vitro analysis of MCP-1 secretion by bone marrow-derived dendritic cells and in vivo analysis of MCP-1 mRNA expression in B. burgdorferi-infected hearts. On the other hand, CD11a deficiency was associated with heightened heart B. burgdorferi burden relative to that of WT mice. Overall, our results suggest that the increased severity of Lyme carditis in CD18 hypomorph mice is caused by deficiency in CD11a or CD11c, possibly via different mechanisms.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- Department of Pathology, Tufts University School of Medicine, Jaharis 512, 150 Harrison Ave., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Infection of C57BL/6 (B6) mice with the Lyme disease spirochete Borrelia burgdorferi can result in development of arthritis and carditis. B. burgdorferi induces expression of beta2/CD18 integrins, adhesion molecules that mediate the firm adhesion of leukocytes to the endothelium necessary for cellular extravasation during inflammation. The important role of beta2/CD18 integrins during extravasation suggests that these molecules play a role in the development of Lyme arthritis and carditis. The dependency of these inflammatory processes on the beta2 integrins was investigated in CD18 hypomorph mice, which express low levels of CD18. The results indicate that CD18 deficiency did not abrogate development of Lyme arthritis or carditis. Moreover, it resulted in increased severity of Lyme carditis. B. burgdorferi-infected CD18 hypomorph mice showed an increased macrophage infiltration of the heart, while they produced lower levels of borreliacidal anti-B. burgdorferi antibodies compared to wild-type mice. In accordance with these results, we demonstrate that dendritic cells from CD18 hypomorph mice secrete higher levels of monocyte/macrophage chemoattractant protein 1 (MCP-1/CCL2) in response to B. burgdorferi. Similarly, we show by real-time PCR that B. burgdorferi-infected hearts from CD18 hypomorph mice express increased levels of MCP-1 RNA compared to wild-type mice. Overall, our results indicate that beta2 integrin deficiency does not abrogate B. burgdorferi-induced inflammation; rather, it results in increased recruitment of macrophages into the B. burgdorferi-infected heart, likely due to the increased expression of MCP-1 in this tissue. Thus, beta2 integrins may play a regulatory role in B. burgdorferi-induced inflammation beyond mediating adhesion of leukocytes to the endothelium.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- Department of Pathology, Tufts University School of Medicine, Jaharis 512, 150 Harrison Ave., Boston, MA 02111, USA
| | | | | |
Collapse
|